2022-03-31 18:30:57 -06:00

1141 lines
45 KiB
C

/*
* Copyright (c) 2019-2021 shchmue
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "keys.h"
#include "../../keygen/tsec_keygen.h"
#include "../config.h"
#include <display/di.h>
#include "../frontend/gui.h"
#include <gfx_utils.h>
#include "../gfx/tui.h"
#include "../hos/hos.h"
#include <libs/fatfs/ff.h>
#include <libs/nx_savedata/save.h>
#include <mem/heap.h>
#include <mem/minerva.h>
#include <mem/sdram.h>
#include <sec/se.h>
#include <sec/se_t210.h>
#include <sec/tsec.h>
#include <soc/fuse.h>
#include <mem/smmu.h>
#include <soc/t210.h>
#include "../storage/emummc.h"
#include "../storage/nx_emmc.h"
#include "../storage/nx_emmc_bis.h"
#include <storage/nx_sd.h>
#include <storage/sdmmc.h>
#include <utils/btn.h>
#include <utils/list.h>
#include <utils/sprintf.h>
#include <utils/util.h>
#include "key_sources.inl"
#include <string.h>
extern hekate_config h_cfg;
static u32 _key_count = 0, _titlekey_count = 0;
static u32 start_time, end_time;
u32 color_idx = 0;
static ALWAYS_INLINE u32 _read_le_u32(const void *buffer, u32 offset) {
return (*(u8*)(buffer + offset + 0) ) |
(*(u8*)(buffer + offset + 1) << 0x08) |
(*(u8*)(buffer + offset + 2) << 0x10) |
(*(u8*)(buffer + offset + 3) << 0x18);
}
static ALWAYS_INLINE u32 _read_be_u32(const void *buffer, u32 offset) {
return (*(u8*)(buffer + offset + 3) ) |
(*(u8*)(buffer + offset + 2) << 0x08) |
(*(u8*)(buffer + offset + 1) << 0x10) |
(*(u8*)(buffer + offset + 0) << 0x18);
}
// key functions
static int _key_exists(const void *data) { return memcmp(data, "\x00\x00\x00\x00\x00\x00\x00\x00", 8) != 0; };
static void _save_key(const char *name, const void *data, u32 len, char *outbuf);
static void _save_key_family(const char *name, const void *data, u32 start_key, u32 num_keys, u32 len, char *outbuf);
static void _generate_kek(u32 ks, const void *key_source, const void *master_key, const void *kek_seed, const void *key_seed);
static void _decrypt_aes_key(u32 ks, void *dst, const void *key_source, const void *master_key);
static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 key_generation);
static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 revision);
// titlekey functions
static bool _test_key_pair(const void *E, const void *D, const void *N);
static void _derive_master_key_mariko(key_derivation_ctx_t *keys, bool is_dev) {
// Relies on the SBK being properly set in slot 14
se_aes_crypt_block_ecb(14, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source);
// Derive all master keys based on Mariko KEK
for (u32 i = KB_FIRMWARE_VERSION_600; i < ARRAY_SIZE(mariko_master_kek_sources) + KB_FIRMWARE_VERSION_600; i++) {
// Relies on the Mariko KEK being properly set in slot 12
se_aes_crypt_block_ecb(12, DECRYPT, keys->master_kek[i], is_dev ? &mariko_master_kek_sources_dev[i - KB_FIRMWARE_VERSION_600] : &mariko_master_kek_sources[i - KB_FIRMWARE_VERSION_600]); // mkek = unwrap(mariko_kek, mariko_kek_source)
se_aes_key_set(8, keys->master_kek[i], AES_128_KEY_SIZE); // mkey = unwrap(mkek, mkeys)
se_aes_crypt_block_ecb(8, DECRYPT, keys->master_key[i], master_key_source);
}
}
static int _run_ams_keygen(key_derivation_ctx_t *keys) {
tsec_ctxt_t tsec_ctxt;
tsec_ctxt.fw = tsec_keygen;
tsec_ctxt.size = sizeof(tsec_keygen);
tsec_ctxt.type = TSEC_FW_TYPE_NEW;
u32 retries = 0;
while (tsec_query(keys->temp_key, &tsec_ctxt) < 0) {
retries++;
if (retries > 15) {
EPRINTF("Failed to run keygen.");
return -1;
}
}
return 0;
}
static void _derive_master_keys_from_latest_key(key_derivation_ctx_t *keys, bool is_dev) {
if (!h_cfg.t210b01) {
u32 tsec_root_key_slot = is_dev ? 11 : 13;
// Derive all master keys based on current root key
for (u32 i = KB_FIRMWARE_VERSION_810 - KB_FIRMWARE_VERSION_620; i < ARRAY_SIZE(master_kek_sources); i++) {
se_aes_crypt_block_ecb(tsec_root_key_slot, DECRYPT, keys->master_kek[i + KB_FIRMWARE_VERSION_620], master_kek_sources[i]); // mkek = unwrap(tsec_root, mkeks)
se_aes_key_set(8, keys->master_kek[i + KB_FIRMWARE_VERSION_620], AES_128_KEY_SIZE); // mkey = unwrap(mkek, mkeys)
se_aes_crypt_block_ecb(8, DECRYPT, keys->master_key[i + KB_FIRMWARE_VERSION_620], master_key_source);
}
}
// Derive all lower master keys
for (u32 i = KB_FIRMWARE_VERSION_MAX; i > 0; i--) {
se_aes_key_set(8, keys->master_key[i], AES_128_KEY_SIZE);
se_aes_crypt_block_ecb(8, DECRYPT, keys->master_key[i - 1], is_dev ? master_key_vectors_dev[i] : master_key_vectors[i]);
}
se_aes_key_set(8, keys->master_key[0], AES_128_KEY_SIZE);
se_aes_crypt_block_ecb(8, DECRYPT, keys->temp_key, is_dev ? master_key_vectors_dev[0] : master_key_vectors[0]);
if (_key_exists(keys->temp_key)) {
EPRINTFARGS("Unable to derive master keys for %s.", is_dev ? "dev" : "prod");
memset(keys->master_key, 0, sizeof(keys->master_key));
}
}
static void _derive_keyblob_keys(key_derivation_ctx_t *keys) {
u8 *keyblob_block = (u8 *)calloc(KB_FIRMWARE_VERSION_600 + 1, NX_EMMC_BLOCKSIZE);
u32 keyblob_mac[AES_128_KEY_SIZE / 4] = {0};
bool have_keyblobs = true;
if (FUSE(FUSE_PRIVATE_KEY0) == 0xFFFFFFFF) {
u8 *aes_keys = (u8 *)calloc(SZ_4K, 1);
se_get_aes_keys(aes_keys + SZ_2K, aes_keys, AES_128_KEY_SIZE);
memcpy(keys->sbk, aes_keys + 14 * AES_128_KEY_SIZE, AES_128_KEY_SIZE);
free(aes_keys);
} else {
keys->sbk[0] = FUSE(FUSE_PRIVATE_KEY0);
keys->sbk[1] = FUSE(FUSE_PRIVATE_KEY1);
keys->sbk[2] = FUSE(FUSE_PRIVATE_KEY2);
keys->sbk[3] = FUSE(FUSE_PRIVATE_KEY3);
}
if (!emmc_storage.initialized) {
have_keyblobs = false;
} else if (!emummc_storage_read(KEYBLOB_OFFSET / NX_EMMC_BLOCKSIZE, KB_FIRMWARE_VERSION_600 + 1, keyblob_block)) {
EPRINTF("Unable to read keyblobs.");
have_keyblobs = false;
} else {
have_keyblobs = true;
}
encrypted_keyblob_t *current_keyblob = (encrypted_keyblob_t *)keyblob_block;
for (u32 i = 0; i <= KB_FIRMWARE_VERSION_600; i++, current_keyblob++) {
minerva_periodic_training();
se_aes_crypt_block_ecb(12, DECRYPT, keys->keyblob_key[i], keyblob_key_sources[i]); // temp = unwrap(kbks, tsec)
se_aes_crypt_block_ecb(14, DECRYPT, keys->keyblob_key[i], keys->keyblob_key[i]); // kbk = unwrap(temp, sbk)
se_aes_key_set(7, keys->keyblob_key[i], sizeof(keys->keyblob_key[i]));
se_aes_crypt_block_ecb(7, DECRYPT, keys->keyblob_mac_key[i], keyblob_mac_key_source); // kbm = unwrap(kbms, kbk)
if (i == 0) {
se_aes_crypt_block_ecb(7, DECRYPT, keys->device_key, per_console_key_source); // devkey = unwrap(pcks, kbk0)
se_aes_crypt_block_ecb(7, DECRYPT, keys->device_key_4x, device_master_key_source_kek_source);
}
if (!have_keyblobs) {
continue;
}
// verify keyblob is not corrupt
se_aes_key_set(10, keys->keyblob_mac_key[i], sizeof(keys->keyblob_mac_key[i]));
se_aes_cmac(10, keyblob_mac, sizeof(keyblob_mac), current_keyblob->iv, sizeof(current_keyblob->iv) + sizeof(keyblob_t));
if (memcmp(current_keyblob->cmac, keyblob_mac, sizeof(keyblob_mac)) != 0) {
EPRINTFARGS("Keyblob %x corrupt.", i);
continue;
}
// decrypt keyblobs
se_aes_key_set(6, keys->keyblob_key[i], sizeof(keys->keyblob_key[i]));
se_aes_crypt_ctr(6, &keys->keyblob[i], sizeof(keyblob_t), &current_keyblob->key_data, sizeof(keyblob_t), current_keyblob->iv);
memcpy(keys->package1_key[i], keys->keyblob[i].package1_key, sizeof(keys->package1_key[i]));
memcpy(keys->master_kek[i], keys->keyblob[i].master_kek, sizeof(keys->master_kek[i]));
se_aes_key_set(7, keys->master_kek[i], sizeof(keys->master_kek[i]));
if (!_key_exists(keys->master_key[i])) {
se_aes_crypt_block_ecb(7, DECRYPT, keys->master_key[i], master_key_source);
}
}
free(keyblob_block);
}
static void _derive_bis_keys(key_derivation_ctx_t *keys) {
/* key = unwrap(source, wrapped_key):
key_set(ks, wrapped_key), block_ecb(ks, 0, key, source) -> final key in key
*/
minerva_periodic_training();
u32 key_generation = fuse_read_odm_keygen_rev();
if (key_generation)
key_generation--;
if (!(_key_exists(keys->device_key) || (key_generation && _key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x)))) {
return;
}
_generate_specific_aes_key(8, keys, &keys->bis_key[0], &bis_key_sources[0], key_generation);
// kek = generate_kek(bkeks, devkey, aeskek, aeskey)
_get_device_key(8, keys, keys->temp_key, key_generation);
_generate_kek(8, bis_kek_source, keys->temp_key, aes_kek_generation_source, aes_key_generation_source);
se_aes_crypt_ecb(8, DECRYPT, keys->bis_key[1], AES_128_KEY_SIZE * 2, bis_key_sources[1], AES_128_KEY_SIZE * 2); // bkey = unwrap(bkeys, kek)
se_aes_crypt_ecb(8, DECRYPT, keys->bis_key[2], AES_128_KEY_SIZE * 2, bis_key_sources[2], AES_128_KEY_SIZE * 2);
memcpy(keys->bis_key[3], keys->bis_key[2], 0x20);
}
static void _derive_non_unique_keys(key_derivation_ctx_t *keys, bool is_dev) {
if (_key_exists(keys->master_key[0])) {
_generate_kek(8, header_kek_source, keys->master_key[0], aes_kek_generation_source, aes_key_generation_source);
se_aes_crypt_ecb(8, DECRYPT, keys->header_key, AES_128_KEY_SIZE * 2, header_key_source, AES_128_KEY_SIZE * 2);
}
}
static void _derive_eticket_rsa_kek(key_derivation_ctx_t *keys, u32 ks, void *out_rsa_kek, const void *master_key, const void *kek_source) {
u8 kek_seed[AES_128_KEY_SIZE];
for (u32 i = 0; i < AES_128_KEY_SIZE; i++)
kek_seed[i] = aes_kek_generation_source[i] ^ aes_seal_key_mask_import_es_device_key[i];
_generate_kek(ks, eticket_rsa_kekek_source, master_key, kek_seed, NULL);
se_aes_crypt_block_ecb(ks, DECRYPT, out_rsa_kek, kek_source);
}
static void _derive_misc_keys(key_derivation_ctx_t *keys, bool is_dev) {
if (_key_exists(keys->device_key) || (_key_exists(keys->master_key[0]) && _key_exists(keys->device_key_4x))) {
_get_device_key(8, keys, keys->temp_key, 0);
_generate_kek(8, save_mac_kek_source, keys->temp_key, aes_kek_generation_source, NULL);
se_aes_crypt_block_ecb(8, DECRYPT, keys->save_mac_key, save_mac_key_source);
}
if (_key_exists(keys->master_key[0])) {
_derive_eticket_rsa_kek(keys, 8, keys->eticket_rsa_kek, keys->master_key[0], is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source);
for (u32 i = 0; i < AES_128_KEY_SIZE; i++)
keys->temp_key[i] = aes_kek_generation_source[i] ^ aes_seal_key_mask_decrypt_device_unique_data[i];
_generate_kek(8, ssl_rsa_kek_source_x, keys->master_key[0], keys->temp_key, NULL);
se_aes_crypt_block_ecb(8, DECRYPT, keys->ssl_rsa_kek, ssl_rsa_kek_source_y);
}
}
static void _derive_per_generation_keys(key_derivation_ctx_t *keys) {
for (u32 i = 0; i < KB_FIRMWARE_VERSION_MAX + 1; i++) {
if (!_key_exists(keys->master_key[i]))
continue;
for (u32 j = 0; j < 3; j++) {
_generate_kek(8, key_area_key_sources[j], keys->master_key[i], aes_kek_generation_source, NULL);
se_aes_crypt_block_ecb(8, DECRYPT, keys->key_area_key[j][i], aes_key_generation_source);
}
se_aes_key_set(8, keys->master_key[i], AES_128_KEY_SIZE);
se_aes_crypt_block_ecb(8, DECRYPT, keys->package2_key[i], package2_key_source);
se_aes_crypt_block_ecb(8, DECRYPT, keys->titlekek[i], titlekek_source);
}
}
static bool _get_titlekeys_from_save(u32 buf_size, const u8 *save_mac_key, titlekey_buffer_t *titlekey_buffer, rsa_keypair_t *rsa_keypair) {
FIL fp;
u64 br = buf_size;
u64 offset = 0;
u32 file_tkey_count = 0;
u32 save_x = gfx_con.x, save_y = gfx_con.y;
bool is_personalized = rsa_keypair != NULL;
u32 start_titlekey_count = _titlekey_count;
char titlekey_save_path[32] = "bis:/save/80000000000000E1";
if (is_personalized) {
titlekey_save_path[25] = '2';
gfx_printf("\n%kPersonalized... ", colors[color_idx % 6]);
} else {
gfx_printf("\n%kCommon... ", colors[color_idx % 6]);
}
if (f_open(&fp, titlekey_save_path, FA_READ | FA_OPEN_EXISTING)) {
EPRINTF("Unable to open e1 save. Skipping.");
return false;
}
save_ctx_t *save_ctx = calloc(1, sizeof(save_ctx_t));
save_init(save_ctx, &fp, save_mac_key, 0);
bool save_process_success = save_process(save_ctx);
TPRINTF("\n Save process...");
if (!save_process_success) {
EPRINTF("Failed to process es save.");
f_close(&fp);
save_free_contexts(save_ctx);
free(save_ctx);
return false;
}
const char ticket_bin_path[32] = "/ticket.bin";
const char ticket_list_bin_path[32] = "/ticket_list.bin";
save_data_file_ctx_t ticket_file;
if (!save_open_file(save_ctx, &ticket_file, ticket_list_bin_path, OPEN_MODE_READ)) {
EPRINTF("Unable to locate ticket_list.bin in save.");
f_close(&fp);
save_free_contexts(save_ctx);
free(save_ctx);
return false;
}
bool terminator_reached = false;
while (offset < ticket_file.size && !terminator_reached) {
if (!save_data_file_read(&ticket_file, &br, offset, titlekey_buffer->read_buffer, buf_size) || titlekey_buffer->read_buffer[0] == 0 || br != buf_size)
break;
offset += br;
minerva_periodic_training();
ticket_record_t *curr_ticket_record = (ticket_record_t *)titlekey_buffer->read_buffer;
for (u32 i = 0; i < buf_size; i += sizeof(ticket_record_t), curr_ticket_record++) {
if (curr_ticket_record->rights_id[0] == 0xFF) {
terminator_reached = true;
break;
}
file_tkey_count++;
}
}
TPRINTF(" Count keys...");
if (!save_open_file(save_ctx, &ticket_file, ticket_bin_path, OPEN_MODE_READ)) {
EPRINTF("Unable to locate ticket.bin in save.");
f_close(&fp);
save_free_contexts(save_ctx);
free(save_ctx);
return false;
}
const u32 ticket_sig_type_rsa2048_sha256 = 0x10004;
offset = 0;
terminator_reached = false;
u32 pct = 0, last_pct = 0, i = 0;
while (offset < ticket_file.size && !terminator_reached) {
if (!save_data_file_read(&ticket_file, &br, offset, titlekey_buffer->read_buffer, buf_size) || titlekey_buffer->read_buffer[0] == 0 || br != buf_size)
break;
offset += br;
ticket_t *curr_ticket = (ticket_t *)titlekey_buffer->read_buffer;
for (u32 j = 0; j < buf_size; j += sizeof(ticket_t), curr_ticket++) {
minerva_periodic_training();
pct = (_titlekey_count - start_titlekey_count) * 100 / file_tkey_count;
if (pct > last_pct && pct <= 100) {
last_pct = pct;
tui_pbar(save_x, save_y, pct, COLOR_GREEN, 0xFF155500);
}
if (i == file_tkey_count || curr_ticket->signature_type == 0) {
terminator_reached = true;
break;
}
if (curr_ticket->signature_type != ticket_sig_type_rsa2048_sha256) {
i++;
continue;
}
if (is_personalized) {
se_rsa_exp_mod(0, curr_ticket->titlekey_block, sizeof(curr_ticket->titlekey_block), curr_ticket->titlekey_block, sizeof(curr_ticket->titlekey_block));
if (se_rsa_oaep_decode(
curr_ticket->titlekey_block, sizeof(titlekey_buffer->titlekeys[0]),
null_hash, sizeof(null_hash),
curr_ticket->titlekey_block, sizeof(curr_ticket->titlekey_block)
) != sizeof(titlekey_buffer->titlekeys[0])
)
continue;
}
memcpy(titlekey_buffer->rights_ids[_titlekey_count], curr_ticket->rights_id, sizeof(titlekey_buffer->rights_ids[0]));
memcpy(titlekey_buffer->titlekeys[_titlekey_count], curr_ticket->titlekey_block, sizeof(titlekey_buffer->titlekeys[0]));
_titlekey_count++;
i++;
}
}
tui_pbar(save_x, save_y, 100, COLOR_GREEN, 0xFF155500);
f_close(&fp);
save_free_contexts(save_ctx);
free(save_ctx);
gfx_con_setpos(0, save_y);
if (is_personalized) {
TPRINTFARGS("\n%kPersonalized... ", colors[(color_idx++) % 6]);
} else {
TPRINTFARGS("\n%kCommon... ", colors[(color_idx++) % 6]);
}
gfx_printf("\n\n\n");
return true;
}
static bool _derive_sd_seed(key_derivation_ctx_t *keys) {
FIL fp;
u32 read_bytes = 0;
char *private_path = malloc(200);
strcpy(private_path, "sd:/");
if (emu_cfg.nintendo_path && (emu_cfg.enabled || !h_cfg.emummc_force_disable)) {
strcat(private_path, emu_cfg.nintendo_path);
} else {
strcat(private_path, "Nintendo");
}
strcat(private_path, "/Contents/private");
FRESULT fr = f_open(&fp, private_path, FA_READ | FA_OPEN_EXISTING);
free(private_path);
if (fr) {
EPRINTF("Unable to open SD seed vector. Skipping.");
return false;
}
// get sd seed verification vector
if (f_read(&fp, keys->temp_key, AES_128_KEY_SIZE, &read_bytes) || read_bytes != AES_128_KEY_SIZE) {
EPRINTF("Unable to read SD seed vector. Skipping.");
f_close(&fp);
return false;
}
f_close(&fp);
// this file is small enough that parsing the savedata properly is slower
if (f_open(&fp, "bis:/save/8000000000000043", FA_READ | FA_OPEN_EXISTING)) {
EPRINTF("Unable to open ns_appman save.\nSkipping SD seed.");
return false;
}
u8 read_buf[0x20] __attribute__((aligned(4))) = {0};
for (u32 i = SZ_32K; i < f_size(&fp); i += SZ_16K) {
if (f_lseek(&fp, i) || f_read(&fp, read_buf, 0x20, &read_bytes) || read_bytes != 0x20)
break;
if (!memcmp(keys->temp_key, read_buf, sizeof(keys->temp_key))) {
memcpy(keys->sd_seed, read_buf + 0x10, sizeof(keys->sd_seed));
break;
}
}
f_close(&fp);
TPRINTFARGS("%kSD Seed... ", colors[(color_idx++) % 6]);
return true;
}
static bool _derive_titlekeys(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) {
if (!_key_exists(keys->eticket_rsa_kek)) {
return false;
}
gfx_printf("%kTitlekeys... \n", colors[(color_idx++) % 6]);
rsa_keypair_t rsa_keypair = {0};
if (!emummc_storage_read(NX_EMMC_CALIBRATION_OFFSET / NX_EMMC_BLOCKSIZE, NX_EMMC_CALIBRATION_SIZE / NX_EMMC_BLOCKSIZE, titlekey_buffer->read_buffer)) {
EPRINTF("Unable to read PRODINFO.");
return false;
}
se_aes_xts_crypt(1, 0, DECRYPT, 0, titlekey_buffer->read_buffer, titlekey_buffer->read_buffer, XTS_CLUSTER_SIZE, NX_EMMC_CALIBRATION_SIZE / XTS_CLUSTER_SIZE);
nx_emmc_cal0_t *cal0 = (nx_emmc_cal0_t *)titlekey_buffer->read_buffer;
if (cal0->magic != MAGIC_CAL0) {
EPRINTF("Invalid CAL0 magic. Check BIS key 0.");
return false;
}
u32 keypair_generation = 0;
const void *eticket_device_key = NULL;
const void *eticket_iv = NULL;
if (cal0->ext_ecc_rsa2048_eticket_key_crc == crc16_calc(cal0->ext_ecc_rsa2048_eticket_key_iv, 0x24E)) {
eticket_device_key = cal0->ext_ecc_rsa2048_eticket_key;
eticket_iv = cal0->ext_ecc_rsa2048_eticket_key_iv;
// settings sysmodule manually zeroes this out below cal version 9
keypair_generation = cal0->version <= 8 ? 0 : cal0->ext_ecc_rsa2048_eticket_key_ver;
} else if (cal0->rsa2048_eticket_key_crc == crc16_calc(cal0->rsa2048_eticket_key_iv, 0x22E)) {
eticket_device_key = cal0->rsa2048_eticket_key;
eticket_iv = cal0->rsa2048_eticket_key_iv;
} else {
EPRINTF("Crc16 error reading device key.");
return false;
}
if (keypair_generation) {
keypair_generation--;
_get_device_key(7, keys, keys->temp_key, keypair_generation);
_derive_eticket_rsa_kek(keys, 7, keys->eticket_rsa_kek_personalized, keys->temp_key, is_dev ? eticket_rsa_kek_source_dev : eticket_rsa_kek_source);
memcpy(keys->temp_key, keys->eticket_rsa_kek_personalized, sizeof(keys->temp_key));
} else {
memcpy(keys->temp_key, keys->eticket_rsa_kek, sizeof(keys->temp_key));
}
se_aes_key_set(6, keys->temp_key, sizeof(keys->temp_key));
se_aes_crypt_ctr(6, &rsa_keypair, sizeof(rsa_keypair), eticket_device_key, sizeof(rsa_keypair), eticket_iv);
// Check public exponent is 65537 big endian
if (_read_be_u32(rsa_keypair.public_exponent, 0) != 65537) {
// try legacy kek source
_derive_eticket_rsa_kek(keys, 7, keys->temp_key, keys->master_key[0], eticket_rsa_kek_source_legacy);
se_aes_key_set(6, keys->temp_key, sizeof(keys->temp_key));
se_aes_crypt_ctr(6, &rsa_keypair, sizeof(rsa_keypair), eticket_device_key, sizeof(rsa_keypair), eticket_iv);
if (_read_be_u32(rsa_keypair.public_exponent, 0) != 65537) {
EPRINTF("Invalid public exponent.");
return false;
} else {
memcpy(keys->eticket_rsa_kek, keys->temp_key, sizeof(keys->eticket_rsa_kek));
}
}
if (!_test_key_pair(rsa_keypair.public_exponent, rsa_keypair.private_exponent, rsa_keypair.modulus)) {
EPRINTF("Invalid keypair. Check eticket_rsa_kek.");
return false;
}
se_rsa_key_set(0, rsa_keypair.modulus, sizeof(rsa_keypair.modulus), rsa_keypair.private_exponent, sizeof(rsa_keypair.private_exponent));
const u32 buf_size = SZ_16K;
_get_titlekeys_from_save(buf_size, keys->save_mac_key, titlekey_buffer, NULL);
_get_titlekeys_from_save(buf_size, keys->save_mac_key, titlekey_buffer, &rsa_keypair);
gfx_printf("\n%k Found %d titlekeys.\n\n", colors[(color_idx++) % 6], _titlekey_count);
return true;
}
static bool _derive_emmc_keys(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) {
// Set BIS keys.
// PRODINFO/PRODINFOF
se_aes_key_set(0, keys->bis_key[0] + 0x00, AES_128_KEY_SIZE);
se_aes_key_set(1, keys->bis_key[0] + 0x10, AES_128_KEY_SIZE);
// SAFE
se_aes_key_set(2, keys->bis_key[1] + 0x00, AES_128_KEY_SIZE);
se_aes_key_set(3, keys->bis_key[1] + 0x10, AES_128_KEY_SIZE);
// SYSTEM/USER
se_aes_key_set(4, keys->bis_key[2] + 0x00, AES_128_KEY_SIZE);
se_aes_key_set(5, keys->bis_key[2] + 0x10, AES_128_KEY_SIZE);
if (!emummc_storage_set_mmc_partition(EMMC_GPP)) {
EPRINTF("Unable to set partition.");
return false;
}
// Parse eMMC GPT.
LIST_INIT(gpt);
nx_emmc_gpt_parse(&gpt, &emmc_storage);
emmc_part_t *system_part = nx_emmc_part_find(&gpt, "SYSTEM");
if (!system_part) {
EPRINTF("Unable to locate System partition.");
nx_emmc_gpt_free(&gpt);
return false;
}
nx_emmc_bis_init(system_part);
if (f_mount(&emmc_fs, "bis:", 1)) {
EPRINTF("Unable to mount system partition.");
nx_emmc_gpt_free(&gpt);
return false;
}
if (!sd_mount()) {
EPRINTF("Unable to mount SD.");
} else if (!_derive_sd_seed(keys)) {
EPRINTF("Unable to get SD seed.");
}
bool res = _derive_titlekeys(keys, titlekey_buffer, is_dev);
if (!res) {
EPRINTF("Unable to derive titlekeys.");
}
f_mount(NULL, "bis:", 1);
nx_emmc_gpt_free(&gpt);
return res;
}
// The security engine supports partial key override for locked keyslots
// This allows for a manageable brute force on a PC
// Then the Mariko AES class keys, KEK, BEK, unique SBK and SSK can be recovered
int save_mariko_partial_keys(u32 start, u32 count, bool append) {
const char *keyfile_path = "sd:/switch/partialaes.keys";
if (!f_stat(keyfile_path, NULL)) {
f_unlink(keyfile_path);
}
if (start + count > SE_AES_KEYSLOT_COUNT) {
return 1;
}
display_backlight_brightness(h_cfg.backlight, 1000);
gfx_clear_partial_grey(0x1B, 32, 1224);
gfx_con_setpos(0, 32);
color_idx = 0;
u32 pos = 0;
u32 zeros[AES_128_KEY_SIZE / 4] = {0};
u8 *data = malloc(4 * AES_128_KEY_SIZE);
char *text_buffer = calloc(1, 0x100 * count);
for (u32 ks = start; ks < start + count; ks++) {
// Check if key is as expected
if (ks < ARRAY_SIZE(mariko_key_vectors)) {
se_aes_crypt_block_ecb(ks, DECRYPT, &data[0], mariko_key_vectors[ks]);
if (_key_exists(data)) {
EPRINTFARGS("Failed to validate keyslot %d.", ks);
continue;
}
}
// Encrypt zeros with complete key
se_aes_crypt_block_ecb(ks, ENCRYPT, &data[3 * AES_128_KEY_SIZE], zeros);
// We only need to overwrite 3 of the dwords of the key
for (u32 i = 0; i < 3; i++) {
// Overwrite ith dword of key with zeros
se_aes_key_partial_set(ks, i, 0);
// Encrypt zeros with more of the key zeroed out
se_aes_crypt_block_ecb(ks, ENCRYPT, &data[(2 - i) * AES_128_KEY_SIZE], zeros);
}
// Skip saving key if two results are the same indicating unsuccessful overwrite or empty slot
if (memcmp(&data[0], &data[SE_KEY_128_SIZE], AES_128_KEY_SIZE) == 0) {
EPRINTFARGS("Failed to overwrite keyslot %d.", ks);
continue;
}
pos += s_printf(&text_buffer[pos], "%d\n", ks);
for (u32 i = 0; i < 4; i++) {
for (u32 j = 0; j < AES_128_KEY_SIZE; j++)
pos += s_printf(&text_buffer[pos], "%02x", data[i * AES_128_KEY_SIZE + j]);
pos += s_printf(&text_buffer[pos], " ");
}
pos += s_printf(&text_buffer[pos], "\n");
}
free(data);
if (strlen(text_buffer) == 0) {
EPRINTFARGS("Failed to dump partial keys %d-%d.", start, start + count - 1);
free(text_buffer);
return 2;
}
FIL fp;
BYTE mode = FA_WRITE;
if (append) {
mode |= FA_OPEN_APPEND;
} else {
mode |= FA_CREATE_ALWAYS;
}
if (!sd_mount()) {
EPRINTF("Unable to mount SD.");
free(text_buffer);
return 3;
}
if (f_open(&fp, keyfile_path, mode)) {
EPRINTF("Unable to write partial keys to SD.");
free(text_buffer);
return 3;
}
f_write(&fp, text_buffer, strlen(text_buffer), NULL);
f_close(&fp);
gfx_printf("%kWrote partials to %s\n", colors[(color_idx++) % 6], keyfile_path);
free(text_buffer);
return 0;
}
static void _save_keys_to_sd(key_derivation_ctx_t *keys, titlekey_buffer_t *titlekey_buffer, bool is_dev) {
char *text_buffer = NULL;
if (!sd_mount()) {
EPRINTF("Unable to mount SD.");
return;
}
u32 text_buffer_size = MAX(_titlekey_count * sizeof(titlekey_text_buffer_t) + 1, SZ_16K);
text_buffer = (char *)calloc(1, text_buffer_size);
SAVE_KEY(aes_kek_generation_source);
SAVE_KEY(aes_key_generation_source);
SAVE_KEY(bis_kek_source);
SAVE_KEY_FAMILY_VAR(bis_key, keys->bis_key, 0);
SAVE_KEY_FAMILY_VAR(bis_key_source, bis_key_sources, 0);
SAVE_KEY_VAR(device_key, keys->device_key);
SAVE_KEY_VAR(device_key_4x, keys->device_key_4x);
SAVE_KEY_VAR(eticket_rsa_kek, keys->eticket_rsa_kek);
SAVE_KEY_VAR(eticket_rsa_kek_personalized, keys->eticket_rsa_kek_personalized);
if (is_dev) {
SAVE_KEY_VAR(eticket_rsa_kek_source, eticket_rsa_kek_source_dev);
} else {
SAVE_KEY(eticket_rsa_kek_source);
}
SAVE_KEY(eticket_rsa_kekek_source);
SAVE_KEY(header_kek_source);
SAVE_KEY_VAR(header_key, keys->header_key);
SAVE_KEY(header_key_source);
SAVE_KEY_FAMILY_VAR(key_area_key_application, keys->key_area_key[0], 0);
SAVE_KEY_VAR(key_area_key_application_source, key_area_key_sources[0]);
SAVE_KEY_FAMILY_VAR(key_area_key_ocean, keys->key_area_key[1], 0);
SAVE_KEY_VAR(key_area_key_ocean_source, key_area_key_sources[1]);
SAVE_KEY_FAMILY_VAR(key_area_key_system, keys->key_area_key[2], 0);
SAVE_KEY_VAR(key_area_key_system_source, key_area_key_sources[2]);
SAVE_KEY_FAMILY_VAR(keyblob, keys->keyblob, 0);
SAVE_KEY_FAMILY_VAR(keyblob_key, keys->keyblob_key, 0);
SAVE_KEY_FAMILY_VAR(keyblob_key_source, keyblob_key_sources, 0);
SAVE_KEY_FAMILY_VAR(keyblob_mac_key, keys->keyblob_mac_key, 0);
SAVE_KEY(keyblob_mac_key_source);
if (is_dev) {
SAVE_KEY_FAMILY_VAR(mariko_master_kek_source, mariko_master_kek_sources_dev, 5);
} else {
SAVE_KEY_FAMILY_VAR(mariko_master_kek_source, mariko_master_kek_sources, 5);
}
SAVE_KEY_FAMILY_VAR(master_kek, keys->master_kek, 0);
SAVE_KEY_FAMILY_VAR(master_kek_source, master_kek_sources, KB_FIRMWARE_VERSION_620);
SAVE_KEY_FAMILY_VAR(master_key, keys->master_key, 0);
SAVE_KEY(master_key_source);
SAVE_KEY_FAMILY_VAR(package1_key, keys->package1_key, 0);
SAVE_KEY_FAMILY_VAR(package2_key, keys->package2_key, 0);
SAVE_KEY(package2_key_source);
SAVE_KEY(per_console_key_source);
SAVE_KEY(retail_specific_aes_key_source);
for (u32 i = 0; i < AES_128_KEY_SIZE; i++)
keys->temp_key[i] = aes_kek_generation_source[i] ^ aes_seal_key_mask_import_es_device_key[i];
SAVE_KEY_VAR(rsa_oaep_kek_generation_source, keys->temp_key);
for (u32 i = 0; i < AES_128_KEY_SIZE; i++)
keys->temp_key[i] = aes_kek_generation_source[i] ^ aes_seal_key_mask_decrypt_device_unique_data[i];
SAVE_KEY_VAR(rsa_private_kek_generation_source, keys->temp_key);
SAVE_KEY(save_mac_kek_source);
SAVE_KEY_VAR(save_mac_key, keys->save_mac_key);
SAVE_KEY(save_mac_key_source);
SAVE_KEY(save_mac_sd_card_kek_source);
SAVE_KEY(save_mac_sd_card_key_source);
SAVE_KEY(sd_card_custom_storage_key_source);
SAVE_KEY(sd_card_kek_source);
SAVE_KEY(sd_card_nca_key_source);
SAVE_KEY(sd_card_save_key_source);
SAVE_KEY_VAR(sd_seed, keys->sd_seed);
SAVE_KEY_VAR(secure_boot_key, keys->sbk);
SAVE_KEY_VAR(ssl_rsa_kek, keys->ssl_rsa_kek);
SAVE_KEY(ssl_rsa_kek_source_x);
SAVE_KEY(ssl_rsa_kek_source_y);
SAVE_KEY_FAMILY_VAR(titlekek, keys->titlekek, 0);
SAVE_KEY(titlekek_source);
SAVE_KEY_VAR(tsec_key, keys->tsec_key);
const u32 root_key_ver = 2;
char root_key_name[21] = "tsec_root_key_00";
s_printf(root_key_name + 14, "%02x", root_key_ver);
_save_key(root_key_name, keys->tsec_root_key, AES_128_KEY_SIZE, text_buffer);
gfx_printf("\n%k Found %d %s keys.\n\n", colors[(color_idx++) % 6], _key_count, is_dev ? "dev" : "prod");
gfx_printf("%kFound through master_key_%02x.\n\n", colors[(color_idx++) % 6], KB_FIRMWARE_VERSION_MAX);
f_mkdir("sd:/switch");
const char *keyfile_path = is_dev ? "sd:/switch/dev.keys" : "sd:/switch/prod.keys";
FILINFO fno;
if (!sd_save_to_file(text_buffer, strlen(text_buffer), keyfile_path) && !f_stat(keyfile_path, &fno)) {
gfx_printf("%kWrote %d bytes to %s\n", colors[(color_idx++) % 6], (u32)fno.fsize, keyfile_path);
} else {
EPRINTF("Unable to save keys to SD.");
}
if (_titlekey_count == 0 || !titlekey_buffer) {
free(text_buffer);
return;
}
memset(text_buffer, 0, text_buffer_size);
titlekey_text_buffer_t *titlekey_text = (titlekey_text_buffer_t *)text_buffer;
for (u32 i = 0; i < _titlekey_count; i++) {
for (u32 j = 0; j < AES_128_KEY_SIZE; j++)
s_printf(&titlekey_text[i].rights_id[j * 2], "%02x", titlekey_buffer->rights_ids[i][j]);
s_printf(titlekey_text[i].equals, " = ");
for (u32 j = 0; j < AES_128_KEY_SIZE; j++)
s_printf(&titlekey_text[i].titlekey[j * 2], "%02x", titlekey_buffer->titlekeys[i][j]);
s_printf(titlekey_text[i].newline, "\n");
}
keyfile_path = "sd:/switch/title.keys";
if (!sd_save_to_file(text_buffer, strlen(text_buffer), keyfile_path) && !f_stat(keyfile_path, &fno)) {
gfx_printf("%kWrote %d bytes to %s\n", colors[(color_idx++) % 6], (u32)fno.fsize, keyfile_path);
} else {
EPRINTF("Unable to save titlekeys to SD.");
}
free(text_buffer);
}
static bool _check_keyslot_access() {
u8 test_data[AES_128_KEY_SIZE] = {0};
const u8 test_ciphertext[AES_128_KEY_SIZE] = {0};
se_aes_key_set(8, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", SE_KEY_128_SIZE);
se_aes_crypt_block_ecb(8, DECRYPT, test_data, test_ciphertext);
return memcmp(test_data, "\x7b\x1d\x29\xa1\x6c\xf8\xcc\xab\x84\xf0\xb8\xa5\x98\xe4\x2f\xa6", SE_KEY_128_SIZE) == 0;
}
static void _derive_master_keys(key_derivation_ctx_t *prod_keys, key_derivation_ctx_t *dev_keys, bool is_dev) {
key_derivation_ctx_t *keys = is_dev ? dev_keys : prod_keys;
if (h_cfg.t210b01) {
_derive_master_key_mariko(keys, is_dev);
minerva_periodic_training();
_derive_master_keys_from_latest_key(keys, is_dev);
} else {
int res = _run_ams_keygen(keys);
if (res) {
return;
}
u8 *aes_keys = (u8 *)calloc(SZ_4K, 1);
se_get_aes_keys(aes_keys + SZ_2K, aes_keys, AES_128_KEY_SIZE);
memcpy(&dev_keys->tsec_root_key, aes_keys + 11 * AES_128_KEY_SIZE, AES_128_KEY_SIZE);
memcpy(keys->tsec_key, aes_keys + 12 * AES_128_KEY_SIZE, AES_128_KEY_SIZE);
memcpy(&prod_keys->tsec_root_key, aes_keys + 13 * AES_128_KEY_SIZE, AES_128_KEY_SIZE);
free(aes_keys);
_derive_master_keys_from_latest_key(prod_keys, false);
minerva_periodic_training();
_derive_master_keys_from_latest_key(dev_keys, true);
minerva_periodic_training();
_derive_keyblob_keys(keys);
}
}
static void _derive_keys() {
minerva_periodic_training();
if (!_check_keyslot_access()) {
EPRINTF("Unable to set crypto keyslots!\nTry launching payload differently\n or flash Spacecraft-NX if using a modchip.");
return;
}
u32 start_whole_operation_time = get_tmr_us();
if (emummc_storage_init_mmc()) {
EPRINTF("Unable to init MMC.");
} else {
TPRINTFARGS("%kMMC init... ", colors[(color_idx++) % 6]);
}
minerva_periodic_training();
if (emmc_storage.initialized && !emummc_storage_set_mmc_partition(EMMC_BOOT0)) {
EPRINTF("Unable to set partition.");
emummc_storage_end();
}
bool is_dev = fuse_read_hw_state() == FUSE_NX_HW_STATE_DEV;
key_derivation_ctx_t __attribute__((aligned(4))) prod_keys = {0}, dev_keys = {0};
key_derivation_ctx_t *keys = is_dev ? &dev_keys : &prod_keys;
_derive_master_keys(&prod_keys, &dev_keys, is_dev);
TPRINTFARGS("%kMaster keys... ", colors[(color_idx++) % 6]);
_derive_bis_keys(keys);
TPRINTFARGS("%kBIS keys... ", colors[(color_idx++) % 6]);
minerva_periodic_training();
_derive_misc_keys(keys, is_dev);
minerva_periodic_training();
_derive_non_unique_keys(&prod_keys, is_dev);
minerva_periodic_training();
_derive_non_unique_keys(&dev_keys, is_dev);
minerva_periodic_training();
_derive_per_generation_keys(&prod_keys);
minerva_periodic_training();
_derive_per_generation_keys(&dev_keys);
titlekey_buffer_t *titlekey_buffer = (titlekey_buffer_t *)TITLEKEY_BUF_ADR;
// Requires BIS key for SYSTEM partition
if (!emmc_storage.initialized) {
EPRINTF("eMMC not initialized.\nSkipping SD seed and titlekeys.");
} else if (_key_exists(keys->bis_key[2])) {
_derive_emmc_keys(keys, titlekey_buffer, is_dev);
} else {
EPRINTF("Missing needed BIS keys.\nSkipping SD seed and titlekeys.");
}
end_time = get_tmr_us();
gfx_printf("%kLockpick totally done in %d us\n", colors[(color_idx++) % 6], end_time - start_whole_operation_time);
if (h_cfg.t210b01) {
// On Mariko, save only relevant key set
_save_keys_to_sd(keys, titlekey_buffer, is_dev);
} else {
// On Erista, save both prod and dev key sets
_save_keys_to_sd(&prod_keys, titlekey_buffer, false);
_key_count = 0;
_save_keys_to_sd(&dev_keys, NULL, true);
}
}
void derive_amiibo_keys() {
minerva_change_freq(FREQ_1600);
bool is_dev = fuse_read_hw_state() == FUSE_NX_HW_STATE_DEV;
key_derivation_ctx_t __attribute__((aligned(4))) prod_keys = {0}, dev_keys = {0};
key_derivation_ctx_t *keys = is_dev ? &dev_keys : &prod_keys;
const u8 *encrypted_keys = is_dev ? encrypted_nfc_keys_dev : encrypted_nfc_keys;
_derive_master_keys(&prod_keys, &dev_keys, is_dev);
minerva_periodic_training();
display_backlight_brightness(h_cfg.backlight, 1000);
gfx_clear_partial_grey(0x1B, 32, 1224);
gfx_con_setpos(0, 32);
color_idx = 0;
minerva_periodic_training();
if (!_key_exists(keys->master_key[0])) {
EPRINTF("Unable to derive master keys for NFC.");
minerva_change_freq(FREQ_800);
btn_wait();
return;
}
_decrypt_aes_key(8, keys->temp_key, nfc_key_source, keys->master_key[0]);
nfc_keyblob_t __attribute__((aligned(4))) nfc_keyblob;
static const u8 nfc_iv[AES_128_KEY_SIZE] = {
0xB9, 0x1D, 0xC1, 0xCF, 0x33, 0x5F, 0xA6, 0x13, 0x2A, 0xEF, 0x90, 0x99, 0xAA, 0xCA, 0x93, 0xC8};
se_aes_key_set(6, keys->temp_key, AES_128_KEY_SIZE);
se_aes_crypt_ctr(6, &nfc_keyblob, sizeof(nfc_keyblob), encrypted_keys, sizeof(nfc_keyblob), &nfc_iv);
minerva_periodic_training();
u8 xor_pad[0x20] __attribute__((aligned(4))) = {0};
se_aes_key_set(6, nfc_keyblob.ctr_key, AES_128_KEY_SIZE);
se_aes_crypt_ctr(6, xor_pad, sizeof(xor_pad), xor_pad, sizeof(xor_pad), nfc_keyblob.ctr_iv);
minerva_periodic_training();
nfc_save_key_t __attribute__((aligned(4))) nfc_save_keys[2] = {0};
memcpy(nfc_save_keys[0].hmac_key, nfc_keyblob.hmac_key, sizeof(nfc_keyblob.hmac_key));
memcpy(nfc_save_keys[0].phrase, nfc_keyblob.phrase, sizeof(nfc_keyblob.phrase));
nfc_save_keys[0].seed_size = sizeof(nfc_keyblob.seed);
memcpy(nfc_save_keys[0].seed, nfc_keyblob.seed, sizeof(nfc_keyblob.seed));
memcpy(nfc_save_keys[0].xor_pad, xor_pad, sizeof(xor_pad));
memcpy(nfc_save_keys[1].hmac_key, nfc_keyblob.hmac_key_for_verif, sizeof(nfc_keyblob.hmac_key_for_verif));
memcpy(nfc_save_keys[1].phrase, nfc_keyblob.phrase_for_verif, sizeof(nfc_keyblob.phrase_for_verif));
nfc_save_keys[1].seed_size = sizeof(nfc_keyblob.seed_for_verif);
memcpy(nfc_save_keys[1].seed, nfc_keyblob.seed_for_verif, sizeof(nfc_keyblob.seed_for_verif));
memcpy(nfc_save_keys[1].xor_pad, xor_pad, sizeof(xor_pad));
minerva_periodic_training();
u8 hash[0x20] = {0};
se_calc_sha256_oneshot(hash, &nfc_save_keys[0], sizeof(nfc_save_keys));
if (memcmp(hash, is_dev ? nfc_blob_hash_dev : nfc_blob_hash, sizeof(hash)) != 0) {
EPRINTF("Amiibo hash mismatch. Skipping save.");
minerva_change_freq(FREQ_800);
btn_wait();
return;
}
const char *keyfile_path = is_dev ? "sd:/switch/key_dev.bin" : "sd:/switch/key_retail.bin";
if (!sd_save_to_file(&nfc_save_keys[0], sizeof(nfc_save_keys), keyfile_path)) {
gfx_printf("%kWrote Amiibo keys to\n %s\n", colors[(color_idx++) % 6], keyfile_path);
} else {
EPRINTF("Unable to save Amiibo keys to SD.");
}
gfx_printf("\n%kPress a button to return to the menu.", colors[(color_idx++) % 6]);
minerva_change_freq(FREQ_800);
btn_wait();
gfx_clear_grey(0x1B);
}
void dump_keys() {
minerva_change_freq(FREQ_1600);
display_backlight_brightness(h_cfg.backlight, 1000);
gfx_clear_grey(0x1B);
gfx_con_setpos(0, 0);
gfx_printf("[%kLo%kck%kpi%kck%k_R%kCM%k v%d.%d.%d%k]\n\n",
colors[0], colors[1], colors[2], colors[3], colors[4], colors[5], 0xFFFF00FF, LP_VER_MJ, LP_VER_MN, LP_VER_BF, 0xFFCCCCCC);
_key_count = 0;
_titlekey_count = 0;
color_idx = 0;
start_time = get_tmr_us();
_derive_keys();
emummc_load_cfg();
// Ignore whether emummc is enabled.
h_cfg.emummc_force_disable = emu_cfg.sector == 0 && !emu_cfg.path;
emu_cfg.enabled = !h_cfg.emummc_force_disable;
if (emmc_storage.initialized) {
sdmmc_storage_end(&emmc_storage);
}
minerva_change_freq(FREQ_800);
gfx_printf("\n%kPress VOL+ to save a screenshot\n or another button to return to the menu.\n\n", colors[(color_idx++) % 6]);
u8 btn = btn_wait();
if (btn == BTN_VOL_UP) {
int res = save_fb_to_bmp();
if (!res) {
gfx_printf("%kScreenshot sd:/switch/lockpick_rcm.bmp saved.", colors[(color_idx++) % 6]);
} else {
EPRINTF("Screenshot failed.");
}
gfx_printf("\n%kPress a button to return to the menu.", colors[(color_idx++) % 6]);
btn_wait();
}
gfx_clear_grey(0x1B);
}
static void _save_key(const char *name, const void *data, u32 len, char *outbuf) {
if (!_key_exists(data))
return;
u32 pos = strlen(outbuf);
pos += s_printf(&outbuf[pos], "%s = ", name);
for (u32 i = 0; i < len; i++)
pos += s_printf(&outbuf[pos], "%02x", *(u8*)(data + i));
s_printf(&outbuf[pos], "\n");
_key_count++;
}
static void _save_key_family(const char *name, const void *data, u32 start_key, u32 num_keys, u32 len, char *outbuf) {
char *temp_name = calloc(1, 0x40);
for (u32 i = 0; i < num_keys; i++) {
s_printf(temp_name, "%s_%02x", name, i + start_key);
_save_key(temp_name, data + i * len, len, outbuf);
}
free(temp_name);
}
// Equivalent to spl::GenerateAesKek. When key_seed is set, the result is as if spl::GenerateAesKey was called immediately after.
// The generation and option args are dictated by master_key and kek_seed.
static void _generate_kek(u32 ks, const void *key_source, const void *master_key, const void *kek_seed, const void *key_seed) {
if (!_key_exists(key_source) || !_key_exists(master_key) || !_key_exists(kek_seed))
return;
se_aes_key_set(ks, master_key, AES_128_KEY_SIZE);
se_aes_unwrap_key(ks, ks, kek_seed);
se_aes_unwrap_key(ks, ks, key_source);
if (key_seed && _key_exists(key_seed))
se_aes_unwrap_key(ks, ks, key_seed);
}
// Equivalent to spl::DecryptAesKey.
static void _decrypt_aes_key(u32 ks, void *dst, const void *key_source, const void *master_key) {
_generate_kek(ks, aes_key_decryption_source, master_key, aes_kek_generation_source, aes_key_generation_source);
se_aes_crypt_block_ecb(ks, 0, dst, key_source);
}
static void _get_secure_data(key_derivation_ctx_t *keys, void *dst) {
se_aes_key_set(6, keys->device_key, AES_128_KEY_SIZE);
u8 *d = (u8 *)dst;
se_aes_crypt_ctr(6, d + 0x00, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]);
se_aes_crypt_ctr(6, d + 0x10, AES_128_KEY_SIZE, secure_data_source, AES_128_KEY_SIZE, secure_data_counters[0]);
// Apply tweak
for (u32 i = 0; i < AES_128_KEY_SIZE; i++) {
d[AES_128_KEY_SIZE + i] ^= secure_data_tweaks[0][i];
}
}
static void _generate_specific_aes_key(u32 ks, key_derivation_ctx_t *keys, void *out_key, const void *key_source, u32 key_generation) {
if (fuse_read_bootrom_rev() >= 0x7F) {
_get_device_key(ks, keys, keys->temp_key, key_generation);
se_aes_key_set(ks, keys->temp_key, AES_128_KEY_SIZE);
se_aes_unwrap_key(ks, ks, retail_specific_aes_key_source); // kek = unwrap(rsaks, devkey)
se_aes_crypt_ecb(ks, DECRYPT, out_key, AES_128_KEY_SIZE * 2, key_source, AES_128_KEY_SIZE * 2); // bkey = unwrap(bkeys, kek)
} else {
_get_secure_data(keys, out_key);
}
}
static void _get_device_key(u32 ks, key_derivation_ctx_t *keys, void *out_device_key, u32 revision) {
if (revision == KB_FIRMWARE_VERSION_100 && !h_cfg.t210b01) {
memcpy(out_device_key, keys->device_key, AES_128_KEY_SIZE);
return;
}
if (revision >= KB_FIRMWARE_VERSION_400) {
revision -= KB_FIRMWARE_VERSION_400;
} else {
revision = 0;
}
u32 temp_key[AES_128_KEY_SIZE / 4] = {0};
se_aes_key_set(ks, keys->device_key_4x, AES_128_KEY_SIZE);
se_aes_crypt_block_ecb(ks, DECRYPT, temp_key, device_master_key_source_sources[revision]);
se_aes_key_set(ks, keys->master_key[0], AES_128_KEY_SIZE);
const void *kek_source = fuse_read_hw_state() == FUSE_NX_HW_STATE_PROD ? device_master_kek_sources[revision] : device_master_kek_sources_dev[revision];
se_aes_unwrap_key(ks, ks, kek_source);
se_aes_crypt_block_ecb(ks, DECRYPT, out_device_key, temp_key);
}
static bool _test_key_pair(const void *public_exponent, const void *private_exponent, const void *modulus) {
u8 plaintext[RSA_2048_KEY_SIZE] __attribute__((aligned(4))) = {0},
ciphertext[RSA_2048_KEY_SIZE] __attribute__((aligned(4))) = {0},
work[RSA_2048_KEY_SIZE] __attribute__((aligned(4))) = {0};
// 0xCAFEBABE
plaintext[0xfc] = 0xca; plaintext[0xfd] = 0xfe; plaintext[0xfe] = 0xba; plaintext[0xff] = 0xbe;
se_rsa_key_set(0, modulus, RSA_2048_KEY_SIZE, private_exponent, RSA_2048_KEY_SIZE);
se_rsa_exp_mod(0, ciphertext, RSA_2048_KEY_SIZE, plaintext, RSA_2048_KEY_SIZE);
se_rsa_key_set(0, modulus, RSA_2048_KEY_SIZE, public_exponent, 4);
se_rsa_exp_mod(0, work, RSA_2048_KEY_SIZE, ciphertext, RSA_2048_KEY_SIZE);
return !memcmp(plaintext, work, RSA_2048_KEY_SIZE);
}