#include "sdk/amxxmodule.h" #include "offsets.h" #include "ham_utils.h" #include "hooklist.h" #include "CVector.h" #include "forward.h" #include "hook.h" extern CVector hooks[HAM_LAST_ENTRY_DONT_USE_ME_LOL]; void FailPlugin(AMX *amx, int id, int err, const char *reason); extern bool gDoForwards; inline void *GetFunction(void *pthis, int id, bool &istramp) { istramp=false; void *func=GetVTableEntry(pthis, hooklist[id].vtid, Offsets.GetBase()); // Check to see if it's a trampoline CVector::iterator end=hooks[id].end(); for (CVector::iterator i=hooks[id].begin(); i!=end; ++i) { if (func==(*i)->tramp) { istramp=true; return func; } } return func; } inline void *_GetFunction(void *pthis, int id) { void **vtbl=GetVTable(pthis, Offsets.GetBase()); int **ivtbl=(int **)vtbl; void *func=ivtbl[hooklist[id].vtid]; // Iterate through the hooks for the id, see if the function is found CVector::iterator end=hooks[id].end(); for (CVector::iterator i=hooks[id].begin(); i!=end; ++i) { // If the function points to a trampoline, then return the original // function. if (func==(*i)->tramp) { printf("Func=0x%08X\n",reinterpret_cast((*i)->func)); return (*i)->func; } } // this is an original function printf("Func=0x%08X\n",reinterpret_cast(func)); return func; } #define SETUP(NUMARGS) \ if (((NUMARGS + 2) * sizeof(cell)) > (unsigned)params[0]) \ { \ MF_LogError(amx, AMX_ERR_NATIVE, "Bad arg count. Expected %d, got %d.", NUMARGS + 2, params[0] / sizeof(cell)); \ return 0; \ } \ int func=params[1]; \ int id=params[2]; \ CHECK_FUNCTION(func); \ CHECK_ENTITY(id); \ void *pv=IndexToPrivate(id); \ bool istramp; \ void *__func=GetFunction(pv, func, istramp); \ if (!istramp && !gDoForwards) \ { \ gDoForwards=true; \ } cell Call_Void_Void(AMX *amx, cell *params) { SETUP(0); #ifdef _WIN32 reinterpret_cast(__func)(pv, 0); #elif defined __linux__ reinterpret_cast(__func)(pv); #endif return 1; } cell Call_Int_Void(AMX *amx, cell *params) { SETUP(0); #ifdef _WIN32 return reinterpret_cast(__func)(pv, 0); #elif defined __linux__ return reinterpret_cast(__func)(pv); #endif } cell Call_Void_Entvar(AMX *amx, cell *params) { SETUP(1); int id3=*MF_GetAmxAddr(amx, params[3]); CHECK_ENTITY(id3); entvars_t *ev1=&(INDEXENT_NEW(id3)->v); #ifdef _WIN32 reinterpret_cast(__func)(pv, 0, ev1); #elif defined __linux__ reinterpret_cast(__func)(pv, ev1); #endif return 1; } cell Call_Void_Cbase(AMX *amx, cell *params) { SETUP(1); int id3=*MF_GetAmxAddr(amx, params[3]); CHECK_ENTITY(id3); void *pv1=(INDEXENT_NEW(id3)->pvPrivateData); #ifdef _WIN32 reinterpret_cast(__func)(pv, 0, pv1); #elif defined __linux__ reinterpret_cast(__func)(pv, pv1); #endif return 1; } cell Call_Int_Float_Int(AMX *amx, cell *params) { SETUP(2); float f3=amx_ftoc2(*MF_GetAmxAddr(amx, params[3])); int i4=*MF_GetAmxAddr(amx, params[4]); #ifdef _WIN32 return reinterpret_cast(__func)(pv, 0, f3, i4); #elif defined __linux__ return reinterpret_cast(__func)(pv, f3, i4); #endif } cell Call_Void_Entvar_Int(AMX *amx, cell *params) { SETUP(2); int id3=*MF_GetAmxAddr(amx, params[3]); int i4=*MF_GetAmxAddr(amx, params[4]); CHECK_ENTITY(id3); entvars_t *ev3=&(INDEXENT_NEW(id3)->v); #ifdef _WIN32 reinterpret_cast(__func)(pv, 0, ev3, i4); #elif defined __linux__ reinterpret_cast(__func)(pv, ev3, i4); #endif return 1; } cell Call_Int_Cbase(AMX *amx, cell *params) { SETUP(1); int id3=*MF_GetAmxAddr(amx, params[3]); CHECK_ENTITY(id3); void *pv1=(INDEXENT_NEW(id3)->pvPrivateData); #ifdef _WIN32 return reinterpret_cast(__func)(pv, 0, pv1); #elif defined __linux__ return reinterpret_cast(__func)(pv, pv1); #endif } cell Call_Void_Int_Int(AMX *amx, cell *params) { SETUP(2); int i3=*MF_GetAmxAddr(amx, params[3]); int i4=*MF_GetAmxAddr(amx, params[4]); #ifdef _WIN32 reinterpret_cast(__func)(pv, 0, i3, i4); #elif defined __linux__ reinterpret_cast(__func)(pv, i3, i4); #endif return 1; } cell Call_Int_Int_Str_Int(AMX *amx, cell *params) { SETUP(3); int i3=*MF_GetAmxAddr(amx, params[3]); char *sz4=MF_GetAmxString(amx, params[4], 0, NULL); int i5=*MF_GetAmxAddr(amx, params[5]); #ifdef _WIN32 return reinterpret_cast(__func)(pv, 0, i3, sz4, i5); #elif defined __linux__ return reinterpret_cast(__func)(pv, i3, sz4, i5); #endif } cell Call_Int_Int(AMX *amx, cell *params) { SETUP(1); int i3=*MF_GetAmxAddr(amx, params[3]); #ifdef _WIN32 return reinterpret_cast(__func)(pv, 0, i3); #elif defined __linux__ return reinterpret_cast(__func)(pv, i3); #endif } cell Call_Int_Entvar(AMX *amx, cell *params) { SETUP(1); int id3=*MF_GetAmxAddr(amx, params[3]); CHECK_ENTITY(id3); entvars_t *ev3=&(INDEXENT_NEW(id3)->v); #ifdef _WIN32 return reinterpret_cast(__func)(pv, 0, ev3); #elif defined __linux__ return reinterpret_cast(__func)(pv, ev3); #endif } cell Call_Int_Entvar_Entvar_Float_Int(AMX *amx, cell *params) { SETUP(4); int id3=*MF_GetAmxAddr(amx, params[3]); int id4=*MF_GetAmxAddr(amx, params[4]); float f5=amx_ctof2(*MF_GetAmxAddr(amx, params[5])); int i6=*MF_GetAmxAddr(amx, params[6]); CHECK_ENTITY(id3); CHECK_ENTITY(id4); entvars_t *ev3=&(INDEXENT_NEW(id3)->v); entvars_t *ev4=&(INDEXENT_NEW(id4)->v); #ifdef _WIN32 return reinterpret_cast(__func)(pv, 0, ev3, ev4, f5, i6); #elif defined __linux__ return reinterpret_cast(__func)(pv, ev3, ev4, f5, i6); #endif } cell Call_Void_Int(AMX *amx, cell *params) { SETUP(1); int i3=*MF_GetAmxAddr(amx, params[3]); #ifdef _WIN32 reinterpret_cast(__func)(pv, 0, i3); #elif defined __linux__ reinterpret_cast(__func)(pv, i3); #endif return 1; } cell Call_Void_Cbase_Cbase_Int_Float(AMX *amx, cell *params) { SETUP(4); int id3=*MF_GetAmxAddr(amx, params[3]); int id4=*MF_GetAmxAddr(amx, params[4]); int i5=*MF_GetAmxAddr(amx, params[5]); float f6=amx_ctof(*MF_GetAmxAddr(amx, params[6])); CHECK_ENTITY(id3); CHECK_ENTITY(id4); void *p3=IndexToPrivate(id3); void *p4=IndexToPrivate(id4); #ifdef _WIN32 reinterpret_cast(__func)(pv, 0, p3, p4, i5, f6); #elif defined __linux__ reinterpret_cast(__func)(pv, p3, p4, i5, f6); #endif return 1; } cell Call_Void_Entvar_Float_Vector_Trace_Int(AMX *amx, cell *params) { SETUP(5); int id3=*MF_GetAmxAddr(amx, params[3]); float f4=amx_ctof2(*MF_GetAmxAddr(amx, params[4])); Vector v5; TraceResult *tr6=reinterpret_cast(*MF_GetAmxAddr(amx, params[6])); int i7=*MF_GetAmxAddr(amx, params[7]); float *fl5=(float *)MF_GetAmxAddr(amx, params[5]); v5.x=fl5[0]; v5.y=fl5[1]; v5.z=fl5[2]; if (tr6==NULL) { MF_LogError(amx, AMX_ERR_NATIVE, "Null traceresult provided."); return 0; } CHECK_ENTITY(id3); entvars_t *ev3=&(INDEXENT_NEW(id3)->v); #ifdef _WIN32 reinterpret_cast(__func)(pv, 0, ev3, f4, v5, tr6, i7); #elif defined __linux__ reinterpret_cast(__func)(pv, ev3, f4, v5, tr6, i7); #endif return 1; } cell Call_Void_Float_Vector_Trace_Int(AMX *amx, cell *params) { SETUP(4); float f3=amx_ctof2(*MF_GetAmxAddr(amx, params[3])); Vector v4; TraceResult *tr5=reinterpret_cast(*MF_GetAmxAddr(amx, params[5])); int i6=*MF_GetAmxAddr(amx, params[6]); float *fl4=(float *)MF_GetAmxAddr(amx, params[4]); v4.x=fl4[0]; v4.y=fl4[1]; v4.z=fl4[2]; if (tr5==NULL) { MF_LogError(amx, AMX_ERR_NATIVE, "Null traceresult provided."); return 0; } #ifdef _WIN32 reinterpret_cast(__func)(pv, 0, f3, v4, tr5, i6); #elif defined __linux__ reinterpret_cast(__func)(pv, f3, v4, tr5, i6); #endif return 1; } cell Call_Str_Void(AMX *amx, cell *params) { SETUP(2); #ifdef _WIN32 char *v=reinterpret_cast(__func)(pv, 0); #elif defined __linux__ char *v=reinterpret_cast(__func)(pv); #endif return MF_SetAmxString(amx, params[3], v == NULL ? "" : v, *MF_GetAmxAddr(amx, params[4])); } cell Call_Cbase_Void(AMX *amx, cell *params) { SETUP(0); #ifdef _WIN32 void *ret=reinterpret_cast(__func)(pv, 0); #elif defined __linux__ void *ret=reinterpret_cast(__func)(pv); #endif return PrivateToIndex(ret); } cell Call_Vector_Void(AMX *amx, cell *params) { SETUP(1); #ifdef _WIN32 Vector ret=reinterpret_cast(__func)(pv, 0); #elif defined __linux__ Vector ret=reinterpret_cast(__func)(pv); #endif float *out=(float *)MF_GetAmxAddr(amx, params[3]); out[0]=ret.x; out[1]=ret.y; out[2]=ret.z; return 1; } cell Call_Vector_pVector(AMX *amx, cell *params) { SETUP(2); Vector v3; float *fl3=(float *)MF_GetAmxAddr(amx, params[3]); v3.x=fl3[0]; v3.y=fl3[1]; v3.z=fl3[2]; #ifdef _WIN32 Vector ret=reinterpret_cast(__func)(pv, 0, &v3); #elif defined __linux__ Vector ret=reinterpret_cast(__func)(pv, &v3); #endif float *out=(float *)MF_GetAmxAddr(amx, params[4]); out[0]=ret.x; out[1]=ret.y; out[2]=ret.z; fl3[0]=v3.x; fl3[1]=v3.y; fl3[2]=v3.z; return 1; } cell Call_Int_pVector(AMX *amx, cell *params) { SETUP(1); Vector v3; float *fl3=(float *)MF_GetAmxAddr(amx, params[3]); v3.x=fl3[0]; v3.y=fl3[1]; v3.z=fl3[2]; #ifdef _WIN32 int ret=reinterpret_cast(__func)(pv, 0, &v3); #elif defined __linux__ int ret=reinterpret_cast(__func)(pv, &v3); #endif fl3[0]=v3.x; fl3[1]=v3.y; fl3[2]=v3.z; return ret; } cell Call_Void_Entvar_Float_Float(AMX *amx, cell *params) { SETUP(3); int id3=*MF_GetAmxAddr(amx, params[3]); float f4=amx_ctof2(*MF_GetAmxAddr(amx, params[4])); float f5=amx_ctof2(*MF_GetAmxAddr(amx, params[5])); CHECK_ENTITY(id3); entvars_t *ev3=&(INDEXENT_NEW(id3)->v); #ifdef _WIN32 reinterpret_cast(__func)(pv, 0, ev3, f4, f5); #elif defined __linux__ reinterpret_cast(__func)(pv, ev3, f4, f5); #endif return 1; } cell Call_Int_pFloat_pFloat(AMX *amx, cell *params) { SETUP(2); float f3=amx_ctof2(*MF_GetAmxAddr(amx, params[3])); float f4=amx_ctof2(*MF_GetAmxAddr(amx, params[4])); #ifdef _WIN32 return reinterpret_cast(__func)(pv, 0, &f3, &f4); #elif defined __linux__ return reinterpret_cast(__func)(pv, &f3, &f4); #endif } cell Call_Void_Entvar_Float(AMX *amx, cell *params) { SETUP(2); int id3=*MF_GetAmxAddr(amx, params[3]); float f4=amx_ctof2(*MF_GetAmxAddr(amx, params[4])); CHECK_ENTITY(id3); entvars_t *ev3=&(INDEXENT_NEW(id3)->v); #ifdef _WIN32 return reinterpret_cast(__func)(pv, 0, ev3, f4); #elif defined __linux__ return reinterpret_cast(__func)(pv, ev3, f4); #endif } cell Call_Void_Int_Int_Int(AMX *amx, cell *params) { SETUP(2); int i3=*MF_GetAmxAddr(amx, params[3]); int i4=*MF_GetAmxAddr(amx, params[4]); int i5=*MF_GetAmxAddr(amx, params[5]); #ifdef _WIN32 reinterpret_cast(__func)(pv, 0, i3, i4, i5); #elif defined __linux__ reinterpret_cast(__func)(pv, i3, i4, i5); #endif return 1; } cell Call_Void_ItemInfo(AMX *amx, cell *params) { SETUP(1); void *ptr=reinterpret_cast(*MF_GetAmxAddr(amx, params[3])); if (ptr==0) { MF_LogError(amx, AMX_ERR_NATIVE, "Null ItemInfo handle!"); return 0; } #ifdef _WIN32 reinterpret_cast(__func)(pv, 0, ptr); #elif defined __linux__ reinterpret_cast(__func)(pv, ptr); #endif return 1; }