mirror of
https://github.com/alliedmodders/amxmodx.git
synced 2025-01-15 08:18:05 +03:00
d4de0e6f1e
I was über lazy at first, so took libs from SM. But actually it's quite easy to compile, so let's update to latest version \o/.
470 lines
19 KiB
C
470 lines
19 KiB
C
/*
|
|
* Stack-less Just-In-Time compiler
|
|
*
|
|
* Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are
|
|
* permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
* of conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
|
|
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
|
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* mips 64-bit arch dependent functions. */
|
|
|
|
static sljit_si load_immediate(struct sljit_compiler *compiler, sljit_si dst_ar, sljit_sw imm)
|
|
{
|
|
sljit_si shift = 32;
|
|
sljit_si shift2;
|
|
sljit_si inv = 0;
|
|
sljit_ins ins;
|
|
sljit_uw uimm;
|
|
|
|
if (!(imm & ~0xffff))
|
|
return push_inst(compiler, ORI | SA(0) | TA(dst_ar) | IMM(imm), dst_ar);
|
|
|
|
if (imm < 0 && imm >= SIMM_MIN)
|
|
return push_inst(compiler, ADDIU | SA(0) | TA(dst_ar) | IMM(imm), dst_ar);
|
|
|
|
if (imm <= 0x7fffffffl && imm >= -0x80000000l) {
|
|
FAIL_IF(push_inst(compiler, LUI | TA(dst_ar) | IMM(imm >> 16), dst_ar));
|
|
return (imm & 0xffff) ? push_inst(compiler, ORI | SA(dst_ar) | TA(dst_ar) | IMM(imm), dst_ar) : SLJIT_SUCCESS;
|
|
}
|
|
|
|
/* Zero extended number. */
|
|
uimm = imm;
|
|
if (imm < 0) {
|
|
uimm = ~imm;
|
|
inv = 1;
|
|
}
|
|
|
|
while (!(uimm & 0xff00000000000000l)) {
|
|
shift -= 8;
|
|
uimm <<= 8;
|
|
}
|
|
|
|
if (!(uimm & 0xf000000000000000l)) {
|
|
shift -= 4;
|
|
uimm <<= 4;
|
|
}
|
|
|
|
if (!(uimm & 0xc000000000000000l)) {
|
|
shift -= 2;
|
|
uimm <<= 2;
|
|
}
|
|
|
|
if ((sljit_sw)uimm < 0) {
|
|
uimm >>= 1;
|
|
shift += 1;
|
|
}
|
|
SLJIT_ASSERT(((uimm & 0xc000000000000000l) == 0x4000000000000000l) && (shift > 0) && (shift <= 32));
|
|
|
|
if (inv)
|
|
uimm = ~uimm;
|
|
|
|
FAIL_IF(push_inst(compiler, LUI | TA(dst_ar) | IMM(uimm >> 48), dst_ar));
|
|
if (uimm & 0x0000ffff00000000l)
|
|
FAIL_IF(push_inst(compiler, ORI | SA(dst_ar) | TA(dst_ar) | IMM(uimm >> 32), dst_ar));
|
|
|
|
imm &= (1l << shift) - 1;
|
|
if (!(imm & ~0xffff)) {
|
|
ins = (shift == 32) ? DSLL32 : DSLL;
|
|
if (shift < 32)
|
|
ins |= SH_IMM(shift);
|
|
FAIL_IF(push_inst(compiler, ins | TA(dst_ar) | DA(dst_ar), dst_ar));
|
|
return !(imm & 0xffff) ? SLJIT_SUCCESS : push_inst(compiler, ORI | SA(dst_ar) | TA(dst_ar) | IMM(imm), dst_ar);
|
|
}
|
|
|
|
/* Double shifts needs to be performed. */
|
|
uimm <<= 32;
|
|
shift2 = shift - 16;
|
|
|
|
while (!(uimm & 0xf000000000000000l)) {
|
|
shift2 -= 4;
|
|
uimm <<= 4;
|
|
}
|
|
|
|
if (!(uimm & 0xc000000000000000l)) {
|
|
shift2 -= 2;
|
|
uimm <<= 2;
|
|
}
|
|
|
|
if (!(uimm & 0x8000000000000000l)) {
|
|
shift2--;
|
|
uimm <<= 1;
|
|
}
|
|
|
|
SLJIT_ASSERT((uimm & 0x8000000000000000l) && (shift2 > 0) && (shift2 <= 16));
|
|
|
|
FAIL_IF(push_inst(compiler, DSLL | TA(dst_ar) | DA(dst_ar) | SH_IMM(shift - shift2), dst_ar));
|
|
FAIL_IF(push_inst(compiler, ORI | SA(dst_ar) | TA(dst_ar) | IMM(uimm >> 48), dst_ar));
|
|
FAIL_IF(push_inst(compiler, DSLL | TA(dst_ar) | DA(dst_ar) | SH_IMM(shift2), dst_ar));
|
|
|
|
imm &= (1l << shift2) - 1;
|
|
return !(imm & 0xffff) ? SLJIT_SUCCESS : push_inst(compiler, ORI | SA(dst_ar) | TA(dst_ar) | IMM(imm), dst_ar);
|
|
}
|
|
|
|
#define SELECT_OP(a, b) \
|
|
(!(op & SLJIT_INT_OP) ? a : b)
|
|
|
|
#define EMIT_LOGICAL(op_imm, op_norm) \
|
|
if (flags & SRC2_IMM) { \
|
|
if (op & SLJIT_SET_E) \
|
|
FAIL_IF(push_inst(compiler, op_imm | S(src1) | TA(EQUAL_FLAG) | IMM(src2), EQUAL_FLAG)); \
|
|
if (CHECK_FLAGS(SLJIT_SET_E)) \
|
|
FAIL_IF(push_inst(compiler, op_imm | S(src1) | T(dst) | IMM(src2), DR(dst))); \
|
|
} \
|
|
else { \
|
|
if (op & SLJIT_SET_E) \
|
|
FAIL_IF(push_inst(compiler, op_norm | S(src1) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG)); \
|
|
if (CHECK_FLAGS(SLJIT_SET_E)) \
|
|
FAIL_IF(push_inst(compiler, op_norm | S(src1) | T(src2) | D(dst), DR(dst))); \
|
|
}
|
|
|
|
#define EMIT_SHIFT(op_dimm, op_dimm32, op_imm, op_dv, op_v) \
|
|
if (flags & SRC2_IMM) { \
|
|
if (src2 >= 32) { \
|
|
SLJIT_ASSERT(!(op & SLJIT_INT_OP)); \
|
|
ins = op_dimm32; \
|
|
src2 -= 32; \
|
|
} \
|
|
else \
|
|
ins = (op & SLJIT_INT_OP) ? op_imm : op_dimm; \
|
|
if (op & SLJIT_SET_E) \
|
|
FAIL_IF(push_inst(compiler, ins | T(src1) | DA(EQUAL_FLAG) | SH_IMM(src2), EQUAL_FLAG)); \
|
|
if (CHECK_FLAGS(SLJIT_SET_E)) \
|
|
FAIL_IF(push_inst(compiler, ins | T(src1) | D(dst) | SH_IMM(src2), DR(dst))); \
|
|
} \
|
|
else { \
|
|
ins = (op & SLJIT_INT_OP) ? op_v : op_dv; \
|
|
if (op & SLJIT_SET_E) \
|
|
FAIL_IF(push_inst(compiler, ins | S(src2) | T(src1) | DA(EQUAL_FLAG), EQUAL_FLAG)); \
|
|
if (CHECK_FLAGS(SLJIT_SET_E)) \
|
|
FAIL_IF(push_inst(compiler, ins | S(src2) | T(src1) | D(dst), DR(dst))); \
|
|
}
|
|
|
|
static SLJIT_INLINE sljit_si emit_single_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags,
|
|
sljit_si dst, sljit_si src1, sljit_sw src2)
|
|
{
|
|
sljit_ins ins;
|
|
|
|
switch (GET_OPCODE(op)) {
|
|
case SLJIT_MOV:
|
|
case SLJIT_MOV_P:
|
|
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
|
|
if (dst != src2)
|
|
return push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(src2) | TA(0) | D(dst), DR(dst));
|
|
return SLJIT_SUCCESS;
|
|
|
|
case SLJIT_MOV_UB:
|
|
case SLJIT_MOV_SB:
|
|
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
|
|
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
|
|
if (op == SLJIT_MOV_SB) {
|
|
FAIL_IF(push_inst(compiler, DSLL32 | T(src2) | D(dst) | SH_IMM(24), DR(dst)));
|
|
return push_inst(compiler, DSRA32 | T(dst) | D(dst) | SH_IMM(24), DR(dst));
|
|
}
|
|
return push_inst(compiler, ANDI | S(src2) | T(dst) | IMM(0xff), DR(dst));
|
|
}
|
|
else if (dst != src2)
|
|
SLJIT_ASSERT_STOP();
|
|
return SLJIT_SUCCESS;
|
|
|
|
case SLJIT_MOV_UH:
|
|
case SLJIT_MOV_SH:
|
|
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
|
|
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
|
|
if (op == SLJIT_MOV_SH) {
|
|
FAIL_IF(push_inst(compiler, DSLL32 | T(src2) | D(dst) | SH_IMM(16), DR(dst)));
|
|
return push_inst(compiler, DSRA32 | T(dst) | D(dst) | SH_IMM(16), DR(dst));
|
|
}
|
|
return push_inst(compiler, ANDI | S(src2) | T(dst) | IMM(0xffff), DR(dst));
|
|
}
|
|
else if (dst != src2)
|
|
SLJIT_ASSERT_STOP();
|
|
return SLJIT_SUCCESS;
|
|
|
|
case SLJIT_MOV_UI:
|
|
SLJIT_ASSERT(!(op & SLJIT_INT_OP));
|
|
FAIL_IF(push_inst(compiler, DSLL32 | T(src2) | D(dst) | SH_IMM(0), DR(dst)));
|
|
return push_inst(compiler, DSRL32 | T(dst) | D(dst) | SH_IMM(0), DR(dst));
|
|
|
|
case SLJIT_MOV_SI:
|
|
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
|
|
return push_inst(compiler, SLL | T(src2) | D(dst) | SH_IMM(0), DR(dst));
|
|
|
|
case SLJIT_NOT:
|
|
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
|
|
if (op & SLJIT_SET_E)
|
|
FAIL_IF(push_inst(compiler, NOR | S(src2) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG));
|
|
if (CHECK_FLAGS(SLJIT_SET_E))
|
|
FAIL_IF(push_inst(compiler, NOR | S(src2) | T(src2) | D(dst), DR(dst)));
|
|
return SLJIT_SUCCESS;
|
|
|
|
case SLJIT_CLZ:
|
|
SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
|
|
#if (defined SLJIT_MIPS_32_64 && SLJIT_MIPS_32_64)
|
|
if (op & SLJIT_SET_E)
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DCLZ, CLZ) | S(src2) | TA(EQUAL_FLAG) | DA(EQUAL_FLAG), EQUAL_FLAG));
|
|
if (CHECK_FLAGS(SLJIT_SET_E))
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DCLZ, CLZ) | S(src2) | T(dst) | D(dst), DR(dst)));
|
|
#else
|
|
if (SLJIT_UNLIKELY(flags & UNUSED_DEST)) {
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DSRL32, SRL) | T(src2) | DA(EQUAL_FLAG) | SH_IMM(31), EQUAL_FLAG));
|
|
return push_inst(compiler, XORI | SA(EQUAL_FLAG) | TA(EQUAL_FLAG) | IMM(1), EQUAL_FLAG);
|
|
}
|
|
/* Nearly all instructions are unmovable in the following sequence. */
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(src2) | TA(0) | D(TMP_REG1), DR(TMP_REG1)));
|
|
/* Check zero. */
|
|
FAIL_IF(push_inst(compiler, BEQ | S(TMP_REG1) | TA(0) | IMM(5), UNMOVABLE_INS));
|
|
FAIL_IF(push_inst(compiler, ORI | SA(0) | T(dst) | IMM((op & SLJIT_INT_OP) ? 32 : 64), UNMOVABLE_INS));
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | SA(0) | T(dst) | IMM(-1), DR(dst)));
|
|
/* Loop for searching the highest bit. */
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(dst) | T(dst) | IMM(1), DR(dst)));
|
|
FAIL_IF(push_inst(compiler, BGEZ | S(TMP_REG1) | IMM(-2), UNMOVABLE_INS));
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DSLL, SLL) | T(TMP_REG1) | D(TMP_REG1) | SH_IMM(1), UNMOVABLE_INS));
|
|
if (op & SLJIT_SET_E)
|
|
return push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(dst) | TA(0) | DA(EQUAL_FLAG), EQUAL_FLAG);
|
|
#endif
|
|
return SLJIT_SUCCESS;
|
|
|
|
case SLJIT_ADD:
|
|
if (flags & SRC2_IMM) {
|
|
if (op & SLJIT_SET_O) {
|
|
if (src2 >= 0)
|
|
FAIL_IF(push_inst(compiler, OR | S(src1) | T(src1) | DA(TMP_EREG1), TMP_EREG1));
|
|
else
|
|
FAIL_IF(push_inst(compiler, NOR | S(src1) | T(src1) | DA(TMP_EREG1), TMP_EREG1));
|
|
}
|
|
if (op & SLJIT_SET_E)
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(src1) | TA(EQUAL_FLAG) | IMM(src2), EQUAL_FLAG));
|
|
if (op & (SLJIT_SET_C | SLJIT_SET_O)) {
|
|
if (src2 >= 0)
|
|
FAIL_IF(push_inst(compiler, ORI | S(src1) | TA(ULESS_FLAG) | IMM(src2), ULESS_FLAG));
|
|
else {
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | SA(0) | TA(ULESS_FLAG) | IMM(src2), ULESS_FLAG));
|
|
FAIL_IF(push_inst(compiler, OR | S(src1) | TA(ULESS_FLAG) | DA(ULESS_FLAG), ULESS_FLAG));
|
|
}
|
|
}
|
|
/* dst may be the same as src1 or src2. */
|
|
if (CHECK_FLAGS(SLJIT_SET_E))
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(src1) | T(dst) | IMM(src2), DR(dst)));
|
|
}
|
|
else {
|
|
if (op & SLJIT_SET_O)
|
|
FAIL_IF(push_inst(compiler, XOR | S(src1) | T(src2) | DA(TMP_EREG1), TMP_EREG1));
|
|
if (op & SLJIT_SET_E)
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(src1) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG));
|
|
if (op & (SLJIT_SET_C | SLJIT_SET_O))
|
|
FAIL_IF(push_inst(compiler, OR | S(src1) | T(src2) | DA(ULESS_FLAG), ULESS_FLAG));
|
|
/* dst may be the same as src1 or src2. */
|
|
if (CHECK_FLAGS(SLJIT_SET_E))
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(src1) | T(src2) | D(dst), DR(dst)));
|
|
}
|
|
|
|
/* a + b >= a | b (otherwise, the carry should be set to 1). */
|
|
if (op & (SLJIT_SET_C | SLJIT_SET_O))
|
|
FAIL_IF(push_inst(compiler, SLTU | S(dst) | TA(ULESS_FLAG) | DA(ULESS_FLAG), ULESS_FLAG));
|
|
if (!(op & SLJIT_SET_O))
|
|
return SLJIT_SUCCESS;
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DSLL32, SLL) | TA(ULESS_FLAG) | DA(OVERFLOW_FLAG) | SH_IMM(31), OVERFLOW_FLAG));
|
|
FAIL_IF(push_inst(compiler, XOR | SA(TMP_EREG1) | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG));
|
|
FAIL_IF(push_inst(compiler, XOR | S(dst) | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG));
|
|
return push_inst(compiler, SELECT_OP(DSRL32, SLL) | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG) | SH_IMM(31), OVERFLOW_FLAG);
|
|
|
|
case SLJIT_ADDC:
|
|
if (flags & SRC2_IMM) {
|
|
if (op & SLJIT_SET_C) {
|
|
if (src2 >= 0)
|
|
FAIL_IF(push_inst(compiler, ORI | S(src1) | TA(TMP_EREG1) | IMM(src2), TMP_EREG1));
|
|
else {
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | SA(0) | TA(TMP_EREG1) | IMM(src2), TMP_EREG1));
|
|
FAIL_IF(push_inst(compiler, OR | S(src1) | TA(TMP_EREG1) | DA(TMP_EREG1), TMP_EREG1));
|
|
}
|
|
}
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(src1) | T(dst) | IMM(src2), DR(dst)));
|
|
} else {
|
|
if (op & SLJIT_SET_C)
|
|
FAIL_IF(push_inst(compiler, OR | S(src1) | T(src2) | DA(TMP_EREG1), TMP_EREG1));
|
|
/* dst may be the same as src1 or src2. */
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(src1) | T(src2) | D(dst), DR(dst)));
|
|
}
|
|
if (op & SLJIT_SET_C)
|
|
FAIL_IF(push_inst(compiler, SLTU | S(dst) | TA(TMP_EREG1) | DA(TMP_EREG1), TMP_EREG1));
|
|
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DADDU, ADDU) | S(dst) | TA(ULESS_FLAG) | D(dst), DR(dst)));
|
|
if (!(op & SLJIT_SET_C))
|
|
return SLJIT_SUCCESS;
|
|
|
|
/* Set ULESS_FLAG (dst == 0) && (ULESS_FLAG == 1). */
|
|
FAIL_IF(push_inst(compiler, SLTU | S(dst) | TA(ULESS_FLAG) | DA(ULESS_FLAG), ULESS_FLAG));
|
|
/* Set carry flag. */
|
|
return push_inst(compiler, OR | SA(ULESS_FLAG) | TA(TMP_EREG1) | DA(ULESS_FLAG), ULESS_FLAG);
|
|
|
|
case SLJIT_SUB:
|
|
if ((flags & SRC2_IMM) && ((op & (SLJIT_SET_U | SLJIT_SET_S)) || src2 == SIMM_MIN)) {
|
|
FAIL_IF(push_inst(compiler, ADDIU | SA(0) | T(TMP_REG2) | IMM(src2), DR(TMP_REG2)));
|
|
src2 = TMP_REG2;
|
|
flags &= ~SRC2_IMM;
|
|
}
|
|
|
|
if (flags & SRC2_IMM) {
|
|
if (op & SLJIT_SET_O) {
|
|
if (src2 >= 0)
|
|
FAIL_IF(push_inst(compiler, OR | S(src1) | T(src1) | DA(TMP_EREG1), TMP_EREG1));
|
|
else
|
|
FAIL_IF(push_inst(compiler, NOR | S(src1) | T(src1) | DA(TMP_EREG1), TMP_EREG1));
|
|
}
|
|
if (op & SLJIT_SET_E)
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(src1) | TA(EQUAL_FLAG) | IMM(-src2), EQUAL_FLAG));
|
|
if (op & (SLJIT_SET_C | SLJIT_SET_O))
|
|
FAIL_IF(push_inst(compiler, SLTIU | S(src1) | TA(ULESS_FLAG) | IMM(src2), ULESS_FLAG));
|
|
/* dst may be the same as src1 or src2. */
|
|
if (CHECK_FLAGS(SLJIT_SET_E))
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(src1) | T(dst) | IMM(-src2), DR(dst)));
|
|
}
|
|
else {
|
|
if (op & SLJIT_SET_O)
|
|
FAIL_IF(push_inst(compiler, XOR | S(src1) | T(src2) | DA(TMP_EREG1), TMP_EREG1));
|
|
if (op & SLJIT_SET_E)
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DSUBU, SUBU) | S(src1) | T(src2) | DA(EQUAL_FLAG), EQUAL_FLAG));
|
|
if (op & (SLJIT_SET_U | SLJIT_SET_C | SLJIT_SET_O))
|
|
FAIL_IF(push_inst(compiler, SLTU | S(src1) | T(src2) | DA(ULESS_FLAG), ULESS_FLAG));
|
|
if (op & SLJIT_SET_U)
|
|
FAIL_IF(push_inst(compiler, SLTU | S(src2) | T(src1) | DA(UGREATER_FLAG), UGREATER_FLAG));
|
|
if (op & SLJIT_SET_S) {
|
|
FAIL_IF(push_inst(compiler, SLT | S(src1) | T(src2) | DA(LESS_FLAG), LESS_FLAG));
|
|
FAIL_IF(push_inst(compiler, SLT | S(src2) | T(src1) | DA(GREATER_FLAG), GREATER_FLAG));
|
|
}
|
|
/* dst may be the same as src1 or src2. */
|
|
if (CHECK_FLAGS(SLJIT_SET_E | SLJIT_SET_U | SLJIT_SET_S | SLJIT_SET_C))
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DSUBU, SUBU) | S(src1) | T(src2) | D(dst), DR(dst)));
|
|
}
|
|
|
|
if (!(op & SLJIT_SET_O))
|
|
return SLJIT_SUCCESS;
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DSLL32, SLL) | TA(ULESS_FLAG) | DA(OVERFLOW_FLAG) | SH_IMM(31), OVERFLOW_FLAG));
|
|
FAIL_IF(push_inst(compiler, XOR | SA(TMP_EREG1) | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG));
|
|
FAIL_IF(push_inst(compiler, XOR | S(dst) | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG));
|
|
return push_inst(compiler, SELECT_OP(DSRL32, SRL) | TA(OVERFLOW_FLAG) | DA(OVERFLOW_FLAG) | SH_IMM(31), OVERFLOW_FLAG);
|
|
|
|
case SLJIT_SUBC:
|
|
if ((flags & SRC2_IMM) && src2 == SIMM_MIN) {
|
|
FAIL_IF(push_inst(compiler, ADDIU | SA(0) | T(TMP_REG2) | IMM(src2), DR(TMP_REG2)));
|
|
src2 = TMP_REG2;
|
|
flags &= ~SRC2_IMM;
|
|
}
|
|
|
|
if (flags & SRC2_IMM) {
|
|
if (op & SLJIT_SET_C)
|
|
FAIL_IF(push_inst(compiler, SLTIU | S(src1) | TA(TMP_EREG1) | IMM(src2), TMP_EREG1));
|
|
/* dst may be the same as src1 or src2. */
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DADDIU, ADDIU) | S(src1) | T(dst) | IMM(-src2), DR(dst)));
|
|
}
|
|
else {
|
|
if (op & SLJIT_SET_C)
|
|
FAIL_IF(push_inst(compiler, SLTU | S(src1) | T(src2) | DA(TMP_EREG1), TMP_EREG1));
|
|
/* dst may be the same as src1 or src2. */
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DSUBU, SUBU) | S(src1) | T(src2) | D(dst), DR(dst)));
|
|
}
|
|
|
|
if (op & SLJIT_SET_C)
|
|
FAIL_IF(push_inst(compiler, SLTU | S(dst) | TA(ULESS_FLAG) | DA(TMP_EREG2), TMP_EREG2));
|
|
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DSUBU, SUBU) | S(dst) | TA(ULESS_FLAG) | D(dst), DR(dst)));
|
|
return (op & SLJIT_SET_C) ? push_inst(compiler, OR | SA(TMP_EREG1) | TA(TMP_EREG2) | DA(ULESS_FLAG), ULESS_FLAG) : SLJIT_SUCCESS;
|
|
|
|
case SLJIT_MUL:
|
|
SLJIT_ASSERT(!(flags & SRC2_IMM));
|
|
if (!(op & SLJIT_SET_O)) {
|
|
#if (defined SLJIT_MIPS_32_64 && SLJIT_MIPS_32_64)
|
|
if (op & SLJIT_INT_OP)
|
|
return push_inst(compiler, MUL | S(src1) | T(src2) | D(dst), DR(dst));
|
|
FAIL_IF(push_inst(compiler, DMULT | S(src1) | T(src2), MOVABLE_INS));
|
|
return push_inst(compiler, MFLO | D(dst), DR(dst));
|
|
#else
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DMULT, MULT) | S(src1) | T(src2), MOVABLE_INS));
|
|
return push_inst(compiler, MFLO | D(dst), DR(dst));
|
|
#endif
|
|
}
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DMULT, MULT) | S(src1) | T(src2), MOVABLE_INS));
|
|
FAIL_IF(push_inst(compiler, MFHI | DA(TMP_EREG1), TMP_EREG1));
|
|
FAIL_IF(push_inst(compiler, MFLO | D(dst), DR(dst)));
|
|
FAIL_IF(push_inst(compiler, SELECT_OP(DSRA32, SRA) | T(dst) | DA(TMP_EREG2) | SH_IMM(31), TMP_EREG2));
|
|
return push_inst(compiler, SELECT_OP(DSUBU, SUBU) | SA(TMP_EREG1) | TA(TMP_EREG2) | DA(OVERFLOW_FLAG), OVERFLOW_FLAG);
|
|
|
|
case SLJIT_AND:
|
|
EMIT_LOGICAL(ANDI, AND);
|
|
return SLJIT_SUCCESS;
|
|
|
|
case SLJIT_OR:
|
|
EMIT_LOGICAL(ORI, OR);
|
|
return SLJIT_SUCCESS;
|
|
|
|
case SLJIT_XOR:
|
|
EMIT_LOGICAL(XORI, XOR);
|
|
return SLJIT_SUCCESS;
|
|
|
|
case SLJIT_SHL:
|
|
EMIT_SHIFT(DSLL, DSLL32, SLL, DSLLV, SLLV);
|
|
return SLJIT_SUCCESS;
|
|
|
|
case SLJIT_LSHR:
|
|
EMIT_SHIFT(DSRL, DSRL32, SRL, DSRLV, SRLV);
|
|
return SLJIT_SUCCESS;
|
|
|
|
case SLJIT_ASHR:
|
|
EMIT_SHIFT(DSRA, DSRA32, SRA, DSRAV, SRAV);
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
SLJIT_ASSERT_STOP();
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
static SLJIT_INLINE sljit_si emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw init_value)
|
|
{
|
|
FAIL_IF(push_inst(compiler, LUI | T(dst) | IMM(init_value >> 48), DR(dst)));
|
|
FAIL_IF(push_inst(compiler, ORI | S(dst) | T(dst) | IMM(init_value >> 32), DR(dst)));
|
|
FAIL_IF(push_inst(compiler, DSLL | T(dst) | D(dst) | SH_IMM(16), DR(dst)));
|
|
FAIL_IF(push_inst(compiler, ORI | S(dst) | T(dst) | IMM(init_value >> 16), DR(dst)));
|
|
FAIL_IF(push_inst(compiler, DSLL | T(dst) | D(dst) | SH_IMM(16), DR(dst)));
|
|
return push_inst(compiler, ORI | S(dst) | T(dst) | IMM(init_value), DR(dst));
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
|
|
{
|
|
sljit_ins *inst = (sljit_ins*)addr;
|
|
|
|
inst[0] = (inst[0] & 0xffff0000) | ((new_addr >> 48) & 0xffff);
|
|
inst[1] = (inst[1] & 0xffff0000) | ((new_addr >> 32) & 0xffff);
|
|
inst[3] = (inst[3] & 0xffff0000) | ((new_addr >> 16) & 0xffff);
|
|
inst[5] = (inst[5] & 0xffff0000) | (new_addr & 0xffff);
|
|
SLJIT_CACHE_FLUSH(inst, inst + 6);
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
|
|
{
|
|
sljit_ins *inst = (sljit_ins*)addr;
|
|
|
|
inst[0] = (inst[0] & 0xffff0000) | ((new_constant >> 48) & 0xffff);
|
|
inst[1] = (inst[1] & 0xffff0000) | ((new_constant >> 32) & 0xffff);
|
|
inst[3] = (inst[3] & 0xffff0000) | ((new_constant >> 16) & 0xffff);
|
|
inst[5] = (inst[5] & 0xffff0000) | (new_constant & 0xffff);
|
|
SLJIT_CACHE_FLUSH(inst, inst + 6);
|
|
}
|