/* * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * In addition, as a special exception, the author gives permission to * link the code of this program with the Half-Life Game Engine ("HL * Engine") and Modified Game Libraries ("MODs") developed by Valve, * L.L.C ("Valve"). You must obey the GNU General Public License in all * respects for all of the code used other than the HL Engine and MODs * from Valve. If you modify this file, you may extend this exception * to your version of the file, but you are not obligated to do so. If * you do not wish to do so, delete this exception statement from your * version. * */ #pragma once // Used for many pathfinding and many other operations that are treated as planar rather than 3D. class Vector2D { public: // Construction/destruction Vector2D() : x(), y() {} Vector2D(float X, float Y) : x(X), y(Y) {} Vector2D(const Vector2D &v) { *(int *)&x = *(int *)&v.x; *(int *)&y = *(int *)&v.y; } // Operators decltype(auto) operator-() const { return Vector2D(-x, -y); } bool operator==(const Vector2D &v) const { return x == v.x && y == v.y; } bool operator!=(const Vector2D &v) const { return !(*this == v); } decltype(auto) operator+(const Vector2D &v) const { return Vector2D(x + v.x, y + v.y); } decltype(auto) operator-(const Vector2D &v) const { return Vector2D(x - v.x, y - v.y); } decltype(auto) operator*(const Vector2D &v) const { return Vector2D(x * v.x, y * v.y); } decltype(auto) operator/(const Vector2D &v) const { return Vector2D(x / v.x, y / v.y); } decltype(auto) operator+=(const Vector2D &v) { return (*this = *this + v); } decltype(auto) operator-=(const Vector2D &v) { return (*this = *this - v); } decltype(auto) operator*=(const Vector2D &v) { return (*this = *this * v); } decltype(auto) operator/=(const Vector2D &v) { return (*this = *this / v); } decltype(auto) operator+(float fl) const { return Vector2D(x + fl, y + fl); } decltype(auto) operator-(float fl) const { return Vector2D(x - fl, y - fl); } // TODO: FIX ME!! #ifdef PLAY_GAMEDLL decltype(auto) operator*(float fl) const { return Vector2D(vec_t(x * fl), vec_t(y * fl)); } decltype(auto) operator/(float fl) const { return Vector2D(vec_t(x / fl), vec_t(y / fl)); } #else decltype(auto) operator*(float fl) const { return Vector2D(x * fl, y * fl); } decltype(auto) operator/(float fl) const { return Vector2D(x / fl, y / fl); } #endif decltype(auto) operator+=(float fl) { return (*this = *this + fl); } decltype(auto) operator-=(float fl) { return (*this = *this - fl); } decltype(auto) operator*=(float fl) { return (*this = *this * fl); } decltype(auto) operator/=(float fl) { return (*this = *this / fl); } // Methods inline void CopyToArray(float *rgfl) const { *(int *)&rgfl[0] = *(int *)&x; *(int *)&rgfl[1] = *(int *)&y; } inline real_t Length() const { return Q_sqrt(real_t(x * x + y * y)); } // Get the vector's magnitude inline float LengthSquared() const { return (x * x + y * y); } // Get the vector's magnitude squared operator float*() { return &x; } // Vectors will now automatically convert to float * when needed operator const float*() const { return &x; } // Vectors will now automatically convert to float * when needed Vector2D Normalize() const { real_t flLen = Length(); if (!flLen) return Vector2D(0, 0); flLen = 1 / flLen; #ifdef PLAY_GAMEDLL return Vector2D(vec_t(x * flLen), vec_t(y * flLen)); #else return Vector2D(x * flLen, y * flLen); #endif // PLAY_GAMEDLL } inline bool IsLengthLessThan (float length) const { return (LengthSquared() < length * length); } inline bool IsLengthGreaterThan(float length) const { return (LengthSquared() > length * length); } real_t NormalizeInPlace() { real_t flLen = Length(); if (flLen > 0.0) { x = vec_t(1 / flLen * x); y = vec_t(1 / flLen * y); } else { x = 1.0; y = 0.0; } return flLen; } bool IsZero(float tolerance = 0.01f) const { return (x > -tolerance && x < tolerance && y > -tolerance && y < tolerance); } // Members vec_t x, y; }; inline real_t DotProduct(const Vector2D &a, const Vector2D &b) { return (a.x * b.x + a.y * b.y); } inline Vector2D operator*(float fl, const Vector2D &v) { return v * fl; } // 3D Vector // Same data-layout as engine's vec3_t, which is a vec_t[3] class Vector { public: // Construction/destruction Vector() : x(), y(), z() {} Vector(float X, float Y, float Z) : x(X), y(Y), z(Z) {} Vector(const Vector &v) { *(int *)&x = *(int *)&v.x; *(int *)&y = *(int *)&v.y; *(int *)&z = *(int *)&v.z; } Vector(const float rgfl[3]) { *(int *)&x = *(int *)&rgfl[0]; *(int *)&y = *(int *)&rgfl[1]; *(int *)&z = *(int *)&rgfl[2]; } // Operators decltype(auto) operator-() const { return Vector(-x, -y, -z); } bool operator==(const Vector &v) const { return x == v.x && y == v.y && z == v.z; } bool operator!=(const Vector &v) const { return !(*this == v); } decltype(auto) operator+(const Vector &v) const { return Vector(x + v.x, y + v.y, z + v.z); } decltype(auto) operator-(const Vector &v) const { return Vector(x - v.x, y - v.y, z - v.z); } decltype(auto) operator*(const Vector &v) const { return Vector(x * v.x, y * v.y, z * v.z); } decltype(auto) operator/(const Vector &v) const { return Vector(x / v.x, y / v.y, z / v.z); } decltype(auto) operator+=(const Vector &v) { return (*this = *this + v); } decltype(auto) operator-=(const Vector &v) { return (*this = *this - v); } decltype(auto) operator*=(const Vector &v) { return (*this = *this * v); } decltype(auto) operator/=(const Vector &v) { return (*this = *this / v); } decltype(auto) operator+(float fl) const { return Vector(x + fl, y + fl, z + fl); } decltype(auto) operator-(float fl) const { return Vector(x - fl, y - fl, z - fl); } // TODO: FIX ME!! #ifdef PLAY_GAMEDLL decltype(auto) operator*(float fl) const { return Vector(vec_t(x * fl), vec_t(y * fl), vec_t(z * fl)); } decltype(auto) operator/(float fl) const { return Vector(vec_t(x / fl), vec_t(y / fl), vec_t(z / fl)); } #else decltype(auto) operator*(float fl) const { return Vector(x * fl, y * fl, z * fl); } decltype(auto) operator/(float fl) const { return Vector(x / fl, y / fl, z / fl); } #endif decltype(auto) operator+=(float fl) { return (*this = *this + fl); } decltype(auto) operator-=(float fl) { return (*this = *this - fl); } decltype(auto) operator*=(float fl) { return (*this = *this * fl); } decltype(auto) operator/=(float fl) { return (*this = *this / fl); } void CopyToArray(float *rgfl) const { *(int *)&rgfl[0] = *(int *)&x; *(int *)&rgfl[1] = *(int *)&y; *(int *)&rgfl[2] = *(int *)&z; } // Get the vector's magnitude real_t Length() const { real_t x1 = real_t(x); real_t y1 = real_t(y); real_t z1 = real_t(z); return Q_sqrt(x1 * x1 + y1 * y1 + z1 * z1); } // Get the vector's magnitude squared real_t LengthSquared() const { return (x * x + y * y + z * z); } operator float*() { return &x; } // Vectors will now automatically convert to float * when needed operator const float*() const { return &x; } // Vectors will now automatically convert to float * when needed #ifndef PLAY_GAMEDLL Vector Normalize() const { float flLen = Length(); if (flLen == 0) return Vector(0, 0, 1); flLen = 1 / flLen; return Vector(x * flLen, y * flLen, z * flLen); } #else Vector Normalize() { real_t flLen = Length(); if (flLen == 0) return Vector(0, 0, 1); vec_t fTemp = vec_t(1 / flLen); return Vector(x * fTemp, y * fTemp, z * fTemp); } #endif // PLAY_GAMEDLL // for out precision normalize Vector NormalizePrecision() const { #ifndef PLAY_GAMEDLL return Normalize(); #else real_t flLen = Length(); if (flLen == 0) return Vector(0, 0, 1); flLen = 1 / flLen; return Vector(vec_t(x * flLen), vec_t(y * flLen), vec_t(z * flLen)); #endif // PLAY_GAMEDLL } Vector2D Make2D() const { Vector2D Vec2; *(int *)&Vec2.x = *(int *)&x; *(int *)&Vec2.y = *(int *)&y; return Vec2; } real_t Length2D() const { return Q_sqrt(real_t(x * x + y * y)); } inline bool IsLengthLessThan (float length) const { return (LengthSquared() < length * length); } inline bool IsLengthGreaterThan(float length) const { return (LengthSquared() > length * length); } #ifdef PLAY_GAMEDLL template real_t NormalizeInPlace() { T flLen = Length(); if (flLen > 0) { x = vec_t(1 / flLen * x); y = vec_t(1 / flLen * y); z = vec_t(1 / flLen * z); } else { x = 0; y = 0; z = 1; } return flLen; } #else // PLAY_GAMEDLL float NormalizeInPlace() { float flLen = Length(); if (flLen > 0) { x /= flLen; y /= flLen; z /= flLen; } else { x = 0; y = 0; z = 1; } return flLen; } #endif // PLAY_GAMEDLL bool IsZero(float tolerance = 0.01f) const { return (x > -tolerance && x < tolerance && y > -tolerance && y < tolerance && z > -tolerance && z < tolerance); } // Members vec_t x, y, z; }; inline Vector operator*(float fl, const Vector &v) { return v * fl; } inline real_t DotProduct(const Vector &a, const Vector &b) { return (a.x * b.x + a.y * b.y + a.z * b.z); } inline real_t DotProduct2D(const Vector &a, const Vector &b) { return (a.x * b.x + a.y * b.y); } inline Vector CrossProduct(const Vector &a, const Vector &b) { return Vector(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x); } template< typename X, typename Y, typename Z, typename LenType > inline LenType LengthSubtract(Vector vecStart, Vector vecDest) { X floatX = (vecDest.x - vecStart.x); Y floatY = (vecDest.y - vecStart.y); Z floatZ = (vecDest.z - vecStart.z); return Q_sqrt(real_t(floatX * floatX + floatY * floatY + floatZ * floatZ)); } template< typename X, typename Y, typename Z, typename LenType > inline Vector NormalizeSubtract(Vector vecStart, Vector vecDest) { Vector dir; #ifdef PLAY_GAMEDLL X floatX = (vecDest.x - vecStart.x); Y floatY = (vecDest.y - vecStart.y); Z floatZ = (vecDest.z - vecStart.z); LenType flLen = Q_sqrt(real_t(floatX * floatX + floatY * floatY + floatZ * floatZ)); if (flLen == 0.0) { dir = Vector(0, 0, 1); } else { flLen = 1.0 / flLen; dir.x = vec_t(floatX * flLen); dir.y = vec_t(floatY * flLen); dir.z = vec_t(floatZ * flLen); } #else dir = (vecDest - vecStart).Normalize(); #endif // PLAY_GAMEDLL return dir; } #ifdef PLAY_GAMEDLL template inline Vector NormalizeMulScalar(Vector2D vec, float scalar) { LenType flLen; X floatX; Y floatY; flLen = (LenType)vec.Length(); if (flLen <= 0.0) { floatX = 1; floatY = 0; } else { flLen = 1 / flLen; floatX = vec.x * flLen; floatY = vec.y * flLen; } return Vector(vec_t(floatX * scalar), vec_t(floatY * scalar), 0); } template inline Vector NormalizeMulScalar(Vector vec, float scalar) { LenType flLen; X floatX = vec.x; Y floatY = vec.y; flLen = (LenType)vec.Length(); if (flLen <= 0.0) { floatX = 1; floatY = 0; } else { floatX = floatX * LenCast(1 / flLen); floatY = floatY * LenCast(1 / flLen); } return Vector(vec_t(floatX * scalar), vec_t(floatY * scalar), 0); } #endif // PLAY_GAMEDLL