file from the new abstract machine;

floats are actually doubles in 64 bit
This commit is contained in:
Pavol Marko 2004-03-27 17:03:20 +00:00
parent 9902faa81c
commit bada4d4336

View File

@ -14,6 +14,8 @@
* 2003-11-24: A few more native functions (geometry), plus minor modifications,
* mostly to be compatible with dynamically loadable extension
* modules, by Thiadmer Riemersma
* 2004-01-09: Adaptions for 64-bit cells (using "double precision"), by
* Thiadmer Riemersma
*/
#include <stdlib.h> /* for atof() */
#include <stdio.h> /* for NULL */
@ -27,6 +29,14 @@
#endif
*/
#if SMALL_CELL_SIZE==32
#define REAL float
#elif SMALL_CELL_SIZE==64
#define REAL double
#else
#error Unsupported cell size
#endif
#define PI 3.1415926535897932384626433832795
#if defined __BORLANDC__ || defined __WATCOMC__
@ -39,10 +49,10 @@ static cell AMX_NATIVE_CALL n_float(AMX *amx,cell *params)
* params[0] = number of bytes
* params[1] = long value to convert to a float
*/
float fValue;
REAL fValue;
/* Convert to a float. Calls the compilers long to float conversion. */
fValue = (float) params[1];
fValue = (REAL) params[1];
/* Return the cell. */
return amx_ftoc(fValue);
@ -60,7 +70,7 @@ static cell AMX_NATIVE_CALL n_floatstr(AMX *amx,cell *params)
*/
char szSource[60];
cell *pString;
float fNum;
REAL fNum;
int nLen;
/* They should have sent us 1 cell. */
@ -75,10 +85,10 @@ static cell AMX_NATIVE_CALL n_floatstr(AMX *amx,cell *params)
return 0;
/* Now convert the Small String into a C type null terminated string */
amx_GetString(szSource, pString);
amx_GetString(szSource, pString, 0);
/* Now convert this to a float. */
fNum = (float)atof(szSource);
fNum = (REAL)atof(szSource);
return amx_ftoc(fNum);
}
@ -94,7 +104,7 @@ static cell AMX_NATIVE_CALL n_floatmul(AMX *amx,cell *params)
* params[1] = float operand 1
* params[2] = float operand 2
*/
float fRes = amx_ctof(params[1]) * amx_ctof(params[2]);
REAL fRes = amx_ctof(params[1]) * amx_ctof(params[2]);
return amx_ftoc(fRes);
}
@ -109,7 +119,7 @@ static cell AMX_NATIVE_CALL n_floatdiv(AMX *amx,cell *params)
* params[1] = float dividend (top)
* params[2] = float divisor (bottom)
*/
float fRes = amx_ctof(params[1]) / amx_ctof(params[2]);
REAL fRes = amx_ctof(params[1]) / amx_ctof(params[2]);
return amx_ftoc(fRes);
}
@ -124,7 +134,7 @@ static cell AMX_NATIVE_CALL n_floatadd(AMX *amx,cell *params)
* params[1] = float operand 1
* params[2] = float operand 2
*/
float fRes = amx_ctof(params[1]) + amx_ctof(params[2]);
REAL fRes = amx_ctof(params[1]) + amx_ctof(params[2]);
return amx_ftoc(fRes);
}
@ -139,7 +149,7 @@ static cell AMX_NATIVE_CALL n_floatsub(AMX *amx,cell *params)
* params[1] = float operand 1
* params[2] = float operand 2
*/
float fRes = amx_ctof(params[1]) - amx_ctof(params[2]);
REAL fRes = amx_ctof(params[1]) - amx_ctof(params[2]);
return amx_ftoc(fRes);
}
@ -154,8 +164,8 @@ static cell AMX_NATIVE_CALL n_floatfract(AMX *amx,cell *params)
* params[0] = number of bytes
* params[1] = float operand
*/
float fA = amx_ctof(params[1]);
fA = fA - (float)(floor((double)fA));
REAL fA = amx_ctof(params[1]);
fA = fA - (REAL)(floor((double)fA));
return amx_ftoc(fA);
}
@ -171,24 +181,24 @@ static cell AMX_NATIVE_CALL n_floatround(AMX *amx,cell *params)
* params[1] = float operand
* params[2] = Type of rounding (long)
*/
float fA = amx_ctof(params[1]);
REAL fA = amx_ctof(params[1]);
switch (params[2])
{
case 1: /* round downwards (truncate) */
fA = (float)(floor((double)fA));
fA = (REAL)(floor((double)fA));
break;
case 2: /* round upwards */
fA = (float)(ceil((double)fA));
fA = (REAL)(ceil((double)fA));
break;
case 3: /* round towards zero */
if ( fA>=0.0 )
fA = (float)(floor((double)fA));
fA = (REAL)(floor((double)fA));
else
fA = (float)(ceil((double)fA));
fA = (REAL)(ceil((double)fA));
break;
default: /* standard, round to nearest */
fA = (float)(floor((double)fA+.5));
fA = (REAL)(floor((double)fA+.5));
break;
}
@ -206,7 +216,7 @@ static cell AMX_NATIVE_CALL n_floatcmp(AMX *amx,cell *params)
* params[1] = float operand 1
* params[2] = float operand 2
*/
float fA, fB;
REAL fA, fB;
fA = amx_ctof(params[1]);
fB = amx_ctof(params[2]);
@ -226,8 +236,8 @@ static cell AMX_NATIVE_CALL n_floatsqroot(AMX *amx,cell *params)
* params[0] = number of bytes
* params[1] = float operand
*/
float fA = amx_ctof(params[1]);
fA = (float)sqrt(fA);
REAL fA = amx_ctof(params[1]);
fA = (REAL)sqrt(fA);
if (fA < 0)
return amx_RaiseError(amx, AMX_ERR_DOMAIN);
return amx_ftoc(fA);
@ -244,9 +254,9 @@ static cell AMX_NATIVE_CALL n_floatpower(AMX *amx,cell *params)
* params[1] = float operand 1 (base)
* params[2] = float operand 2 (exponent)
*/
float fA = amx_ctof(params[1]);
float fB = amx_ctof(params[2]);
fA = (float)pow(fA, fB);
REAL fA = amx_ctof(params[1]);
REAL fB = amx_ctof(params[2]);
fA = (REAL)pow(fA, fB);
return amx_ftoc(fA);
}
@ -261,25 +271,25 @@ static cell AMX_NATIVE_CALL n_floatlog(AMX *amx,cell *params)
* params[1] = float operand 1 (value)
* params[2] = float operand 2 (base)
*/
float fValue = amx_ctof(params[1]);
float fBase = amx_ctof(params[2]);
REAL fValue = amx_ctof(params[1]);
REAL fBase = amx_ctof(params[2]);
if (fValue <= 0.0 || fBase <= 0)
return amx_RaiseError(amx, AMX_ERR_DOMAIN);
if (fBase == 10.0) // ??? epsilon
fValue = (float)log10(fValue);
fValue = (REAL)log10(fValue);
else
fValue = (float)(log(fValue) / log(fBase));
fValue = (REAL)(log(fValue) / log(fBase));
return amx_ftoc(fValue);
}
static float ToRadians(float angle, int radix)
static REAL ToRadians(REAL angle, int radix)
{
switch (radix)
{
case 1: /* degrees, sexagesimal system (technically: degrees/minutes/seconds) */
return (float)(angle * PI / 180.0);
return (REAL)(angle * PI / 180.0);
case 2: /* grades, centesimal system */
return (float)(angle * PI / 200.0);
return (REAL)(angle * PI / 200.0);
default: /* assume already radian */
return angle;
} /* switch */
@ -296,9 +306,9 @@ static cell AMX_NATIVE_CALL n_floatsin(AMX *amx,cell *params)
* params[1] = float operand 1 (angle)
* params[2] = float operand 2 (radix)
*/
float fA = amx_ctof(params[1]);
REAL fA = amx_ctof(params[1]);
fA = ToRadians(fA, params[2]);
fA = sinf(fA); // PM: using the float version of sin
fA = sin(fA);
return amx_ftoc(fA);
}
@ -313,9 +323,9 @@ static cell AMX_NATIVE_CALL n_floatcos(AMX *amx,cell *params)
* params[1] = float operand 1 (angle)
* params[2] = float operand 2 (radix)
*/
float fA = amx_ctof(params[1]);
REAL fA = amx_ctof(params[1]);
fA = ToRadians(fA, params[2]);
fA = cosf(fA); // PM: using the float version of cos
fA = cos(fA);
return amx_ftoc(fA);
}
@ -330,9 +340,9 @@ static cell AMX_NATIVE_CALL n_floattan(AMX *amx,cell *params)
* params[1] = float operand 1 (angle)
* params[2] = float operand 2 (radix)
*/
float fA = amx_ctof(params[1]);
REAL fA = amx_ctof(params[1]);
fA = ToRadians(fA, params[2]);
fA = tanf(fA); // PM: using the float version of tan
fA = tan(fA);
return amx_ftoc(fA);
}
@ -342,7 +352,7 @@ static cell AMX_NATIVE_CALL n_floattan(AMX *amx,cell *params)
/******************************************************************/
static cell AMX_NATIVE_CALL n_floatabs(AMX *amx,cell *params)
{
float fA = amx_ctof(params[1]);
REAL fA = amx_ctof(params[1]);
fA = (fA >= 0) ? fA : -fA;
return amx_ftoc(fA);
}