2
0
mirror of https://github.com/alliedmodders/amxmodx.git synced 2025-01-27 22:28:05 +03:00
amxmodx/tools/pcre/sljit/sljitNativeARM_64.c

1903 lines
57 KiB
C
Raw Normal View History

/*
* Stack-less Just-In-Time compiler
*
* Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void)
{
return "ARM-64" SLJIT_CPUINFO;
}
/* Length of an instruction word */
typedef sljit_ui sljit_ins;
#define TMP_ZERO 0
#define TMP_REG1 (SLJIT_NO_REGISTERS + 1)
#define TMP_REG2 (SLJIT_NO_REGISTERS + 2)
#define TMP_REG3 (SLJIT_NO_REGISTERS + 3)
#define TMP_REG4 (SLJIT_NO_REGISTERS + 4)
#define TMP_LR (SLJIT_NO_REGISTERS + 5)
#define TMP_SP (SLJIT_NO_REGISTERS + 6)
#define TMP_FREG1 (0)
#define TMP_FREG2 (SLJIT_FLOAT_REG6 + 1)
static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 7] = {
31, 0, 1, 2, 3, 4, 19, 20, 21, 22, 23, 29, 9, 10, 11, 12, 30, 31
};
#define W_OP (1 << 31)
#define RD(rd) (reg_map[rd])
#define RT(rt) (reg_map[rt])
#define RN(rn) (reg_map[rn] << 5)
#define RT2(rt2) (reg_map[rt2] << 10)
#define RM(rm) (reg_map[rm] << 16)
#define VD(vd) (vd)
#define VT(vt) (vt)
#define VN(vn) ((vn) << 5)
#define VM(vm) ((vm) << 16)
/* --------------------------------------------------------------------- */
/* Instrucion forms */
/* --------------------------------------------------------------------- */
#define ADC 0x9a000000
#define ADD 0x8b000000
#define ADDI 0x91000000
#define AND 0x8a000000
#define ANDI 0x92000000
#define ASRV 0x9ac02800
#define B 0x14000000
#define B_CC 0x54000000
#define BL 0x94000000
#define BLR 0xd63f0000
#define BR 0xd61f0000
#define BRK 0xd4200000
#define CBZ 0xb4000000
#define CLZ 0xdac01000
#define CSINC 0x9a800400
#define EOR 0xca000000
#define EORI 0xd2000000
#define FABS 0x1e60c000
#define FADD 0x1e602800
#define FCMP 0x1e602000
#define FDIV 0x1e601800
#define FMOV 0x1e604000
#define FMUL 0x1e600800
#define FNEG 0x1e614000
#define FSUB 0x1e603800
#define LDRI 0xf9400000
#define LDP 0xa9400000
#define LDP_PST 0xa8c00000
#define LSLV 0x9ac02000
#define LSRV 0x9ac02400
#define MADD 0x9b000000
#define MOVK 0xf2800000
#define MOVN 0x92800000
#define MOVZ 0xd2800000
#define NOP 0xd503201f
#define ORN 0xaa200000
#define ORR 0xaa000000
#define ORRI 0xb2000000
#define RET 0xd65f0000
#define SBC 0xda000000
#define SBFM 0x93000000
#define SDIV 0x9ac00c00
#define SMADDL 0x9b200000
#define SMULH 0x9b403c00
#define STP 0xa9000000
#define STP_PRE 0xa9800000
#define STRI 0xf9000000
#define STR_FI 0x3d000000
#define STR_FR 0x3c206800
#define STUR_FI 0x3c000000
#define SUB 0xcb000000
#define SUBI 0xd1000000
#define SUBS 0xeb000000
#define UBFM 0xd3000000
#define UDIV 0x9ac00800
#define UMULH 0x9bc03c00
/* dest_reg is the absolute name of the register
Useful for reordering instructions in the delay slot. */
static sljit_si push_inst(struct sljit_compiler *compiler, sljit_ins ins)
{
sljit_ins *ptr = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins));
FAIL_IF(!ptr);
*ptr = ins;
compiler->size++;
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_si emit_imm64_const(struct sljit_compiler *compiler, sljit_si dst, sljit_uw imm)
{
FAIL_IF(push_inst(compiler, MOVZ | RD(dst) | ((imm & 0xffff) << 5)));
FAIL_IF(push_inst(compiler, MOVK | RD(dst) | (((imm >> 16) & 0xffff) << 5) | (1 << 21)));
FAIL_IF(push_inst(compiler, MOVK | RD(dst) | (((imm >> 32) & 0xffff) << 5) | (2 << 21)));
return push_inst(compiler, MOVK | RD(dst) | ((imm >> 48) << 5) | (3 << 21));
}
static SLJIT_INLINE void modify_imm64_const(sljit_ins* inst, sljit_uw new_imm)
{
sljit_si dst = inst[0] & 0x1f;
SLJIT_ASSERT((inst[0] & 0xffe00000) == MOVZ && (inst[1] & 0xffe00000) == (MOVK | (1 << 21)));
inst[0] = MOVZ | dst | ((new_imm & 0xffff) << 5);
inst[1] = MOVK | dst | (((new_imm >> 16) & 0xffff) << 5) | (1 << 21);
inst[2] = MOVK | dst | (((new_imm >> 32) & 0xffff) << 5) | (2 << 21);
inst[3] = MOVK | dst | ((new_imm >> 48) << 5) | (3 << 21);
}
static SLJIT_INLINE sljit_si detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code)
{
sljit_sw diff;
sljit_uw target_addr;
if (jump->flags & SLJIT_REWRITABLE_JUMP) {
jump->flags |= PATCH_ABS64;
return 0;
}
if (jump->flags & JUMP_ADDR)
target_addr = jump->u.target;
else {
SLJIT_ASSERT(jump->flags & JUMP_LABEL);
target_addr = (sljit_uw)(code + jump->u.label->size);
}
diff = (sljit_sw)target_addr - (sljit_sw)(code_ptr + 4);
if (jump->flags & IS_COND) {
diff += sizeof(sljit_ins);
if (diff <= 0xfffff && diff >= -0x100000) {
code_ptr[-5] ^= (jump->flags & IS_CBZ) ? (0x1 << 24) : 0x1;
jump->addr -= sizeof(sljit_ins);
jump->flags |= PATCH_COND;
return 5;
}
diff -= sizeof(sljit_ins);
}
if (diff <= 0x7ffffff && diff >= -0x8000000) {
jump->flags |= PATCH_B;
return 4;
}
if (target_addr <= 0xffffffffl) {
if (jump->flags & IS_COND)
code_ptr[-5] -= (2 << 5);
code_ptr[-2] = code_ptr[0];
return 2;
}
if (target_addr <= 0xffffffffffffl) {
if (jump->flags & IS_COND)
code_ptr[-5] -= (1 << 5);
jump->flags |= PATCH_ABS48;
code_ptr[-1] = code_ptr[0];
return 1;
}
jump->flags |= PATCH_ABS64;
return 0;
}
SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
{
struct sljit_memory_fragment *buf;
sljit_ins *code;
sljit_ins *code_ptr;
sljit_ins *buf_ptr;
sljit_ins *buf_end;
sljit_uw word_count;
sljit_uw addr;
sljit_si dst;
struct sljit_label *label;
struct sljit_jump *jump;
struct sljit_const *const_;
CHECK_ERROR_PTR();
check_sljit_generate_code(compiler);
reverse_buf(compiler);
code = (sljit_ins*)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
PTR_FAIL_WITH_EXEC_IF(code);
buf = compiler->buf;
code_ptr = code;
word_count = 0;
label = compiler->labels;
jump = compiler->jumps;
const_ = compiler->consts;
do {
buf_ptr = (sljit_ins*)buf->memory;
buf_end = buf_ptr + (buf->used_size >> 2);
do {
*code_ptr = *buf_ptr++;
/* These structures are ordered by their address. */
SLJIT_ASSERT(!label || label->size >= word_count);
SLJIT_ASSERT(!jump || jump->addr >= word_count);
SLJIT_ASSERT(!const_ || const_->addr >= word_count);
if (label && label->size == word_count) {
label->addr = (sljit_uw)code_ptr;
label->size = code_ptr - code;
label = label->next;
}
if (jump && jump->addr == word_count) {
jump->addr = (sljit_uw)(code_ptr - 4);
code_ptr -= detect_jump_type(jump, code_ptr, code);
jump = jump->next;
}
if (const_ && const_->addr == word_count) {
const_->addr = (sljit_uw)code_ptr;
const_ = const_->next;
}
code_ptr ++;
word_count ++;
} while (buf_ptr < buf_end);
buf = buf->next;
} while (buf);
if (label && label->size == word_count) {
label->addr = (sljit_uw)code_ptr;
label->size = code_ptr - code;
label = label->next;
}
SLJIT_ASSERT(!label);
SLJIT_ASSERT(!jump);
SLJIT_ASSERT(!const_);
SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);
jump = compiler->jumps;
while (jump) {
do {
addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
buf_ptr = (sljit_ins*)jump->addr;
if (jump->flags & PATCH_B) {
addr = (sljit_sw)(addr - jump->addr) >> 2;
SLJIT_ASSERT((sljit_sw)addr <= 0x1ffffff && (sljit_sw)addr >= -0x2000000);
buf_ptr[0] = ((jump->flags & IS_BL) ? BL : B) | (addr & 0x3ffffff);
if (jump->flags & IS_COND)
buf_ptr[-1] -= (4 << 5);
break;
}
if (jump->flags & PATCH_COND) {
addr = (sljit_sw)(addr - jump->addr) >> 2;
SLJIT_ASSERT((sljit_sw)addr <= 0x3ffff && (sljit_sw)addr >= -0x40000);
buf_ptr[0] = (buf_ptr[0] & ~0xffffe0) | ((addr & 0x7ffff) << 5);
break;
}
SLJIT_ASSERT((jump->flags & (PATCH_ABS48 | PATCH_ABS64)) || addr <= 0xffffffffl);
SLJIT_ASSERT((jump->flags & PATCH_ABS64) || addr <= 0xffffffffffffl);
dst = buf_ptr[0] & 0x1f;
buf_ptr[0] = MOVZ | dst | ((addr & 0xffff) << 5);
buf_ptr[1] = MOVK | dst | (((addr >> 16) & 0xffff) << 5) | (1 << 21);
if (jump->flags & (PATCH_ABS48 | PATCH_ABS64))
buf_ptr[2] = MOVK | dst | (((addr >> 32) & 0xffff) << 5) | (2 << 21);
if (jump->flags & PATCH_ABS64)
buf_ptr[3] = MOVK | dst | (((addr >> 48) & 0xffff) << 5) | (3 << 21);
} while (0);
jump = jump->next;
}
compiler->error = SLJIT_ERR_COMPILED;
compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins);
SLJIT_CACHE_FLUSH(code, code_ptr);
return code;
}
/* --------------------------------------------------------------------- */
/* Core code generator functions. */
/* --------------------------------------------------------------------- */
#define COUNT_TRAILING_ZERO(value, result) \
result = 0; \
if (!(value & 0xffffffff)) { \
result += 32; \
value >>= 32; \
} \
if (!(value & 0xffff)) { \
result += 16; \
value >>= 16; \
} \
if (!(value & 0xff)) { \
result += 8; \
value >>= 8; \
} \
if (!(value & 0xf)) { \
result += 4; \
value >>= 4; \
} \
if (!(value & 0x3)) { \
result += 2; \
value >>= 2; \
} \
if (!(value & 0x1)) { \
result += 1; \
value >>= 1; \
}
#define LOGICAL_IMM_CHECK 0x100
static sljit_ins logical_imm(sljit_sw imm, sljit_si len)
{
sljit_si negated, ones, right;
sljit_uw mask, uimm;
sljit_ins ins;
if (len & LOGICAL_IMM_CHECK) {
len &= ~LOGICAL_IMM_CHECK;
if (len == 32 && (imm == 0 || imm == -1))
return 0;
if (len == 16 && ((sljit_si)imm == 0 || (sljit_si)imm == -1))
return 0;
}
SLJIT_ASSERT((len == 32 && imm != 0 && imm != -1)
|| (len == 16 && (sljit_si)imm != 0 && (sljit_si)imm != -1));
uimm = (sljit_uw)imm;
while (1) {
if (len <= 0) {
SLJIT_ASSERT_STOP();
return 0;
}
mask = ((sljit_uw)1 << len) - 1;
if ((uimm & mask) != ((uimm >> len) & mask))
break;
len >>= 1;
}
len <<= 1;
negated = 0;
if (uimm & 0x1) {
negated = 1;
uimm = ~uimm;
}
if (len < 64)
uimm &= ((sljit_uw)1 << len) - 1;
/* Unsigned right shift. */
COUNT_TRAILING_ZERO(uimm, right);
/* Signed shift. We also know that the highest bit is set. */
imm = (sljit_sw)~uimm;
SLJIT_ASSERT(imm < 0);
COUNT_TRAILING_ZERO(imm, ones);
if (~imm)
return 0;
if (len == 64)
ins = 1 << 22;
else
ins = (0x3f - ((len << 1) - 1)) << 10;
if (negated)
return ins | ((len - ones - 1) << 10) | ((len - ones - right) << 16);
return ins | ((ones - 1) << 10) | ((len - right) << 16);
}
#undef COUNT_TRAILING_ZERO
static sljit_si load_immediate(struct sljit_compiler *compiler, sljit_si dst, sljit_sw simm)
{
sljit_uw imm = (sljit_uw)simm;
sljit_si i, zeros, ones, first;
sljit_ins bitmask;
if (imm <= 0xffff)
return push_inst(compiler, MOVZ | RD(dst) | (imm << 5));
if (simm >= -0x10000 && simm < 0)
return push_inst(compiler, MOVN | RD(dst) | ((~imm & 0xffff) << 5));
if (imm <= 0xffffffffl) {
if ((imm & 0xffff0000l) == 0xffff0000)
return push_inst(compiler, (MOVN ^ W_OP) | RD(dst) | ((~imm & 0xffff) << 5));
if ((imm & 0xffff) == 0xffff)
return push_inst(compiler, (MOVN ^ W_OP) | RD(dst) | ((~imm & 0xffff0000l) >> (16 - 5)) | (1 << 21));
bitmask = logical_imm(simm, 16);
if (bitmask != 0)
return push_inst(compiler, (ORRI ^ W_OP) | RD(dst) | RN(TMP_ZERO) | bitmask);
}
else {
bitmask = logical_imm(simm, 32);
if (bitmask != 0)
return push_inst(compiler, ORRI | RD(dst) | RN(TMP_ZERO) | bitmask);
}
if (imm <= 0xffffffffl) {
FAIL_IF(push_inst(compiler, MOVZ | RD(dst) | ((imm & 0xffff) << 5)));
return push_inst(compiler, MOVK | RD(dst) | ((imm & 0xffff0000l) >> (16 - 5)) | (1 << 21));
}
if (simm >= -0x100000000l && simm < 0) {
FAIL_IF(push_inst(compiler, MOVN | RD(dst) | ((~imm & 0xffff) << 5)));
return push_inst(compiler, MOVK | RD(dst) | ((imm & 0xffff0000l) >> (16 - 5)) | (1 << 21));
}
/* A large amount of number can be constructed from ORR and MOVx,
but computing them is costly. We don't */
zeros = 0;
ones = 0;
for (i = 4; i > 0; i--) {
if ((simm & 0xffff) == 0)
zeros++;
if ((simm & 0xffff) == 0xffff)
ones++;
simm >>= 16;
}
simm = (sljit_sw)imm;
first = 1;
if (ones > zeros) {
simm = ~simm;
for (i = 0; i < 4; i++) {
if (!(simm & 0xffff)) {
simm >>= 16;
continue;
}
if (first) {
first = 0;
FAIL_IF(push_inst(compiler, MOVN | RD(dst) | ((simm & 0xffff) << 5) | (i << 21)));
}
else
FAIL_IF(push_inst(compiler, MOVK | RD(dst) | ((~simm & 0xffff) << 5) | (i << 21)));
simm >>= 16;
}
return SLJIT_SUCCESS;
}
for (i = 0; i < 4; i++) {
if (!(simm & 0xffff)) {
simm >>= 16;
continue;
}
if (first) {
first = 0;
FAIL_IF(push_inst(compiler, MOVZ | RD(dst) | ((simm & 0xffff) << 5) | (i << 21)));
}
else
FAIL_IF(push_inst(compiler, MOVK | RD(dst) | ((simm & 0xffff) << 5) | (i << 21)));
simm >>= 16;
}
return SLJIT_SUCCESS;
}
#define ARG1_IMM 0x0010000
#define ARG2_IMM 0x0020000
#define INT_OP 0x0040000
#define SET_FLAGS 0x0080000
#define UNUSED_RETURN 0x0100000
#define SLOW_DEST 0x0200000
#define SLOW_SRC1 0x0400000
#define SLOW_SRC2 0x0800000
#define CHECK_FLAGS(flag_bits) \
if (flags & SET_FLAGS) { \
inv_bits |= flag_bits; \
if (flags & UNUSED_RETURN) \
dst = TMP_ZERO; \
}
static sljit_si emit_op_imm(struct sljit_compiler *compiler, sljit_si flags, sljit_si dst, sljit_sw arg1, sljit_sw arg2)
{
/* dst must be register, TMP_REG1
arg1 must be register, TMP_REG1, imm
arg2 must be register, TMP_REG2, imm */
sljit_ins inv_bits = (flags & INT_OP) ? (1 << 31) : 0;
sljit_ins inst_bits;
sljit_si op = (flags & 0xffff);
sljit_si reg;
sljit_sw imm, nimm;
if (SLJIT_UNLIKELY((flags & (ARG1_IMM | ARG2_IMM)) == (ARG1_IMM | ARG2_IMM))) {
/* Both are immediates. */
flags &= ~ARG1_IMM;
if (arg1 == 0 && op != SLJIT_ADD && op != SLJIT_SUB)
arg1 = TMP_ZERO;
else {
FAIL_IF(load_immediate(compiler, TMP_REG1, arg1));
arg1 = TMP_REG1;
}
}
if (flags & (ARG1_IMM | ARG2_IMM)) {
reg = (flags & ARG2_IMM) ? arg1 : arg2;
imm = (flags & ARG2_IMM) ? arg2 : arg1;
switch (op) {
case SLJIT_MUL:
case SLJIT_NEG:
case SLJIT_CLZ:
case SLJIT_ADDC:
case SLJIT_SUBC:
/* No form with immediate operand (except imm 0, which
is represented by a ZERO register). */
break;
case SLJIT_MOV:
SLJIT_ASSERT(!(flags & SET_FLAGS) && (flags & ARG2_IMM) && arg1 == TMP_REG1);
return load_immediate(compiler, dst, imm);
case SLJIT_NOT:
SLJIT_ASSERT(flags & ARG2_IMM);
FAIL_IF(load_immediate(compiler, dst, (flags & INT_OP) ? (~imm & 0xffffffff) : ~imm));
goto set_flags;
case SLJIT_SUB:
if (flags & ARG1_IMM)
break;
imm = -imm;
/* Fall through. */
case SLJIT_ADD:
if (imm == 0) {
CHECK_FLAGS(1 << 29);
return push_inst(compiler, ((op == SLJIT_ADD ? ADDI : SUBI) ^ inv_bits) | RD(dst) | RN(reg));
}
if (imm > 0 && imm <= 0xfff) {
CHECK_FLAGS(1 << 29);
return push_inst(compiler, (ADDI ^ inv_bits) | RD(dst) | RN(reg) | (imm << 10));
}
nimm = -imm;
if (nimm > 0 && nimm <= 0xfff) {
CHECK_FLAGS(1 << 29);
return push_inst(compiler, (SUBI ^ inv_bits) | RD(dst) | RN(reg) | (nimm << 10));
}
if (imm > 0 && imm <= 0xffffff && !(imm & 0xfff)) {
CHECK_FLAGS(1 << 29);
return push_inst(compiler, (ADDI ^ inv_bits) | RD(dst) | RN(reg) | ((imm >> 12) << 10) | (1 << 22));
}
if (nimm > 0 && nimm <= 0xffffff && !(nimm & 0xfff)) {
CHECK_FLAGS(1 << 29);
return push_inst(compiler, (SUBI ^ inv_bits) | RD(dst) | RN(reg) | ((nimm >> 12) << 10) | (1 << 22));
}
if (imm > 0 && imm <= 0xffffff && !(flags & SET_FLAGS)) {
FAIL_IF(push_inst(compiler, (ADDI ^ inv_bits) | RD(dst) | RN(reg) | ((imm >> 12) << 10) | (1 << 22)));
return push_inst(compiler, (ADDI ^ inv_bits) | RD(dst) | RN(dst) | ((imm & 0xfff) << 10));
}
if (nimm > 0 && nimm <= 0xffffff && !(flags & SET_FLAGS)) {
FAIL_IF(push_inst(compiler, (SUBI ^ inv_bits) | RD(dst) | RN(reg) | ((nimm >> 12) << 10) | (1 << 22)));
return push_inst(compiler, (SUBI ^ inv_bits) | RD(dst) | RN(dst) | ((nimm & 0xfff) << 10));
}
break;
case SLJIT_AND:
inst_bits = logical_imm(imm, LOGICAL_IMM_CHECK | ((flags & INT_OP) ? 16 : 32));
if (!inst_bits)
break;
CHECK_FLAGS(3 << 29);
return push_inst(compiler, (ANDI ^ inv_bits) | RD(dst) | RN(reg) | inst_bits);
case SLJIT_OR:
case SLJIT_XOR:
inst_bits = logical_imm(imm, LOGICAL_IMM_CHECK | ((flags & INT_OP) ? 16 : 32));
if (!inst_bits)
break;
if (op == SLJIT_OR)
inst_bits |= ORRI;
else
inst_bits |= EORI;
FAIL_IF(push_inst(compiler, (inst_bits ^ inv_bits) | RD(dst) | RN(reg)));
goto set_flags;
case SLJIT_SHL:
if (flags & ARG1_IMM)
break;
if (flags & INT_OP) {
imm &= 0x1f;
FAIL_IF(push_inst(compiler, (UBFM ^ inv_bits) | RD(dst) | RN(arg1) | ((-imm & 0x1f) << 16) | ((31 - imm) << 10)));
}
else {
imm &= 0x3f;
FAIL_IF(push_inst(compiler, (UBFM ^ inv_bits) | RD(dst) | RN(arg1) | (1 << 22) | ((-imm & 0x3f) << 16) | ((63 - imm) << 10)));
}
goto set_flags;
case SLJIT_LSHR:
case SLJIT_ASHR:
if (flags & ARG1_IMM)
break;
if (op == SLJIT_ASHR)
inv_bits |= 1 << 30;
if (flags & INT_OP) {
imm &= 0x1f;
FAIL_IF(push_inst(compiler, (UBFM ^ inv_bits) | RD(dst) | RN(arg1) | (imm << 16) | (31 << 10)));
}
else {
imm &= 0x3f;
FAIL_IF(push_inst(compiler, (UBFM ^ inv_bits) | RD(dst) | RN(arg1) | (1 << 22) | (imm << 16) | (63 << 10)));
}
goto set_flags;
default:
SLJIT_ASSERT_STOP();
break;
}
if (flags & ARG2_IMM) {
if (arg2 == 0)
arg2 = TMP_ZERO;
else {
FAIL_IF(load_immediate(compiler, TMP_REG2, arg2));
arg2 = TMP_REG2;
}
}
else {
if (arg1 == 0)
arg1 = TMP_ZERO;
else {
FAIL_IF(load_immediate(compiler, TMP_REG1, arg1));
arg1 = TMP_REG1;
}
}
}
/* Both arguments are registers. */
switch (op) {
case SLJIT_MOV:
case SLJIT_MOV_P:
case SLJIT_MOVU:
case SLJIT_MOVU_P:
SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
if (dst == arg2)
return SLJIT_SUCCESS;
return push_inst(compiler, ORR | RD(dst) | RN(TMP_ZERO) | RM(arg2));
case SLJIT_MOV_UB:
case SLJIT_MOVU_UB:
SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
return push_inst(compiler, (UBFM ^ (1 << 31)) | RD(dst) | RN(arg2) | (7 << 10));
case SLJIT_MOV_SB:
case SLJIT_MOVU_SB:
SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
if (!(flags & INT_OP))
inv_bits |= 1 << 22;
return push_inst(compiler, (SBFM ^ inv_bits) | RD(dst) | RN(arg2) | (7 << 10));
case SLJIT_MOV_UH:
case SLJIT_MOVU_UH:
SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
return push_inst(compiler, (UBFM ^ (1 << 31)) | RD(dst) | RN(arg2) | (15 << 10));
case SLJIT_MOV_SH:
case SLJIT_MOVU_SH:
SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
if (!(flags & INT_OP))
inv_bits |= 1 << 22;
return push_inst(compiler, (SBFM ^ inv_bits) | RD(dst) | RN(arg2) | (15 << 10));
case SLJIT_MOV_UI:
case SLJIT_MOVU_UI:
SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
if ((flags & INT_OP) && dst == arg2)
return SLJIT_SUCCESS;
return push_inst(compiler, (ORR ^ (1 << 31)) | RD(dst) | RN(TMP_ZERO) | RM(arg2));
case SLJIT_MOV_SI:
case SLJIT_MOVU_SI:
SLJIT_ASSERT(!(flags & SET_FLAGS) && arg1 == TMP_REG1);
if ((flags & INT_OP) && dst == arg2)
return SLJIT_SUCCESS;
return push_inst(compiler, SBFM | (1 << 22) | RD(dst) | RN(arg2) | (31 << 10));
case SLJIT_NOT:
SLJIT_ASSERT(arg1 == TMP_REG1);
FAIL_IF(push_inst(compiler, (ORN ^ inv_bits) | RD(dst) | RN(TMP_ZERO) | RM(arg2)));
goto set_flags;
case SLJIT_NEG:
SLJIT_ASSERT(arg1 == TMP_REG1);
if (flags & SET_FLAGS)
inv_bits |= 1 << 29;
return push_inst(compiler, (SUB ^ inv_bits) | RD(dst) | RN(TMP_ZERO) | RM(arg2));
case SLJIT_CLZ:
SLJIT_ASSERT(arg1 == TMP_REG1);
FAIL_IF(push_inst(compiler, (CLZ ^ inv_bits) | RD(dst) | RN(arg2)));
goto set_flags;
case SLJIT_ADD:
CHECK_FLAGS(1 << 29);
return push_inst(compiler, (ADD ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2));
case SLJIT_ADDC:
CHECK_FLAGS(1 << 29);
return push_inst(compiler, (ADC ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2));
case SLJIT_SUB:
CHECK_FLAGS(1 << 29);
return push_inst(compiler, (SUB ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2));
case SLJIT_SUBC:
CHECK_FLAGS(1 << 29);
return push_inst(compiler, (SBC ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2));
case SLJIT_MUL:
if (!(flags & SET_FLAGS))
return push_inst(compiler, (MADD ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2) | RT2(TMP_ZERO));
if (flags & INT_OP) {
FAIL_IF(push_inst(compiler, SMADDL | RD(dst) | RN(arg1) | RM(arg2) | (31 << 10)));
FAIL_IF(push_inst(compiler, ADD | RD(TMP_REG4) | RN(TMP_ZERO) | RM(dst) | (2 << 22) | (31 << 10)));
return push_inst(compiler, SUBS | RD(TMP_ZERO) | RN(TMP_REG4) | RM(dst) | (2 << 22) | (63 << 10));
}
FAIL_IF(push_inst(compiler, SMULH | RD(TMP_REG4) | RN(arg1) | RM(arg2)));
FAIL_IF(push_inst(compiler, MADD | RD(dst) | RN(arg1) | RM(arg2) | RT2(TMP_ZERO)));
return push_inst(compiler, SUBS | RD(TMP_ZERO) | RN(TMP_REG4) | RM(dst) | (2 << 22) | (63 << 10));
case SLJIT_AND:
CHECK_FLAGS(3 << 29);
return push_inst(compiler, (AND ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2));
case SLJIT_OR:
FAIL_IF(push_inst(compiler, (ORR ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2)));
goto set_flags;
case SLJIT_XOR:
FAIL_IF(push_inst(compiler, (EOR ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2)));
goto set_flags;
case SLJIT_SHL:
FAIL_IF(push_inst(compiler, (LSLV ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2)));
goto set_flags;
case SLJIT_LSHR:
FAIL_IF(push_inst(compiler, (LSRV ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2)));
goto set_flags;
case SLJIT_ASHR:
FAIL_IF(push_inst(compiler, (ASRV ^ inv_bits) | RD(dst) | RN(arg1) | RM(arg2)));
goto set_flags;
}
SLJIT_ASSERT_STOP();
return SLJIT_SUCCESS;
set_flags:
if (flags & SET_FLAGS)
return push_inst(compiler, (SUBS ^ inv_bits) | RD(TMP_ZERO) | RN(dst) | RM(TMP_ZERO));
return SLJIT_SUCCESS;
}
#define STORE 0x01
#define SIGNED 0x02
#define UPDATE 0x04
#define ARG_TEST 0x08
#define BYTE_SIZE 0x000
#define HALF_SIZE 0x100
#define INT_SIZE 0x200
#define WORD_SIZE 0x300
#define MEM_SIZE_SHIFT(flags) ((flags) >> 8)
static SLJIT_CONST sljit_ins sljit_mem_imm[4] = {
/* u l */ 0x39400000 /* ldrb [reg,imm] */,
/* u s */ 0x39000000 /* strb [reg,imm] */,
/* s l */ 0x39800000 /* ldrsb [reg,imm] */,
/* s s */ 0x39000000 /* strb [reg,imm] */,
};
static SLJIT_CONST sljit_ins sljit_mem_simm[4] = {
/* u l */ 0x38400000 /* ldurb [reg,imm] */,
/* u s */ 0x38000000 /* sturb [reg,imm] */,
/* s l */ 0x38800000 /* ldursb [reg,imm] */,
/* s s */ 0x38000000 /* sturb [reg,imm] */,
};
static SLJIT_CONST sljit_ins sljit_mem_pre_simm[4] = {
/* u l */ 0x38400c00 /* ldrb [reg,imm]! */,
/* u s */ 0x38000c00 /* strb [reg,imm]! */,
/* s l */ 0x38800c00 /* ldrsb [reg,imm]! */,
/* s s */ 0x38000c00 /* strb [reg,imm]! */,
};
static SLJIT_CONST sljit_ins sljit_mem_reg[4] = {
/* u l */ 0x38606800 /* ldrb [reg,reg] */,
/* u s */ 0x38206800 /* strb [reg,reg] */,
/* s l */ 0x38a06800 /* ldrsb [reg,reg] */,
/* s s */ 0x38206800 /* strb [reg,reg] */,
};
/* Helper function. Dst should be reg + value, using at most 1 instruction, flags does not set. */
static sljit_si emit_set_delta(struct sljit_compiler *compiler, sljit_si dst, sljit_si reg, sljit_sw value)
{
if (value >= 0) {
if (value <= 0xfff)
return push_inst(compiler, ADDI | RD(dst) | RN(reg) | (value << 10));
if (value <= 0xffffff && !(value & 0xfff))
return push_inst(compiler, ADDI | (1 << 22) | RD(dst) | RN(reg) | (value >> 2));
}
else {
value = -value;
if (value <= 0xfff)
return push_inst(compiler, SUBI | RD(dst) | RN(reg) | (value << 10));
if (value <= 0xffffff && !(value & 0xfff))
return push_inst(compiler, SUBI | (1 << 22) | RD(dst) | RN(reg) | (value >> 2));
}
return SLJIT_ERR_UNSUPPORTED;
}
/* Can perform an operation using at most 1 instruction. */
static sljit_si getput_arg_fast(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg, sljit_sw argw)
{
sljit_ui shift = MEM_SIZE_SHIFT(flags);
SLJIT_ASSERT(arg & SLJIT_MEM);
if (SLJIT_UNLIKELY(flags & UPDATE)) {
if ((arg & REG_MASK) && !(arg & OFFS_REG_MASK) && argw <= 255 && argw >= -256) {
if (SLJIT_UNLIKELY(flags & ARG_TEST))
return 1;
arg &= REG_MASK;
argw &= 0x1ff;
FAIL_IF(push_inst(compiler, sljit_mem_pre_simm[flags & 0x3]
| (shift << 30) | RT(reg) | RN(arg) | (argw << 12)));
return -1;
}
return 0;
}
if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
argw &= 0x3;
if (argw && argw != shift)
return 0;
if (SLJIT_UNLIKELY(flags & ARG_TEST))
return 1;
FAIL_IF(push_inst(compiler, sljit_mem_reg[flags & 0x3] | (shift << 30) | RT(reg)
| RN(arg & REG_MASK) | RM(OFFS_REG(arg)) | (argw ? (1 << 12) : 0)));
return -1;
}
arg &= REG_MASK;
if (argw >= 0 && (argw >> shift) <= 0xfff && (argw & ((1 << shift) - 1)) == 0) {
if (SLJIT_UNLIKELY(flags & ARG_TEST))
return 1;
FAIL_IF(push_inst(compiler, sljit_mem_imm[flags & 0x3] | (shift << 30)
| RT(reg) | RN(arg) | (argw << (10 - shift))));
return -1;
}
if (argw > 255 || argw < -256)
return 0;
if (SLJIT_UNLIKELY(flags & ARG_TEST))
return 1;
FAIL_IF(push_inst(compiler, sljit_mem_simm[flags & 0x3] | (shift << 30)
| RT(reg) | RN(arg) | ((argw & 0x1ff) << 12)));
return -1;
}
/* see getput_arg below.
Note: can_cache is called only for binary operators. Those
operators always uses word arguments without write back. */
static sljit_si can_cache(sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
sljit_sw diff;
if ((arg & OFFS_REG_MASK) || !(next_arg & SLJIT_MEM))
return 0;
if (!(arg & REG_MASK)) {
diff = argw - next_argw;
if (diff <= 0xfff && diff >= -0xfff)
return 1;
return 0;
}
if (argw == next_argw)
return 1;
diff = argw - next_argw;
if (arg == next_arg && diff <= 0xfff && diff >= -0xfff)
return 1;
return 0;
}
/* Emit the necessary instructions. See can_cache above. */
static sljit_si getput_arg(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg,
sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
sljit_ui shift = MEM_SIZE_SHIFT(flags);
sljit_si tmp_r, other_r;
sljit_sw diff;
SLJIT_ASSERT(arg & SLJIT_MEM);
if (!(next_arg & SLJIT_MEM)) {
next_arg = 0;
next_argw = 0;
}
tmp_r = (flags & STORE) ? TMP_REG3 : reg;
if (SLJIT_UNLIKELY((flags & UPDATE) && (arg & REG_MASK))) {
/* Update only applies if a base register exists. */
other_r = OFFS_REG(arg);
if (!other_r) {
other_r = arg & REG_MASK;
if (other_r != reg && argw >= 0 && argw <= 0xffffff) {
if ((argw & 0xfff) != 0)
FAIL_IF(push_inst(compiler, ADDI | RD(other_r) | RN(other_r) | ((argw & 0xfff) << 10)));
if (argw >> 12)
FAIL_IF(push_inst(compiler, ADDI | (1 << 22) | RD(other_r) | RN(other_r) | ((argw >> 12) << 10)));
return push_inst(compiler, sljit_mem_imm[flags & 0x3] | (shift << 30) | RT(reg) | RN(other_r));
}
else if (other_r != reg && argw < 0 && argw >= -0xffffff) {
argw = -argw;
if ((argw & 0xfff) != 0)
FAIL_IF(push_inst(compiler, SUBI | RD(other_r) | RN(other_r) | ((argw & 0xfff) << 10)));
if (argw >> 12)
FAIL_IF(push_inst(compiler, SUBI | (1 << 22) | RD(other_r) | RN(other_r) | ((argw >> 12) << 10)));
return push_inst(compiler, sljit_mem_imm[flags & 0x3] | (shift << 30) | RT(reg) | RN(other_r));
}
if (compiler->cache_arg == SLJIT_MEM) {
if (argw == compiler->cache_argw) {
other_r = TMP_REG3;
argw = 0;
}
else if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, argw - compiler->cache_argw) != SLJIT_ERR_UNSUPPORTED) {
FAIL_IF(compiler->error);
compiler->cache_argw = argw;
other_r = TMP_REG3;
argw = 0;
}
}
if (argw) {
FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
compiler->cache_arg = SLJIT_MEM;
compiler->cache_argw = argw;
other_r = TMP_REG3;
argw = 0;
}
}
/* No caching here. */
arg &= REG_MASK;
argw &= 0x3;
if (!argw || argw == shift) {
FAIL_IF(push_inst(compiler, sljit_mem_reg[flags & 0x3] | (shift << 30) | RT(reg) | RN(arg) | RM(other_r) | (argw ? (1 << 12) : 0)));
return push_inst(compiler, ADD | RD(arg) | RN(arg) | RM(other_r) | (argw << 10));
}
if (arg != reg) {
FAIL_IF(push_inst(compiler, ADD | RD(arg) | RN(arg) | RM(other_r) | (argw << 10)));
return push_inst(compiler, sljit_mem_imm[flags & 0x3] | (shift << 30) | RT(reg) | RN(arg));
}
FAIL_IF(push_inst(compiler, ADD | RD(TMP_REG4) | RN(arg) | RM(other_r) | (argw << 10)));
FAIL_IF(push_inst(compiler, sljit_mem_imm[flags & 0x3] | (shift << 30) | RT(reg) | RN(TMP_REG4)));
return push_inst(compiler, ORR | RD(arg) | RN(TMP_ZERO) | RM(TMP_REG4));
}
if (arg & OFFS_REG_MASK) {
other_r = OFFS_REG(arg);
arg &= REG_MASK;
FAIL_IF(push_inst(compiler, ADD | RD(tmp_r) | RN(arg) | RM(other_r) | ((argw & 0x3) << 10)));
return push_inst(compiler, sljit_mem_imm[flags & 0x3] | (shift << 30) | RT(reg) | RN(tmp_r));
}
if (compiler->cache_arg == arg) {
diff = argw - compiler->cache_argw;
if (diff <= 255 && diff >= -256)
return push_inst(compiler, sljit_mem_simm[flags & 0x3] | (shift << 30)
| RT(reg) | RN(TMP_REG3) | ((diff & 0x1ff) << 12));
if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, diff) != SLJIT_ERR_UNSUPPORTED) {
FAIL_IF(compiler->error);
return push_inst(compiler, sljit_mem_imm[flags & 0x3] | (shift << 30) | RT(reg) | RN(arg));
}
}
if (argw >= 0 && argw <= 0xffffff && (argw & ((1 << shift) - 1)) == 0) {
FAIL_IF(push_inst(compiler, ADDI | (1 << 22) | RD(tmp_r) | RN(arg & REG_MASK) | ((argw >> 12) << 10)));
return push_inst(compiler, sljit_mem_imm[flags & 0x3] | (shift << 30)
| RT(reg) | RN(tmp_r) | ((argw & 0xfff) << (10 - shift)));
}
diff = argw - next_argw;
next_arg = (arg & REG_MASK) && (arg == next_arg) && diff <= 0xfff && diff >= -0xfff && diff != 0;
arg &= REG_MASK;
if (arg && compiler->cache_arg == SLJIT_MEM) {
if (compiler->cache_argw == argw)
return push_inst(compiler, sljit_mem_reg[flags & 0x3] | (shift << 30) | RT(reg) | RN(arg) | RM(TMP_REG3));
if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, argw - compiler->cache_argw) != SLJIT_ERR_UNSUPPORTED) {
FAIL_IF(compiler->error);
compiler->cache_argw = argw;
return push_inst(compiler, sljit_mem_reg[flags & 0x3] | (shift << 30) | RT(reg) | RN(arg) | RM(TMP_REG3));
}
}
compiler->cache_argw = argw;
if (next_arg && emit_set_delta(compiler, TMP_REG3, arg, argw) != SLJIT_ERR_UNSUPPORTED) {
FAIL_IF(compiler->error);
compiler->cache_arg = SLJIT_MEM | arg;
arg = 0;
}
else {
FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
compiler->cache_arg = SLJIT_MEM;
if (next_arg) {
FAIL_IF(push_inst(compiler, ADD | RD(TMP_REG3) | RN(TMP_REG3) | RM(arg)));
compiler->cache_arg = SLJIT_MEM | arg;
arg = 0;
}
}
if (arg)
return push_inst(compiler, sljit_mem_reg[flags & 0x3] | (shift << 30) | RT(reg) | RN(arg) | RM(TMP_REG3));
return push_inst(compiler, sljit_mem_imm[flags & 0x3] | (shift << 30) | RT(reg) | RN(TMP_REG3));
}
static SLJIT_INLINE sljit_si emit_op_mem(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg, sljit_sw argw)
{
if (getput_arg_fast(compiler, flags, reg, arg, argw))
return compiler->error;
compiler->cache_arg = 0;
compiler->cache_argw = 0;
return getput_arg(compiler, flags, reg, arg, argw, 0, 0);
}
static SLJIT_INLINE sljit_si emit_op_mem2(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg1, sljit_sw arg1w, sljit_si arg2, sljit_sw arg2w)
{
if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
return compiler->error;
return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
}
/* --------------------------------------------------------------------- */
/* Entry, exit */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler, sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si local_size)
{
CHECK_ERROR();
check_sljit_emit_enter(compiler, args, scratches, saveds, local_size);
compiler->scratches = scratches;
compiler->saveds = saveds;
#if (defined SLJIT_DEBUG && SLJIT_DEBUG)
compiler->logical_local_size = local_size;
#endif
compiler->locals_offset = (2 + saveds) * sizeof(sljit_sw);
local_size = (compiler->locals_offset + local_size + 15) & ~15;
compiler->local_size = local_size;
if (local_size <= (64 << 3))
FAIL_IF(push_inst(compiler, STP_PRE | 29 | RT2(TMP_LR)
| RN(TMP_SP) | ((-(local_size >> 3) & 0x7f) << 15)));
else {
local_size -= (64 << 3);
if (local_size > 0xfff) {
FAIL_IF(push_inst(compiler, SUBI | RD(TMP_SP) | RN(TMP_SP) | ((local_size >> 12) << 10) | (1 << 22)));
local_size &= 0xfff;
}
if (local_size)
FAIL_IF(push_inst(compiler, SUBI | RD(TMP_SP) | RN(TMP_SP) | (local_size << 10)));
FAIL_IF(push_inst(compiler, STP_PRE | 29 | RT2(TMP_LR) | RN(TMP_SP) | (0x40 << 15)));
}
FAIL_IF(push_inst(compiler, ADDI | RD(SLJIT_LOCALS_REG) | RN(TMP_SP)));
if (saveds >= 2)
FAIL_IF(push_inst(compiler, STP | RT(SLJIT_SAVED_REG1) | RT2(SLJIT_SAVED_REG2) | RN(TMP_SP) | (2 << 15)));
if (saveds >= 4)
FAIL_IF(push_inst(compiler, STP | RT(SLJIT_SAVED_REG3) | RT2(SLJIT_SAVED_EREG1) | RN(TMP_SP) | (4 << 15)));
if (saveds == 1)
FAIL_IF(push_inst(compiler, STRI | RT(SLJIT_SAVED_REG1) | RN(TMP_SP) | (2 << 10)));
if (saveds == 3)
FAIL_IF(push_inst(compiler, STRI | RT(SLJIT_SAVED_REG3) | RN(TMP_SP) | (4 << 10)));
if (saveds == 5)
FAIL_IF(push_inst(compiler, STRI | RT(SLJIT_SAVED_EREG2) | RN(TMP_SP) | (6 << 10)));
if (args >= 1)
FAIL_IF(push_inst(compiler, ORR | RD(SLJIT_SAVED_REG1) | RN(TMP_ZERO) | RM(SLJIT_SCRATCH_REG1)));
if (args >= 2)
FAIL_IF(push_inst(compiler, ORR | RD(SLJIT_SAVED_REG2) | RN(TMP_ZERO) | RM(SLJIT_SCRATCH_REG2)));
if (args >= 3)
FAIL_IF(push_inst(compiler, ORR | RD(SLJIT_SAVED_REG3) | RN(TMP_ZERO) | RM(SLJIT_SCRATCH_REG3)));
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_context(struct sljit_compiler *compiler, sljit_si args, sljit_si scratches, sljit_si saveds, sljit_si local_size)
{
CHECK_ERROR_VOID();
check_sljit_set_context(compiler, args, scratches, saveds, local_size);
compiler->scratches = scratches;
compiler->saveds = saveds;
#if (defined SLJIT_DEBUG && SLJIT_DEBUG)
compiler->logical_local_size = local_size;
#endif
compiler->locals_offset = (2 + saveds) * sizeof(sljit_sw);
compiler->local_size = (compiler->locals_offset + local_size + 15) & ~15;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op, sljit_si src, sljit_sw srcw)
{
sljit_si saveds, local_size;
CHECK_ERROR();
check_sljit_emit_return(compiler, op, src, srcw);
FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));
saveds = compiler->saveds;
if (saveds >= 2)
FAIL_IF(push_inst(compiler, LDP | RT(SLJIT_SAVED_REG1) | RT2(SLJIT_SAVED_REG2) | RN(TMP_SP) | (2 << 15)));
if (saveds >= 4)
FAIL_IF(push_inst(compiler, LDP | RT(SLJIT_SAVED_REG3) | RT2(SLJIT_SAVED_EREG1) | RN(TMP_SP) | (4 << 15)));
if (saveds == 1)
FAIL_IF(push_inst(compiler, LDRI | RT(SLJIT_SAVED_REG1) | RN(TMP_SP) | (2 << 10)));
if (saveds == 3)
FAIL_IF(push_inst(compiler, LDRI | RT(SLJIT_SAVED_REG3) | RN(TMP_SP) | (4 << 10)));
if (saveds == 5)
FAIL_IF(push_inst(compiler, LDRI | RT(SLJIT_SAVED_EREG2) | RN(TMP_SP) | (6 << 10)));
local_size = compiler->local_size;
if (local_size <= (62 << 3))
FAIL_IF(push_inst(compiler, LDP_PST | 29 | RT2(TMP_LR)
| RN(TMP_SP) | (((local_size >> 3) & 0x7f) << 15)));
else {
FAIL_IF(push_inst(compiler, LDP_PST | 29 | RT2(TMP_LR) | RN(TMP_SP) | (0x3e << 15)));
local_size -= (62 << 3);
if (local_size > 0xfff) {
FAIL_IF(push_inst(compiler, ADDI | RD(TMP_SP) | RN(TMP_SP) | ((local_size >> 12) << 10) | (1 << 22)));
local_size &= 0xfff;
}
if (local_size)
FAIL_IF(push_inst(compiler, ADDI | RD(TMP_SP) | RN(TMP_SP) | (local_size << 10)));
}
FAIL_IF(push_inst(compiler, RET | RN(TMP_LR)));
return SLJIT_SUCCESS;
}
/* --------------------------------------------------------------------- */
/* Operators */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op)
{
sljit_ins inv_bits = (op & SLJIT_INT_OP) ? (1 << 31) : 0;
CHECK_ERROR();
check_sljit_emit_op0(compiler, op);
op = GET_OPCODE(op);
switch (op) {
case SLJIT_BREAKPOINT:
return push_inst(compiler, BRK);
case SLJIT_NOP:
return push_inst(compiler, NOP);
case SLJIT_UMUL:
case SLJIT_SMUL:
FAIL_IF(push_inst(compiler, ORR | RD(TMP_REG1) | RN(TMP_ZERO) | RM(SLJIT_SCRATCH_REG1)));
FAIL_IF(push_inst(compiler, MADD | RD(SLJIT_SCRATCH_REG1) | RN(SLJIT_SCRATCH_REG1) | RM(SLJIT_SCRATCH_REG2) | RT2(TMP_ZERO)));
return push_inst(compiler, (op == SLJIT_SMUL ? SMULH : UMULH) | RD(SLJIT_SCRATCH_REG2) | RN(TMP_REG1) | RM(SLJIT_SCRATCH_REG2));
case SLJIT_UDIV:
case SLJIT_SDIV:
FAIL_IF(push_inst(compiler, (ORR ^ inv_bits) | RD(TMP_REG1) | RN(TMP_ZERO) | RM(SLJIT_SCRATCH_REG1)));
FAIL_IF(push_inst(compiler, ((op == SLJIT_SDIV ? SDIV : UDIV) ^ inv_bits) | RD(SLJIT_SCRATCH_REG1) | RN(SLJIT_SCRATCH_REG1) | RM(SLJIT_SCRATCH_REG2)));
FAIL_IF(push_inst(compiler, (MADD ^ inv_bits) | RD(SLJIT_SCRATCH_REG2) | RN(SLJIT_SCRATCH_REG1) | RM(SLJIT_SCRATCH_REG2) | RT2(TMP_ZERO)));
return push_inst(compiler, (SUB ^ inv_bits) | RD(SLJIT_SCRATCH_REG2) | RN(TMP_REG1) | RM(SLJIT_SCRATCH_REG2));
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
sljit_si dst_r, flags, mem_flags;
sljit_si op_flags = GET_ALL_FLAGS(op);
CHECK_ERROR();
check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw);
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src, srcw);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG1;
op = GET_OPCODE(op);
if (op >= SLJIT_MOV && op <= SLJIT_MOVU_P) {
switch (op) {
case SLJIT_MOV:
case SLJIT_MOV_P:
flags = WORD_SIZE;
break;
case SLJIT_MOV_UB:
flags = BYTE_SIZE;
if (src & SLJIT_IMM)
srcw = (sljit_ub)srcw;
break;
case SLJIT_MOV_SB:
flags = BYTE_SIZE | SIGNED;
if (src & SLJIT_IMM)
srcw = (sljit_sb)srcw;
break;
case SLJIT_MOV_UH:
flags = HALF_SIZE;
if (src & SLJIT_IMM)
srcw = (sljit_uh)srcw;
break;
case SLJIT_MOV_SH:
flags = HALF_SIZE | SIGNED;
if (src & SLJIT_IMM)
srcw = (sljit_sh)srcw;
break;
case SLJIT_MOV_UI:
flags = INT_SIZE;
if (src & SLJIT_IMM)
srcw = (sljit_ui)srcw;
break;
case SLJIT_MOV_SI:
flags = INT_SIZE | SIGNED;
if (src & SLJIT_IMM)
srcw = (sljit_si)srcw;
break;
case SLJIT_MOVU:
case SLJIT_MOVU_P:
flags = WORD_SIZE | UPDATE;
break;
case SLJIT_MOVU_UB:
flags = BYTE_SIZE | UPDATE;
if (src & SLJIT_IMM)
srcw = (sljit_ub)srcw;
break;
case SLJIT_MOVU_SB:
flags = BYTE_SIZE | SIGNED | UPDATE;
if (src & SLJIT_IMM)
srcw = (sljit_sb)srcw;
break;
case SLJIT_MOVU_UH:
flags = HALF_SIZE | UPDATE;
if (src & SLJIT_IMM)
srcw = (sljit_uh)srcw;
break;
case SLJIT_MOVU_SH:
flags = HALF_SIZE | SIGNED | UPDATE;
if (src & SLJIT_IMM)
srcw = (sljit_sh)srcw;
break;
case SLJIT_MOVU_UI:
flags = INT_SIZE | UPDATE;
if (src & SLJIT_IMM)
srcw = (sljit_ui)srcw;
break;
case SLJIT_MOVU_SI:
flags = INT_SIZE | SIGNED | UPDATE;
if (src & SLJIT_IMM)
srcw = (sljit_si)srcw;
break;
default:
SLJIT_ASSERT_STOP();
flags = 0;
break;
}
if (src & SLJIT_IMM)
FAIL_IF(emit_op_imm(compiler, SLJIT_MOV | ARG2_IMM, dst_r, TMP_REG1, srcw));
else if (src & SLJIT_MEM) {
if (getput_arg_fast(compiler, flags, dst_r, src, srcw))
FAIL_IF(compiler->error);
else
FAIL_IF(getput_arg(compiler, flags, dst_r, src, srcw, dst, dstw));
} else {
if (dst_r != TMP_REG1)
return emit_op_imm(compiler, op | ((op_flags & SLJIT_INT_OP) ? INT_OP : 0), dst_r, TMP_REG1, src);
dst_r = src;
}
if (dst & SLJIT_MEM) {
if (getput_arg_fast(compiler, flags | STORE, dst_r, dst, dstw))
return compiler->error;
else
return getput_arg(compiler, flags | STORE, dst_r, dst, dstw, 0, 0);
}
return SLJIT_SUCCESS;
}
flags = GET_FLAGS(op_flags) ? SET_FLAGS : 0;
mem_flags = WORD_SIZE;
if (op_flags & SLJIT_INT_OP) {
flags |= INT_OP;
mem_flags = INT_SIZE;
}
if (dst == SLJIT_UNUSED)
flags |= UNUSED_RETURN;
if (src & SLJIT_MEM) {
if (getput_arg_fast(compiler, mem_flags, TMP_REG2, src, srcw))
FAIL_IF(compiler->error);
else
FAIL_IF(getput_arg(compiler, mem_flags, TMP_REG2, src, srcw, dst, dstw));
src = TMP_REG2;
}
if (src & SLJIT_IMM) {
flags |= ARG2_IMM;
if (op_flags & SLJIT_INT_OP)
srcw = (sljit_si)srcw;
} else
srcw = src;
emit_op_imm(compiler, flags | op, dst_r, TMP_REG1, srcw);
if (dst & SLJIT_MEM) {
if (getput_arg_fast(compiler, mem_flags | STORE, dst_r, dst, dstw))
return compiler->error;
else
return getput_arg(compiler, mem_flags | STORE, dst_r, dst, dstw, 0, 0);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
sljit_si dst_r, flags, mem_flags;
CHECK_ERROR();
check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG1;
flags = GET_FLAGS(op) ? SET_FLAGS : 0;
mem_flags = WORD_SIZE;
if (op & SLJIT_INT_OP) {
flags |= INT_OP;
mem_flags = INT_SIZE;
}
if (dst == SLJIT_UNUSED)
flags |= UNUSED_RETURN;
if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, mem_flags | STORE | ARG_TEST, TMP_REG1, dst, dstw))
flags |= SLOW_DEST;
if (src1 & SLJIT_MEM) {
if (getput_arg_fast(compiler, mem_flags, TMP_REG1, src1, src1w))
FAIL_IF(compiler->error);
else
flags |= SLOW_SRC1;
}
if (src2 & SLJIT_MEM) {
if (getput_arg_fast(compiler, mem_flags, TMP_REG2, src2, src2w))
FAIL_IF(compiler->error);
else
flags |= SLOW_SRC2;
}
if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
FAIL_IF(getput_arg(compiler, mem_flags, TMP_REG2, src2, src2w, src1, src1w));
FAIL_IF(getput_arg(compiler, mem_flags, TMP_REG1, src1, src1w, dst, dstw));
}
else {
FAIL_IF(getput_arg(compiler, mem_flags, TMP_REG1, src1, src1w, src2, src2w));
FAIL_IF(getput_arg(compiler, mem_flags, TMP_REG2, src2, src2w, dst, dstw));
}
}
else if (flags & SLOW_SRC1)
FAIL_IF(getput_arg(compiler, mem_flags, TMP_REG1, src1, src1w, dst, dstw));
else if (flags & SLOW_SRC2)
FAIL_IF(getput_arg(compiler, mem_flags, TMP_REG2, src2, src2w, dst, dstw));
if (src1 & SLJIT_MEM)
src1 = TMP_REG1;
if (src2 & SLJIT_MEM)
src2 = TMP_REG2;
if (src1 & SLJIT_IMM)
flags |= ARG1_IMM;
else
src1w = src1;
if (src2 & SLJIT_IMM)
flags |= ARG2_IMM;
else
src2w = src2;
emit_op_imm(compiler, flags | GET_OPCODE(op), dst_r, src1w, src2w);
if (dst & SLJIT_MEM) {
if (!(flags & SLOW_DEST)) {
getput_arg_fast(compiler, mem_flags | STORE, dst_r, dst, dstw);
return compiler->error;
}
return getput_arg(compiler, mem_flags | STORE, TMP_REG1, dst, dstw, 0, 0);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg)
{
check_sljit_get_register_index(reg);
return reg_map[reg];
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg)
{
check_sljit_get_float_register_index(reg);
return reg;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
void *instruction, sljit_si size)
{
CHECK_ERROR();
check_sljit_emit_op_custom(compiler, instruction, size);
SLJIT_ASSERT(size == 4);
return push_inst(compiler, *(sljit_ins*)instruction);
}
/* --------------------------------------------------------------------- */
/* Floating point operators */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void)
{
#ifdef SLJIT_IS_FPU_AVAILABLE
return SLJIT_IS_FPU_AVAILABLE;
#else
/* Available by default. */
return 1;
#endif
}
static sljit_si emit_fop_mem(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg, sljit_sw argw)
{
sljit_ui shift = MEM_SIZE_SHIFT(flags);
sljit_ins ins_bits = (shift << 30);
sljit_si other_r;
sljit_sw diff;
SLJIT_ASSERT(arg & SLJIT_MEM);
if (!(flags & STORE))
ins_bits |= 1 << 22;
if (arg & OFFS_REG_MASK) {
argw &= 3;
if (!argw || argw == shift)
return push_inst(compiler, STR_FR | ins_bits | VT(reg)
| RN(arg & REG_MASK) | RM(OFFS_REG(arg)) | (argw ? (1 << 12) : 0));
other_r = OFFS_REG(arg);
arg &= REG_MASK;
FAIL_IF(push_inst(compiler, ADD | RD(TMP_REG1) | RN(arg) | RM(other_r) | (argw << 10)));
arg = TMP_REG1;
argw = 0;
}
arg &= REG_MASK;
if (arg && argw >= 0 && ((argw >> shift) <= 0xfff) && (argw & ((1 << shift) - 1)) == 0)
return push_inst(compiler, STR_FI | ins_bits | VT(reg) | RN(arg) | (argw << (10 - shift)));
if (arg && argw <= 255 && argw >= -256)
return push_inst(compiler, STUR_FI | ins_bits | VT(reg) | RN(arg) | ((argw & 0x1ff) << 12));
/* Slow cases */
if (compiler->cache_arg == SLJIT_MEM && argw != compiler->cache_argw) {
diff = argw - compiler->cache_argw;
if (!arg && diff <= 255 && diff >= -256)
return push_inst(compiler, STUR_FI | ins_bits | VT(reg) | RN(TMP_REG3) | ((diff & 0x1ff) << 12));
if (emit_set_delta(compiler, TMP_REG3, TMP_REG3, argw - compiler->cache_argw) != SLJIT_ERR_UNSUPPORTED) {
FAIL_IF(compiler->error);
compiler->cache_argw = argw;
}
}
if (compiler->cache_arg != SLJIT_MEM || argw != compiler->cache_argw) {
compiler->cache_arg = SLJIT_MEM;
compiler->cache_argw = argw;
FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
}
if (arg & REG_MASK)
return push_inst(compiler, STR_FR | ins_bits | VT(reg) | RN(arg) | RM(TMP_REG3));
return push_inst(compiler, STR_FI | ins_bits | VT(reg) | RN(TMP_REG3));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
sljit_si dst_r, mem_flags = (op & SLJIT_SINGLE_OP) ? INT_SIZE : WORD_SIZE;
sljit_ins inv_bits = (op & SLJIT_SINGLE_OP) ? (1 << 22) : 0;
CHECK_ERROR();
check_sljit_emit_fop1(compiler, op, dst, dstw, src, srcw);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
if (GET_OPCODE(op) == SLJIT_CMPD) {
if (dst & SLJIT_MEM) {
emit_fop_mem(compiler, mem_flags, TMP_FREG1, dst, dstw);
dst = TMP_FREG1;
}
if (src & SLJIT_MEM) {
emit_fop_mem(compiler, mem_flags, TMP_FREG2, src, srcw);
src = TMP_FREG2;
}
return push_inst(compiler, (FCMP ^ inv_bits) | VN(dst) | VM(src));
}
dst_r = (dst <= REG_MASK) ? dst : TMP_FREG1;
if (src & SLJIT_MEM) {
emit_fop_mem(compiler, mem_flags, dst_r, src, srcw);
src = dst_r;
}
switch (GET_OPCODE(op)) {
case SLJIT_MOVD:
if (src != dst_r)
FAIL_IF(push_inst(compiler, (FMOV ^ inv_bits) | VD(dst_r) | VN(src)));
break;
case SLJIT_NEGD:
FAIL_IF(push_inst(compiler, (FNEG ^ inv_bits) | VD(dst_r) | VN(src)));
break;
case SLJIT_ABSD:
FAIL_IF(push_inst(compiler, (FABS ^ inv_bits) | VD(dst_r) | VN(src)));
break;
}
if (!(dst & SLJIT_MEM))
return SLJIT_SUCCESS;
return emit_fop_mem(compiler, mem_flags | STORE, TMP_FREG1, dst, dstw);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
sljit_si dst_r, mem_flags = (op & SLJIT_SINGLE_OP) ? INT_SIZE : WORD_SIZE;
sljit_ins inv_bits = (op & SLJIT_SINGLE_OP) ? (1 << 22) : 0;
CHECK_ERROR();
check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
dst_r = (dst <= REG_MASK) ? dst : TMP_FREG1;
if (src1 & SLJIT_MEM) {
emit_fop_mem(compiler, mem_flags, TMP_FREG1, src1, src1w);
src1 = TMP_FREG1;
}
if (src2 & SLJIT_MEM) {
emit_fop_mem(compiler, mem_flags, TMP_FREG2, src2, src2w);
src2 = TMP_FREG2;
}
switch (GET_OPCODE(op)) {
case SLJIT_ADDD:
FAIL_IF(push_inst(compiler, (FADD ^ inv_bits) | VD(dst_r) | VN(src1) | VM(src2)));
break;
case SLJIT_SUBD:
FAIL_IF(push_inst(compiler, (FSUB ^ inv_bits) | VD(dst_r) | VN(src1) | VM(src2)));
break;
case SLJIT_MULD:
FAIL_IF(push_inst(compiler, (FMUL ^ inv_bits) | VD(dst_r) | VN(src1) | VM(src2)));
break;
case SLJIT_DIVD:
FAIL_IF(push_inst(compiler, (FDIV ^ inv_bits) | VD(dst_r) | VN(src1) | VM(src2)));
break;
}
if (!(dst & SLJIT_MEM))
return SLJIT_SUCCESS;
return emit_fop_mem(compiler, mem_flags | STORE, TMP_FREG1, dst, dstw);
}
/* --------------------------------------------------------------------- */
/* Other instructions */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw)
{
CHECK_ERROR();
check_sljit_emit_fast_enter(compiler, dst, dstw);
ADJUST_LOCAL_OFFSET(dst, dstw);
/* For UNUSED dst. Uncommon, but possible. */
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
if (dst <= REG_MASK)
return push_inst(compiler, ORR | RD(dst) | RN(TMP_ZERO) | RM(TMP_LR));
/* Memory. */
return emit_op_mem(compiler, WORD_SIZE | STORE, TMP_LR, dst, dstw);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw)
{
CHECK_ERROR();
check_sljit_emit_fast_return(compiler, src, srcw);
ADJUST_LOCAL_OFFSET(src, srcw);
if (src <= REG_MASK)
FAIL_IF(push_inst(compiler, ORR | RD(TMP_LR) | RN(TMP_ZERO) | RM(src)));
else if (src & SLJIT_MEM)
FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_LR, src, srcw));
else if (src & SLJIT_IMM)
FAIL_IF(load_immediate(compiler, TMP_LR, srcw));
return push_inst(compiler, RET | RN(TMP_LR));
}
/* --------------------------------------------------------------------- */
/* Conditional instructions */
/* --------------------------------------------------------------------- */
static sljit_uw get_cc(sljit_si type)
{
switch (type) {
case SLJIT_C_EQUAL:
case SLJIT_C_MUL_NOT_OVERFLOW:
case SLJIT_C_FLOAT_EQUAL:
return 0x1;
case SLJIT_C_NOT_EQUAL:
case SLJIT_C_MUL_OVERFLOW:
case SLJIT_C_FLOAT_NOT_EQUAL:
return 0x0;
case SLJIT_C_LESS:
case SLJIT_C_FLOAT_LESS:
return 0x2;
case SLJIT_C_GREATER_EQUAL:
case SLJIT_C_FLOAT_GREATER_EQUAL:
return 0x3;
case SLJIT_C_GREATER:
case SLJIT_C_FLOAT_GREATER:
return 0x9;
case SLJIT_C_LESS_EQUAL:
case SLJIT_C_FLOAT_LESS_EQUAL:
return 0x8;
case SLJIT_C_SIG_LESS:
return 0xa;
case SLJIT_C_SIG_GREATER_EQUAL:
return 0xb;
case SLJIT_C_SIG_GREATER:
return 0xd;
case SLJIT_C_SIG_LESS_EQUAL:
return 0xc;
case SLJIT_C_OVERFLOW:
case SLJIT_C_FLOAT_UNORDERED:
return 0x7;
case SLJIT_C_NOT_OVERFLOW:
case SLJIT_C_FLOAT_ORDERED:
return 0x6;
default:
SLJIT_ASSERT_STOP();
return 0xe;
}
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
{
struct sljit_label *label;
CHECK_ERROR_PTR();
check_sljit_emit_label(compiler);
if (compiler->last_label && compiler->last_label->size == compiler->size)
return compiler->last_label;
label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
PTR_FAIL_IF(!label);
set_label(label, compiler);
return label;
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type)
{
struct sljit_jump *jump;
CHECK_ERROR_PTR();
check_sljit_emit_jump(compiler, type);
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF(!jump);
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
type &= 0xff;
if (type < SLJIT_JUMP) {
jump->flags |= IS_COND;
PTR_FAIL_IF(push_inst(compiler, B_CC | (6 << 5) | get_cc(type)));
}
else if (type >= SLJIT_FAST_CALL)
jump->flags |= IS_BL;
PTR_FAIL_IF(emit_imm64_const(compiler, TMP_REG1, 0));
jump->addr = compiler->size;
PTR_FAIL_IF(push_inst(compiler, ((type >= SLJIT_FAST_CALL) ? BLR : BR) | RN(TMP_REG1)));
return jump;
}
static SLJIT_INLINE struct sljit_jump* emit_cmp_to0(struct sljit_compiler *compiler, sljit_si type,
sljit_si src, sljit_sw srcw)
{
struct sljit_jump *jump;
sljit_ins inv_bits = (type & SLJIT_INT_OP) ? (1 << 31) : 0;
SLJIT_ASSERT((type & 0xff) == SLJIT_C_EQUAL || (type & 0xff) == SLJIT_C_NOT_EQUAL);
ADJUST_LOCAL_OFFSET(src, srcw);
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF(!jump);
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
jump->flags |= IS_CBZ | IS_COND;
if (src & SLJIT_MEM) {
PTR_FAIL_IF(emit_op_mem(compiler, inv_bits ? INT_SIZE : WORD_SIZE, TMP_REG1, src, srcw));
src = TMP_REG1;
}
else if (src & SLJIT_IMM) {
PTR_FAIL_IF(load_immediate(compiler, TMP_REG1, srcw));
src = TMP_REG1;
}
SLJIT_ASSERT(FAST_IS_REG(src));
if ((type & 0xff) == SLJIT_C_EQUAL)
inv_bits |= 1 << 24;
PTR_FAIL_IF(push_inst(compiler, (CBZ ^ inv_bits) | (6 << 5) | RT(src)));
PTR_FAIL_IF(emit_imm64_const(compiler, TMP_REG1, 0));
jump->addr = compiler->size;
PTR_FAIL_IF(push_inst(compiler, BR | RN(TMP_REG1)));
return jump;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw)
{
struct sljit_jump *jump;
CHECK_ERROR();
check_sljit_emit_ijump(compiler, type, src, srcw);
ADJUST_LOCAL_OFFSET(src, srcw);
/* In ARM, we don't need to touch the arguments. */
if (!(src & SLJIT_IMM)) {
if (src & SLJIT_MEM) {
FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_REG1, src, srcw));
src = TMP_REG1;
}
return push_inst(compiler, ((type >= SLJIT_FAST_CALL) ? BLR : BR) | RN(src));
}
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
FAIL_IF(!jump);
set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_BL : 0));
jump->u.target = srcw;
FAIL_IF(emit_imm64_const(compiler, TMP_REG1, 0));
jump->addr = compiler->size;
return push_inst(compiler, ((type >= SLJIT_FAST_CALL) ? BLR : BR) | RN(TMP_REG1));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw,
sljit_si type)
{
sljit_si dst_r, flags, mem_flags;
sljit_ins cc;
CHECK_ERROR();
check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type);
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src, srcw);
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
cc = get_cc(type);
dst_r = (dst <= REG_MASK) ? dst : TMP_REG1;
if (GET_OPCODE(op) < SLJIT_ADD) {
FAIL_IF(push_inst(compiler, CSINC | (cc << 12) | RD(dst_r) | RN(TMP_ZERO) | RM(TMP_ZERO)));
if (dst_r != TMP_REG1)
return SLJIT_SUCCESS;
return emit_op_mem(compiler, (GET_OPCODE(op) == SLJIT_MOV ? WORD_SIZE : INT_SIZE) | STORE, TMP_REG1, dst, dstw);
}
compiler->cache_arg = 0;
compiler->cache_argw = 0;
flags = GET_FLAGS(op) ? SET_FLAGS : 0;
mem_flags = WORD_SIZE;
if (op & SLJIT_INT_OP) {
flags |= INT_OP;
mem_flags = INT_SIZE;
}
if (src & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, mem_flags, TMP_REG1, src, srcw, dst, dstw));
src = TMP_REG1;
srcw = 0;
} else if (src & SLJIT_IMM)
flags |= ARG1_IMM;
FAIL_IF(push_inst(compiler, CSINC | (cc << 12) | RD(TMP_REG2) | RN(TMP_ZERO) | RM(TMP_ZERO)));
emit_op_imm(compiler, flags | GET_OPCODE(op), dst_r, src, TMP_REG2);
if (dst_r != TMP_REG1)
return SLJIT_SUCCESS;
return emit_op_mem2(compiler, mem_flags | STORE, TMP_REG1, dst, dstw, 0, 0);
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value)
{
struct sljit_const *const_;
sljit_si dst_r;
CHECK_ERROR_PTR();
check_sljit_emit_const(compiler, dst, dstw, init_value);
ADJUST_LOCAL_OFFSET(dst, dstw);
const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
PTR_FAIL_IF(!const_);
set_const(const_, compiler);
dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG1;
PTR_FAIL_IF(emit_imm64_const(compiler, dst_r, init_value));
if (dst & SLJIT_MEM)
PTR_FAIL_IF(emit_op_mem(compiler, WORD_SIZE | STORE, dst_r, dst, dstw));
return const_;
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
{
sljit_ins* inst = (sljit_ins*)addr;
modify_imm64_const(inst, new_addr);
SLJIT_CACHE_FLUSH(inst, inst + 4);
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
{
sljit_ins* inst = (sljit_ins*)addr;
modify_imm64_const(inst, new_constant);
SLJIT_CACHE_FLUSH(inst, inst + 4);
}