mirror of
https://github.com/alliedmodders/amxmodx.git
synced 2024-12-26 06:45:37 +03:00
d4de0e6f1e
I was über lazy at first, so took libs from SM. But actually it's quite easy to compile, so let's update to latest version \o/.
9485 lines
304 KiB
C
9485 lines
304 KiB
C
/*************************************************
|
|
* Perl-Compatible Regular Expressions *
|
|
*************************************************/
|
|
|
|
/* PCRE is a library of functions to support regular expressions whose syntax
|
|
and semantics are as close as possible to those of the Perl 5 language.
|
|
|
|
Written by Philip Hazel
|
|
Copyright (c) 1997-2014 University of Cambridge
|
|
|
|
-----------------------------------------------------------------------------
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
* Neither the name of the University of Cambridge nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
-----------------------------------------------------------------------------
|
|
*/
|
|
|
|
|
|
/* This module contains the external function pcre_compile(), along with
|
|
supporting internal functions that are not used by other modules. */
|
|
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#define NLBLOCK cd /* Block containing newline information */
|
|
#define PSSTART start_pattern /* Field containing processed string start */
|
|
#define PSEND end_pattern /* Field containing processed string end */
|
|
|
|
#include "pcre_internal.h"
|
|
|
|
|
|
/* When PCRE_DEBUG is defined, we need the pcre(16|32)_printint() function, which
|
|
is also used by pcretest. PCRE_DEBUG is not defined when building a production
|
|
library. We do not need to select pcre16_printint.c specially, because the
|
|
COMPILE_PCREx macro will already be appropriately set. */
|
|
|
|
#ifdef PCRE_DEBUG
|
|
/* pcre_printint.c should not include any headers */
|
|
#define PCRE_INCLUDED
|
|
#include "pcre_printint.c"
|
|
#undef PCRE_INCLUDED
|
|
#endif
|
|
|
|
|
|
/* Macro for setting individual bits in class bitmaps. */
|
|
|
|
#define SETBIT(a,b) a[(b)/8] |= (1 << ((b)&7))
|
|
|
|
/* Maximum length value to check against when making sure that the integer that
|
|
holds the compiled pattern length does not overflow. We make it a bit less than
|
|
INT_MAX to allow for adding in group terminating bytes, so that we don't have
|
|
to check them every time. */
|
|
|
|
#define OFLOW_MAX (INT_MAX - 20)
|
|
|
|
/* Definitions to allow mutual recursion */
|
|
|
|
static int
|
|
add_list_to_class(pcre_uint8 *, pcre_uchar **, int, compile_data *,
|
|
const pcre_uint32 *, unsigned int);
|
|
|
|
static BOOL
|
|
compile_regex(int, pcre_uchar **, const pcre_uchar **, int *, BOOL, BOOL, int, int,
|
|
pcre_uint32 *, pcre_int32 *, pcre_uint32 *, pcre_int32 *, branch_chain *,
|
|
compile_data *, int *);
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Code parameters and static tables *
|
|
*************************************************/
|
|
|
|
/* This value specifies the size of stack workspace that is used during the
|
|
first pre-compile phase that determines how much memory is required. The regex
|
|
is partly compiled into this space, but the compiled parts are discarded as
|
|
soon as they can be, so that hopefully there will never be an overrun. The code
|
|
does, however, check for an overrun. The largest amount I've seen used is 218,
|
|
so this number is very generous.
|
|
|
|
The same workspace is used during the second, actual compile phase for
|
|
remembering forward references to groups so that they can be filled in at the
|
|
end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE
|
|
is 4 there is plenty of room for most patterns. However, the memory can get
|
|
filled up by repetitions of forward references, for example patterns like
|
|
/(?1){0,1999}(b)/, and one user did hit the limit. The code has been changed so
|
|
that the workspace is expanded using malloc() in this situation. The value
|
|
below is therefore a minimum, and we put a maximum on it for safety. The
|
|
minimum is now also defined in terms of LINK_SIZE so that the use of malloc()
|
|
kicks in at the same number of forward references in all cases. */
|
|
|
|
#define COMPILE_WORK_SIZE (2048*LINK_SIZE)
|
|
#define COMPILE_WORK_SIZE_MAX (100*COMPILE_WORK_SIZE)
|
|
|
|
/* This value determines the size of the initial vector that is used for
|
|
remembering named groups during the pre-compile. It is allocated on the stack,
|
|
but if it is too small, it is expanded using malloc(), in a similar way to the
|
|
workspace. The value is the number of slots in the list. */
|
|
|
|
#define NAMED_GROUP_LIST_SIZE 20
|
|
|
|
/* The overrun tests check for a slightly smaller size so that they detect the
|
|
overrun before it actually does run off the end of the data block. */
|
|
|
|
#define WORK_SIZE_SAFETY_MARGIN (100)
|
|
|
|
/* Private flags added to firstchar and reqchar. */
|
|
|
|
#define REQ_CASELESS (1 << 0) /* Indicates caselessness */
|
|
#define REQ_VARY (1 << 1) /* Reqchar followed non-literal item */
|
|
/* Negative values for the firstchar and reqchar flags */
|
|
#define REQ_UNSET (-2)
|
|
#define REQ_NONE (-1)
|
|
|
|
/* Repeated character flags. */
|
|
|
|
#define UTF_LENGTH 0x10000000l /* The char contains its length. */
|
|
|
|
/* Table for handling escaped characters in the range '0'-'z'. Positive returns
|
|
are simple data values; negative values are for special things like \d and so
|
|
on. Zero means further processing is needed (for things like \x), or the escape
|
|
is invalid. */
|
|
|
|
#ifndef EBCDIC
|
|
|
|
/* This is the "normal" table for ASCII systems or for EBCDIC systems running
|
|
in UTF-8 mode. */
|
|
|
|
static const short int escapes[] = {
|
|
0, 0,
|
|
0, 0,
|
|
0, 0,
|
|
0, 0,
|
|
0, 0,
|
|
CHAR_COLON, CHAR_SEMICOLON,
|
|
CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN,
|
|
CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK,
|
|
CHAR_COMMERCIAL_AT, -ESC_A,
|
|
-ESC_B, -ESC_C,
|
|
-ESC_D, -ESC_E,
|
|
0, -ESC_G,
|
|
-ESC_H, 0,
|
|
0, -ESC_K,
|
|
0, 0,
|
|
-ESC_N, 0,
|
|
-ESC_P, -ESC_Q,
|
|
-ESC_R, -ESC_S,
|
|
0, 0,
|
|
-ESC_V, -ESC_W,
|
|
-ESC_X, 0,
|
|
-ESC_Z, CHAR_LEFT_SQUARE_BRACKET,
|
|
CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET,
|
|
CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE,
|
|
CHAR_GRAVE_ACCENT, 7,
|
|
-ESC_b, 0,
|
|
-ESC_d, ESC_e,
|
|
ESC_f, 0,
|
|
-ESC_h, 0,
|
|
0, -ESC_k,
|
|
0, 0,
|
|
ESC_n, 0,
|
|
-ESC_p, 0,
|
|
ESC_r, -ESC_s,
|
|
ESC_tee, 0,
|
|
-ESC_v, -ESC_w,
|
|
0, 0,
|
|
-ESC_z
|
|
};
|
|
|
|
#else
|
|
|
|
/* This is the "abnormal" table for EBCDIC systems without UTF-8 support. */
|
|
|
|
static const short int escapes[] = {
|
|
/* 48 */ 0, 0, 0, '.', '<', '(', '+', '|',
|
|
/* 50 */ '&', 0, 0, 0, 0, 0, 0, 0,
|
|
/* 58 */ 0, 0, '!', '$', '*', ')', ';', '~',
|
|
/* 60 */ '-', '/', 0, 0, 0, 0, 0, 0,
|
|
/* 68 */ 0, 0, '|', ',', '%', '_', '>', '?',
|
|
/* 70 */ 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"',
|
|
/* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0,
|
|
/* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0,
|
|
/* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p,
|
|
/* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0,
|
|
/* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0,
|
|
/* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0,
|
|
/* B0 */ 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* B8 */ 0, 0, 0, 0, 0, ']', '=', '-',
|
|
/* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G,
|
|
/* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0,
|
|
/* D0 */ '}', 0, -ESC_K, 0, 0,-ESC_N, 0, -ESC_P,
|
|
/* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0,
|
|
/* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X,
|
|
/* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0,
|
|
/* F0 */ 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* F8 */ 0, 0, 0, 0, 0, 0, 0, 0
|
|
};
|
|
#endif
|
|
|
|
|
|
/* Table of special "verbs" like (*PRUNE). This is a short table, so it is
|
|
searched linearly. Put all the names into a single string, in order to reduce
|
|
the number of relocations when a shared library is dynamically linked. The
|
|
string is built from string macros so that it works in UTF-8 mode on EBCDIC
|
|
platforms. */
|
|
|
|
typedef struct verbitem {
|
|
int len; /* Length of verb name */
|
|
int op; /* Op when no arg, or -1 if arg mandatory */
|
|
int op_arg; /* Op when arg present, or -1 if not allowed */
|
|
} verbitem;
|
|
|
|
static const char verbnames[] =
|
|
"\0" /* Empty name is a shorthand for MARK */
|
|
STRING_MARK0
|
|
STRING_ACCEPT0
|
|
STRING_COMMIT0
|
|
STRING_F0
|
|
STRING_FAIL0
|
|
STRING_PRUNE0
|
|
STRING_SKIP0
|
|
STRING_THEN;
|
|
|
|
static const verbitem verbs[] = {
|
|
{ 0, -1, OP_MARK },
|
|
{ 4, -1, OP_MARK },
|
|
{ 6, OP_ACCEPT, -1 },
|
|
{ 6, OP_COMMIT, -1 },
|
|
{ 1, OP_FAIL, -1 },
|
|
{ 4, OP_FAIL, -1 },
|
|
{ 5, OP_PRUNE, OP_PRUNE_ARG },
|
|
{ 4, OP_SKIP, OP_SKIP_ARG },
|
|
{ 4, OP_THEN, OP_THEN_ARG }
|
|
};
|
|
|
|
static const int verbcount = sizeof(verbs)/sizeof(verbitem);
|
|
|
|
|
|
/* Substitutes for [[:<:]] and [[:>:]], which mean start and end of word in
|
|
another regex library. */
|
|
|
|
static const pcre_uchar sub_start_of_word[] = {
|
|
CHAR_BACKSLASH, CHAR_b, CHAR_LEFT_PARENTHESIS, CHAR_QUESTION_MARK,
|
|
CHAR_EQUALS_SIGN, CHAR_BACKSLASH, CHAR_w, CHAR_RIGHT_PARENTHESIS, '\0' };
|
|
|
|
static const pcre_uchar sub_end_of_word[] = {
|
|
CHAR_BACKSLASH, CHAR_b, CHAR_LEFT_PARENTHESIS, CHAR_QUESTION_MARK,
|
|
CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN, CHAR_BACKSLASH, CHAR_w,
|
|
CHAR_RIGHT_PARENTHESIS, '\0' };
|
|
|
|
|
|
/* Tables of names of POSIX character classes and their lengths. The names are
|
|
now all in a single string, to reduce the number of relocations when a shared
|
|
library is dynamically loaded. The list of lengths is terminated by a zero
|
|
length entry. The first three must be alpha, lower, upper, as this is assumed
|
|
for handling case independence. The indices for graph, print, and punct are
|
|
needed, so identify them. */
|
|
|
|
static const char posix_names[] =
|
|
STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0
|
|
STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0
|
|
STRING_graph0 STRING_print0 STRING_punct0 STRING_space0
|
|
STRING_word0 STRING_xdigit;
|
|
|
|
static const pcre_uint8 posix_name_lengths[] = {
|
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 };
|
|
|
|
#define PC_GRAPH 8
|
|
#define PC_PRINT 9
|
|
#define PC_PUNCT 10
|
|
|
|
|
|
/* Table of class bit maps for each POSIX class. Each class is formed from a
|
|
base map, with an optional addition or removal of another map. Then, for some
|
|
classes, there is some additional tweaking: for [:blank:] the vertical space
|
|
characters are removed, and for [:alpha:] and [:alnum:] the underscore
|
|
character is removed. The triples in the table consist of the base map offset,
|
|
second map offset or -1 if no second map, and a non-negative value for map
|
|
addition or a negative value for map subtraction (if there are two maps). The
|
|
absolute value of the third field has these meanings: 0 => no tweaking, 1 =>
|
|
remove vertical space characters, 2 => remove underscore. */
|
|
|
|
static const int posix_class_maps[] = {
|
|
cbit_word, cbit_digit, -2, /* alpha */
|
|
cbit_lower, -1, 0, /* lower */
|
|
cbit_upper, -1, 0, /* upper */
|
|
cbit_word, -1, 2, /* alnum - word without underscore */
|
|
cbit_print, cbit_cntrl, 0, /* ascii */
|
|
cbit_space, -1, 1, /* blank - a GNU extension */
|
|
cbit_cntrl, -1, 0, /* cntrl */
|
|
cbit_digit, -1, 0, /* digit */
|
|
cbit_graph, -1, 0, /* graph */
|
|
cbit_print, -1, 0, /* print */
|
|
cbit_punct, -1, 0, /* punct */
|
|
cbit_space, -1, 0, /* space */
|
|
cbit_word, -1, 0, /* word - a Perl extension */
|
|
cbit_xdigit,-1, 0 /* xdigit */
|
|
};
|
|
|
|
/* Table of substitutes for \d etc when PCRE_UCP is set. They are replaced by
|
|
Unicode property escapes. */
|
|
|
|
#ifdef SUPPORT_UCP
|
|
static const pcre_uchar string_PNd[] = {
|
|
CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const pcre_uchar string_pNd[] = {
|
|
CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const pcre_uchar string_PXsp[] = {
|
|
CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const pcre_uchar string_pXsp[] = {
|
|
CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const pcre_uchar string_PXwd[] = {
|
|
CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const pcre_uchar string_pXwd[] = {
|
|
CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
|
|
static const pcre_uchar *substitutes[] = {
|
|
string_PNd, /* \D */
|
|
string_pNd, /* \d */
|
|
string_PXsp, /* \S */ /* Xsp is Perl space, but from 8.34, Perl */
|
|
string_pXsp, /* \s */ /* space and POSIX space are the same. */
|
|
string_PXwd, /* \W */
|
|
string_pXwd /* \w */
|
|
};
|
|
|
|
/* The POSIX class substitutes must be in the order of the POSIX class names,
|
|
defined above, and there are both positive and negative cases. NULL means no
|
|
general substitute of a Unicode property escape (\p or \P). However, for some
|
|
POSIX classes (e.g. graph, print, punct) a special property code is compiled
|
|
directly. */
|
|
|
|
static const pcre_uchar string_pL[] = {
|
|
CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const pcre_uchar string_pLl[] = {
|
|
CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const pcre_uchar string_pLu[] = {
|
|
CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const pcre_uchar string_pXan[] = {
|
|
CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const pcre_uchar string_h[] = {
|
|
CHAR_BACKSLASH, CHAR_h, '\0' };
|
|
static const pcre_uchar string_pXps[] = {
|
|
CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const pcre_uchar string_PL[] = {
|
|
CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const pcre_uchar string_PLl[] = {
|
|
CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const pcre_uchar string_PLu[] = {
|
|
CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const pcre_uchar string_PXan[] = {
|
|
CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const pcre_uchar string_H[] = {
|
|
CHAR_BACKSLASH, CHAR_H, '\0' };
|
|
static const pcre_uchar string_PXps[] = {
|
|
CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
|
|
static const pcre_uchar *posix_substitutes[] = {
|
|
string_pL, /* alpha */
|
|
string_pLl, /* lower */
|
|
string_pLu, /* upper */
|
|
string_pXan, /* alnum */
|
|
NULL, /* ascii */
|
|
string_h, /* blank */
|
|
NULL, /* cntrl */
|
|
string_pNd, /* digit */
|
|
NULL, /* graph */
|
|
NULL, /* print */
|
|
NULL, /* punct */
|
|
string_pXps, /* space */ /* Xps is POSIX space, but from 8.34 */
|
|
string_pXwd, /* word */ /* Perl and POSIX space are the same */
|
|
NULL, /* xdigit */
|
|
/* Negated cases */
|
|
string_PL, /* ^alpha */
|
|
string_PLl, /* ^lower */
|
|
string_PLu, /* ^upper */
|
|
string_PXan, /* ^alnum */
|
|
NULL, /* ^ascii */
|
|
string_H, /* ^blank */
|
|
NULL, /* ^cntrl */
|
|
string_PNd, /* ^digit */
|
|
NULL, /* ^graph */
|
|
NULL, /* ^print */
|
|
NULL, /* ^punct */
|
|
string_PXps, /* ^space */ /* Xps is POSIX space, but from 8.34 */
|
|
string_PXwd, /* ^word */ /* Perl and POSIX space are the same */
|
|
NULL /* ^xdigit */
|
|
};
|
|
#define POSIX_SUBSIZE (sizeof(posix_substitutes) / sizeof(pcre_uchar *))
|
|
#endif
|
|
|
|
#define STRING(a) # a
|
|
#define XSTRING(s) STRING(s)
|
|
|
|
/* The texts of compile-time error messages. These are "char *" because they
|
|
are passed to the outside world. Do not ever re-use any error number, because
|
|
they are documented. Always add a new error instead. Messages marked DEAD below
|
|
are no longer used. This used to be a table of strings, but in order to reduce
|
|
the number of relocations needed when a shared library is loaded dynamically,
|
|
it is now one long string. We cannot use a table of offsets, because the
|
|
lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we
|
|
simply count through to the one we want - this isn't a performance issue
|
|
because these strings are used only when there is a compilation error.
|
|
|
|
Each substring ends with \0 to insert a null character. This includes the final
|
|
substring, so that the whole string ends with \0\0, which can be detected when
|
|
counting through. */
|
|
|
|
static const char error_texts[] =
|
|
"no error\0"
|
|
"\\ at end of pattern\0"
|
|
"\\c at end of pattern\0"
|
|
"unrecognized character follows \\\0"
|
|
"numbers out of order in {} quantifier\0"
|
|
/* 5 */
|
|
"number too big in {} quantifier\0"
|
|
"missing terminating ] for character class\0"
|
|
"invalid escape sequence in character class\0"
|
|
"range out of order in character class\0"
|
|
"nothing to repeat\0"
|
|
/* 10 */
|
|
"operand of unlimited repeat could match the empty string\0" /** DEAD **/
|
|
"internal error: unexpected repeat\0"
|
|
"unrecognized character after (? or (?-\0"
|
|
"POSIX named classes are supported only within a class\0"
|
|
"missing )\0"
|
|
/* 15 */
|
|
"reference to non-existent subpattern\0"
|
|
"erroffset passed as NULL\0"
|
|
"unknown option bit(s) set\0"
|
|
"missing ) after comment\0"
|
|
"parentheses nested too deeply\0" /** DEAD **/
|
|
/* 20 */
|
|
"regular expression is too large\0"
|
|
"failed to get memory\0"
|
|
"unmatched parentheses\0"
|
|
"internal error: code overflow\0"
|
|
"unrecognized character after (?<\0"
|
|
/* 25 */
|
|
"lookbehind assertion is not fixed length\0"
|
|
"malformed number or name after (?(\0"
|
|
"conditional group contains more than two branches\0"
|
|
"assertion expected after (?(\0"
|
|
"(?R or (?[+-]digits must be followed by )\0"
|
|
/* 30 */
|
|
"unknown POSIX class name\0"
|
|
"POSIX collating elements are not supported\0"
|
|
"this version of PCRE is compiled without UTF support\0"
|
|
"spare error\0" /** DEAD **/
|
|
"character value in \\x{} or \\o{} is too large\0"
|
|
/* 35 */
|
|
"invalid condition (?(0)\0"
|
|
"\\C not allowed in lookbehind assertion\0"
|
|
"PCRE does not support \\L, \\l, \\N{name}, \\U, or \\u\0"
|
|
"number after (?C is > 255\0"
|
|
"closing ) for (?C expected\0"
|
|
/* 40 */
|
|
"recursive call could loop indefinitely\0"
|
|
"unrecognized character after (?P\0"
|
|
"syntax error in subpattern name (missing terminator)\0"
|
|
"two named subpatterns have the same name\0"
|
|
"invalid UTF-8 string\0"
|
|
/* 45 */
|
|
"support for \\P, \\p, and \\X has not been compiled\0"
|
|
"malformed \\P or \\p sequence\0"
|
|
"unknown property name after \\P or \\p\0"
|
|
"subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0"
|
|
"too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0"
|
|
/* 50 */
|
|
"repeated subpattern is too long\0" /** DEAD **/
|
|
"octal value is greater than \\377 in 8-bit non-UTF-8 mode\0"
|
|
"internal error: overran compiling workspace\0"
|
|
"internal error: previously-checked referenced subpattern not found\0"
|
|
"DEFINE group contains more than one branch\0"
|
|
/* 55 */
|
|
"repeating a DEFINE group is not allowed\0" /** DEAD **/
|
|
"inconsistent NEWLINE options\0"
|
|
"\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0"
|
|
"a numbered reference must not be zero\0"
|
|
"an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)\0"
|
|
/* 60 */
|
|
"(*VERB) not recognized or malformed\0"
|
|
"number is too big\0"
|
|
"subpattern name expected\0"
|
|
"digit expected after (?+\0"
|
|
"] is an invalid data character in JavaScript compatibility mode\0"
|
|
/* 65 */
|
|
"different names for subpatterns of the same number are not allowed\0"
|
|
"(*MARK) must have an argument\0"
|
|
"this version of PCRE is not compiled with Unicode property support\0"
|
|
"\\c must be followed by an ASCII character\0"
|
|
"\\k is not followed by a braced, angle-bracketed, or quoted name\0"
|
|
/* 70 */
|
|
"internal error: unknown opcode in find_fixedlength()\0"
|
|
"\\N is not supported in a class\0"
|
|
"too many forward references\0"
|
|
"disallowed Unicode code point (>= 0xd800 && <= 0xdfff)\0"
|
|
"invalid UTF-16 string\0"
|
|
/* 75 */
|
|
"name is too long in (*MARK), (*PRUNE), (*SKIP), or (*THEN)\0"
|
|
"character value in \\u.... sequence is too large\0"
|
|
"invalid UTF-32 string\0"
|
|
"setting UTF is disabled by the application\0"
|
|
"non-hex character in \\x{} (closing brace missing?)\0"
|
|
/* 80 */
|
|
"non-octal character in \\o{} (closing brace missing?)\0"
|
|
"missing opening brace after \\o\0"
|
|
"parentheses are too deeply nested\0"
|
|
"invalid range in character class\0"
|
|
"group name must start with a non-digit\0"
|
|
/* 85 */
|
|
"parentheses are too deeply nested (stack check)\0"
|
|
;
|
|
|
|
/* Table to identify digits and hex digits. This is used when compiling
|
|
patterns. Note that the tables in chartables are dependent on the locale, and
|
|
may mark arbitrary characters as digits - but the PCRE compiling code expects
|
|
to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have
|
|
a private table here. It costs 256 bytes, but it is a lot faster than doing
|
|
character value tests (at least in some simple cases I timed), and in some
|
|
applications one wants PCRE to compile efficiently as well as match
|
|
efficiently.
|
|
|
|
For convenience, we use the same bit definitions as in chartables:
|
|
|
|
0x04 decimal digit
|
|
0x08 hexadecimal digit
|
|
|
|
Then we can use ctype_digit and ctype_xdigit in the code. */
|
|
|
|
/* Using a simple comparison for decimal numbers rather than a memory read
|
|
is much faster, and the resulting code is simpler (the compiler turns it
|
|
into a subtraction and unsigned comparison). */
|
|
|
|
#define IS_DIGIT(x) ((x) >= CHAR_0 && (x) <= CHAR_9)
|
|
|
|
#ifndef EBCDIC
|
|
|
|
/* This is the "normal" case, for ASCII systems, and EBCDIC systems running in
|
|
UTF-8 mode. */
|
|
|
|
static const pcre_uint8 digitab[] =
|
|
{
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */
|
|
0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */
|
|
0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */
|
|
0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */
|
|
0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */
|
|
|
|
#else
|
|
|
|
/* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */
|
|
|
|
static const pcre_uint8 digitab[] =
|
|
{
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
|
|
0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
|
|
0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
|
|
0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */
|
|
0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
|
|
|
|
static const pcre_uint8 ebcdic_chartab[] = { /* chartable partial dup */
|
|
0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */
|
|
0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */
|
|
0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
|
|
0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
|
|
0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */
|
|
0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */
|
|
0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */
|
|
0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */
|
|
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
|
|
0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */
|
|
0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
|
|
0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */
|
|
0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
|
|
0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */
|
|
0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
|
|
0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */
|
|
0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
|
|
0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */
|
|
0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
|
|
0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */
|
|
0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
|
|
0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */
|
|
0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
|
|
0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */
|
|
0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
|
|
#endif
|
|
|
|
|
|
/* This table is used to check whether auto-possessification is possible
|
|
between adjacent character-type opcodes. The left-hand (repeated) opcode is
|
|
used to select the row, and the right-hand opcode is use to select the column.
|
|
A value of 1 means that auto-possessification is OK. For example, the second
|
|
value in the first row means that \D+\d can be turned into \D++\d.
|
|
|
|
The Unicode property types (\P and \p) have to be present to fill out the table
|
|
because of what their opcode values are, but the table values should always be
|
|
zero because property types are handled separately in the code. The last four
|
|
columns apply to items that cannot be repeated, so there is no need to have
|
|
rows for them. Note that OP_DIGIT etc. are generated only when PCRE_UCP is
|
|
*not* set. When it is set, \d etc. are converted into OP_(NOT_)PROP codes. */
|
|
|
|
#define APTROWS (LAST_AUTOTAB_LEFT_OP - FIRST_AUTOTAB_OP + 1)
|
|
#define APTCOLS (LAST_AUTOTAB_RIGHT_OP - FIRST_AUTOTAB_OP + 1)
|
|
|
|
static const pcre_uint8 autoposstab[APTROWS][APTCOLS] = {
|
|
/* \D \d \S \s \W \w . .+ \C \P \p \R \H \h \V \v \X \Z \z $ $M */
|
|
{ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 }, /* \D */
|
|
{ 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1 }, /* \d */
|
|
{ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1 }, /* \S */
|
|
{ 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 }, /* \s */
|
|
{ 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 }, /* \W */
|
|
{ 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1 }, /* \w */
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0 }, /* . */
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 }, /* .+ */
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 }, /* \C */
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* \P */
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* \p */
|
|
{ 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0 }, /* \R */
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0 }, /* \H */
|
|
{ 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0 }, /* \h */
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0 }, /* \V */
|
|
{ 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0 }, /* \v */
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 } /* \X */
|
|
};
|
|
|
|
|
|
/* This table is used to check whether auto-possessification is possible
|
|
between adjacent Unicode property opcodes (OP_PROP and OP_NOTPROP). The
|
|
left-hand (repeated) opcode is used to select the row, and the right-hand
|
|
opcode is used to select the column. The values are as follows:
|
|
|
|
0 Always return FALSE (never auto-possessify)
|
|
1 Character groups are distinct (possessify if both are OP_PROP)
|
|
2 Check character categories in the same group (general or particular)
|
|
3 TRUE if the two opcodes are not the same (PROP vs NOTPROP)
|
|
|
|
4 Check left general category vs right particular category
|
|
5 Check right general category vs left particular category
|
|
|
|
6 Left alphanum vs right general category
|
|
7 Left space vs right general category
|
|
8 Left word vs right general category
|
|
|
|
9 Right alphanum vs left general category
|
|
10 Right space vs left general category
|
|
11 Right word vs left general category
|
|
|
|
12 Left alphanum vs right particular category
|
|
13 Left space vs right particular category
|
|
14 Left word vs right particular category
|
|
|
|
15 Right alphanum vs left particular category
|
|
16 Right space vs left particular category
|
|
17 Right word vs left particular category
|
|
*/
|
|
|
|
static const pcre_uint8 propposstab[PT_TABSIZE][PT_TABSIZE] = {
|
|
/* ANY LAMP GC PC SC ALNUM SPACE PXSPACE WORD CLIST UCNC */
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* PT_ANY */
|
|
{ 0, 3, 0, 0, 0, 3, 1, 1, 0, 0, 0 }, /* PT_LAMP */
|
|
{ 0, 0, 2, 4, 0, 9, 10, 10, 11, 0, 0 }, /* PT_GC */
|
|
{ 0, 0, 5, 2, 0, 15, 16, 16, 17, 0, 0 }, /* PT_PC */
|
|
{ 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0 }, /* PT_SC */
|
|
{ 0, 3, 6, 12, 0, 3, 1, 1, 0, 0, 0 }, /* PT_ALNUM */
|
|
{ 0, 1, 7, 13, 0, 1, 3, 3, 1, 0, 0 }, /* PT_SPACE */
|
|
{ 0, 1, 7, 13, 0, 1, 3, 3, 1, 0, 0 }, /* PT_PXSPACE */
|
|
{ 0, 0, 8, 14, 0, 0, 1, 1, 3, 0, 0 }, /* PT_WORD */
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* PT_CLIST */
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3 } /* PT_UCNC */
|
|
};
|
|
|
|
/* This table is used to check whether auto-possessification is possible
|
|
between adjacent Unicode property opcodes (OP_PROP and OP_NOTPROP) when one
|
|
specifies a general category and the other specifies a particular category. The
|
|
row is selected by the general category and the column by the particular
|
|
category. The value is 1 if the particular category is not part of the general
|
|
category. */
|
|
|
|
static const pcre_uint8 catposstab[7][30] = {
|
|
/* Cc Cf Cn Co Cs Ll Lm Lo Lt Lu Mc Me Mn Nd Nl No Pc Pd Pe Pf Pi Po Ps Sc Sk Sm So Zl Zp Zs */
|
|
{ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, /* C */
|
|
{ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, /* L */
|
|
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, /* M */
|
|
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, /* N */
|
|
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 }, /* P */
|
|
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1 }, /* S */
|
|
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0 } /* Z */
|
|
};
|
|
|
|
/* This table is used when checking ALNUM, (PX)SPACE, SPACE, and WORD against
|
|
a general or particular category. The properties in each row are those
|
|
that apply to the character set in question. Duplication means that a little
|
|
unnecessary work is done when checking, but this keeps things much simpler
|
|
because they can all use the same code. For more details see the comment where
|
|
this table is used.
|
|
|
|
Note: SPACE and PXSPACE used to be different because Perl excluded VT from
|
|
"space", but from Perl 5.18 it's included, so both categories are treated the
|
|
same here. */
|
|
|
|
static const pcre_uint8 posspropstab[3][4] = {
|
|
{ ucp_L, ucp_N, ucp_N, ucp_Nl }, /* ALNUM, 3rd and 4th values redundant */
|
|
{ ucp_Z, ucp_Z, ucp_C, ucp_Cc }, /* SPACE and PXSPACE, 2nd value redundant */
|
|
{ ucp_L, ucp_N, ucp_P, ucp_Po } /* WORD */
|
|
};
|
|
|
|
/* This table is used when converting repeating opcodes into possessified
|
|
versions as a result of an explicit possessive quantifier such as ++. A zero
|
|
value means there is no possessified version - in those cases the item in
|
|
question must be wrapped in ONCE brackets. The table is truncated at OP_CALLOUT
|
|
because all relevant opcodes are less than that. */
|
|
|
|
static const pcre_uint8 opcode_possessify[] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 15 */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 16 - 31 */
|
|
|
|
0, /* NOTI */
|
|
OP_POSSTAR, 0, /* STAR, MINSTAR */
|
|
OP_POSPLUS, 0, /* PLUS, MINPLUS */
|
|
OP_POSQUERY, 0, /* QUERY, MINQUERY */
|
|
OP_POSUPTO, 0, /* UPTO, MINUPTO */
|
|
0, /* EXACT */
|
|
0, 0, 0, 0, /* POS{STAR,PLUS,QUERY,UPTO} */
|
|
|
|
OP_POSSTARI, 0, /* STARI, MINSTARI */
|
|
OP_POSPLUSI, 0, /* PLUSI, MINPLUSI */
|
|
OP_POSQUERYI, 0, /* QUERYI, MINQUERYI */
|
|
OP_POSUPTOI, 0, /* UPTOI, MINUPTOI */
|
|
0, /* EXACTI */
|
|
0, 0, 0, 0, /* POS{STARI,PLUSI,QUERYI,UPTOI} */
|
|
|
|
OP_NOTPOSSTAR, 0, /* NOTSTAR, NOTMINSTAR */
|
|
OP_NOTPOSPLUS, 0, /* NOTPLUS, NOTMINPLUS */
|
|
OP_NOTPOSQUERY, 0, /* NOTQUERY, NOTMINQUERY */
|
|
OP_NOTPOSUPTO, 0, /* NOTUPTO, NOTMINUPTO */
|
|
0, /* NOTEXACT */
|
|
0, 0, 0, 0, /* NOTPOS{STAR,PLUS,QUERY,UPTO} */
|
|
|
|
OP_NOTPOSSTARI, 0, /* NOTSTARI, NOTMINSTARI */
|
|
OP_NOTPOSPLUSI, 0, /* NOTPLUSI, NOTMINPLUSI */
|
|
OP_NOTPOSQUERYI, 0, /* NOTQUERYI, NOTMINQUERYI */
|
|
OP_NOTPOSUPTOI, 0, /* NOTUPTOI, NOTMINUPTOI */
|
|
0, /* NOTEXACTI */
|
|
0, 0, 0, 0, /* NOTPOS{STARI,PLUSI,QUERYI,UPTOI} */
|
|
|
|
OP_TYPEPOSSTAR, 0, /* TYPESTAR, TYPEMINSTAR */
|
|
OP_TYPEPOSPLUS, 0, /* TYPEPLUS, TYPEMINPLUS */
|
|
OP_TYPEPOSQUERY, 0, /* TYPEQUERY, TYPEMINQUERY */
|
|
OP_TYPEPOSUPTO, 0, /* TYPEUPTO, TYPEMINUPTO */
|
|
0, /* TYPEEXACT */
|
|
0, 0, 0, 0, /* TYPEPOS{STAR,PLUS,QUERY,UPTO} */
|
|
|
|
OP_CRPOSSTAR, 0, /* CRSTAR, CRMINSTAR */
|
|
OP_CRPOSPLUS, 0, /* CRPLUS, CRMINPLUS */
|
|
OP_CRPOSQUERY, 0, /* CRQUERY, CRMINQUERY */
|
|
OP_CRPOSRANGE, 0, /* CRRANGE, CRMINRANGE */
|
|
0, 0, 0, 0, /* CRPOS{STAR,PLUS,QUERY,RANGE} */
|
|
|
|
0, 0, 0, /* CLASS, NCLASS, XCLASS */
|
|
0, 0, /* REF, REFI */
|
|
0, 0, /* DNREF, DNREFI */
|
|
0, 0 /* RECURSE, CALLOUT */
|
|
};
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Find an error text *
|
|
*************************************************/
|
|
|
|
/* The error texts are now all in one long string, to save on relocations. As
|
|
some of the text is of unknown length, we can't use a table of offsets.
|
|
Instead, just count through the strings. This is not a performance issue
|
|
because it happens only when there has been a compilation error.
|
|
|
|
Argument: the error number
|
|
Returns: pointer to the error string
|
|
*/
|
|
|
|
static const char *
|
|
find_error_text(int n)
|
|
{
|
|
const char *s = error_texts;
|
|
for (; n > 0; n--)
|
|
{
|
|
while (*s++ != CHAR_NULL) {};
|
|
if (*s == CHAR_NULL) return "Error text not found (please report)";
|
|
}
|
|
return s;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Expand the workspace *
|
|
*************************************************/
|
|
|
|
/* This function is called during the second compiling phase, if the number of
|
|
forward references fills the existing workspace, which is originally a block on
|
|
the stack. A larger block is obtained from malloc() unless the ultimate limit
|
|
has been reached or the increase will be rather small.
|
|
|
|
Argument: pointer to the compile data block
|
|
Returns: 0 if all went well, else an error number
|
|
*/
|
|
|
|
static int
|
|
expand_workspace(compile_data *cd)
|
|
{
|
|
pcre_uchar *newspace;
|
|
int newsize = cd->workspace_size * 2;
|
|
|
|
if (newsize > COMPILE_WORK_SIZE_MAX) newsize = COMPILE_WORK_SIZE_MAX;
|
|
if (cd->workspace_size >= COMPILE_WORK_SIZE_MAX ||
|
|
newsize - cd->workspace_size < WORK_SIZE_SAFETY_MARGIN)
|
|
return ERR72;
|
|
|
|
newspace = (PUBL(malloc))(IN_UCHARS(newsize));
|
|
if (newspace == NULL) return ERR21;
|
|
memcpy(newspace, cd->start_workspace, cd->workspace_size * sizeof(pcre_uchar));
|
|
cd->hwm = (pcre_uchar *)newspace + (cd->hwm - cd->start_workspace);
|
|
if (cd->workspace_size > COMPILE_WORK_SIZE)
|
|
(PUBL(free))((void *)cd->start_workspace);
|
|
cd->start_workspace = newspace;
|
|
cd->workspace_size = newsize;
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Check for counted repeat *
|
|
*************************************************/
|
|
|
|
/* This function is called when a '{' is encountered in a place where it might
|
|
start a quantifier. It looks ahead to see if it really is a quantifier or not.
|
|
It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd}
|
|
where the ddds are digits.
|
|
|
|
Arguments:
|
|
p pointer to the first char after '{'
|
|
|
|
Returns: TRUE or FALSE
|
|
*/
|
|
|
|
static BOOL
|
|
is_counted_repeat(const pcre_uchar *p)
|
|
{
|
|
if (!IS_DIGIT(*p)) return FALSE;
|
|
p++;
|
|
while (IS_DIGIT(*p)) p++;
|
|
if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE;
|
|
|
|
if (*p++ != CHAR_COMMA) return FALSE;
|
|
if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE;
|
|
|
|
if (!IS_DIGIT(*p)) return FALSE;
|
|
p++;
|
|
while (IS_DIGIT(*p)) p++;
|
|
|
|
return (*p == CHAR_RIGHT_CURLY_BRACKET);
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Handle escapes *
|
|
*************************************************/
|
|
|
|
/* This function is called when a \ has been encountered. It either returns a
|
|
positive value for a simple escape such as \n, or 0 for a data character which
|
|
will be placed in chptr. A backreference to group n is returned as negative n.
|
|
When UTF-8 is enabled, a positive value greater than 255 may be returned in
|
|
chptr. On entry, ptr is pointing at the \. On exit, it is on the final
|
|
character of the escape sequence.
|
|
|
|
Arguments:
|
|
ptrptr points to the pattern position pointer
|
|
chptr points to a returned data character
|
|
errorcodeptr points to the errorcode variable
|
|
bracount number of previous extracting brackets
|
|
options the options bits
|
|
isclass TRUE if inside a character class
|
|
|
|
Returns: zero => a data character
|
|
positive => a special escape sequence
|
|
negative => a back reference
|
|
on error, errorcodeptr is set
|
|
*/
|
|
|
|
static int
|
|
check_escape(const pcre_uchar **ptrptr, pcre_uint32 *chptr, int *errorcodeptr,
|
|
int bracount, int options, BOOL isclass)
|
|
{
|
|
/* PCRE_UTF16 has the same value as PCRE_UTF8. */
|
|
BOOL utf = (options & PCRE_UTF8) != 0;
|
|
const pcre_uchar *ptr = *ptrptr + 1;
|
|
pcre_uint32 c;
|
|
int escape = 0;
|
|
int i;
|
|
|
|
GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */
|
|
ptr--; /* Set pointer back to the last byte */
|
|
|
|
/* If backslash is at the end of the pattern, it's an error. */
|
|
|
|
if (c == CHAR_NULL) *errorcodeptr = ERR1;
|
|
|
|
/* Non-alphanumerics are literals. For digits or letters, do an initial lookup
|
|
in a table. A non-zero result is something that can be returned immediately.
|
|
Otherwise further processing may be required. */
|
|
|
|
#ifndef EBCDIC /* ASCII/UTF-8 coding */
|
|
/* Not alphanumeric */
|
|
else if (c < CHAR_0 || c > CHAR_z) {}
|
|
else if ((i = escapes[c - CHAR_0]) != 0)
|
|
{ if (i > 0) c = (pcre_uint32)i; else escape = -i; }
|
|
|
|
#else /* EBCDIC coding */
|
|
/* Not alphanumeric */
|
|
else if (c < CHAR_a || (!MAX_255(c) || (ebcdic_chartab[c] & 0x0E) == 0)) {}
|
|
else if ((i = escapes[c - 0x48]) != 0) { if (i > 0) c = (pcre_uint32)i; else escape = -i; }
|
|
#endif
|
|
|
|
/* Escapes that need further processing, or are illegal. */
|
|
|
|
else
|
|
{
|
|
const pcre_uchar *oldptr;
|
|
BOOL braced, negated, overflow;
|
|
int s;
|
|
|
|
switch (c)
|
|
{
|
|
/* A number of Perl escapes are not handled by PCRE. We give an explicit
|
|
error. */
|
|
|
|
case CHAR_l:
|
|
case CHAR_L:
|
|
*errorcodeptr = ERR37;
|
|
break;
|
|
|
|
case CHAR_u:
|
|
if ((options & PCRE_JAVASCRIPT_COMPAT) != 0)
|
|
{
|
|
/* In JavaScript, \u must be followed by four hexadecimal numbers.
|
|
Otherwise it is a lowercase u letter. */
|
|
if (MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0
|
|
&& MAX_255(ptr[2]) && (digitab[ptr[2]] & ctype_xdigit) != 0
|
|
&& MAX_255(ptr[3]) && (digitab[ptr[3]] & ctype_xdigit) != 0
|
|
&& MAX_255(ptr[4]) && (digitab[ptr[4]] & ctype_xdigit) != 0)
|
|
{
|
|
c = 0;
|
|
for (i = 0; i < 4; ++i)
|
|
{
|
|
register pcre_uint32 cc = *(++ptr);
|
|
#ifndef EBCDIC /* ASCII/UTF-8 coding */
|
|
if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
|
|
c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
|
|
#else /* EBCDIC coding */
|
|
if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */
|
|
c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
|
|
#endif
|
|
}
|
|
|
|
#if defined COMPILE_PCRE8
|
|
if (c > (utf ? 0x10ffffU : 0xffU))
|
|
#elif defined COMPILE_PCRE16
|
|
if (c > (utf ? 0x10ffffU : 0xffffU))
|
|
#elif defined COMPILE_PCRE32
|
|
if (utf && c > 0x10ffffU)
|
|
#endif
|
|
{
|
|
*errorcodeptr = ERR76;
|
|
}
|
|
else if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73;
|
|
}
|
|
}
|
|
else
|
|
*errorcodeptr = ERR37;
|
|
break;
|
|
|
|
case CHAR_U:
|
|
/* In JavaScript, \U is an uppercase U letter. */
|
|
if ((options & PCRE_JAVASCRIPT_COMPAT) == 0) *errorcodeptr = ERR37;
|
|
break;
|
|
|
|
/* In a character class, \g is just a literal "g". Outside a character
|
|
class, \g must be followed by one of a number of specific things:
|
|
|
|
(1) A number, either plain or braced. If positive, it is an absolute
|
|
backreference. If negative, it is a relative backreference. This is a Perl
|
|
5.10 feature.
|
|
|
|
(2) Perl 5.10 also supports \g{name} as a reference to a named group. This
|
|
is part of Perl's movement towards a unified syntax for back references. As
|
|
this is synonymous with \k{name}, we fudge it up by pretending it really
|
|
was \k.
|
|
|
|
(3) For Oniguruma compatibility we also support \g followed by a name or a
|
|
number either in angle brackets or in single quotes. However, these are
|
|
(possibly recursive) subroutine calls, _not_ backreferences. Just return
|
|
the ESC_g code (cf \k). */
|
|
|
|
case CHAR_g:
|
|
if (isclass) break;
|
|
if (ptr[1] == CHAR_LESS_THAN_SIGN || ptr[1] == CHAR_APOSTROPHE)
|
|
{
|
|
escape = ESC_g;
|
|
break;
|
|
}
|
|
|
|
/* Handle the Perl-compatible cases */
|
|
|
|
if (ptr[1] == CHAR_LEFT_CURLY_BRACKET)
|
|
{
|
|
const pcre_uchar *p;
|
|
for (p = ptr+2; *p != CHAR_NULL && *p != CHAR_RIGHT_CURLY_BRACKET; p++)
|
|
if (*p != CHAR_MINUS && !IS_DIGIT(*p)) break;
|
|
if (*p != CHAR_NULL && *p != CHAR_RIGHT_CURLY_BRACKET)
|
|
{
|
|
escape = ESC_k;
|
|
break;
|
|
}
|
|
braced = TRUE;
|
|
ptr++;
|
|
}
|
|
else braced = FALSE;
|
|
|
|
if (ptr[1] == CHAR_MINUS)
|
|
{
|
|
negated = TRUE;
|
|
ptr++;
|
|
}
|
|
else negated = FALSE;
|
|
|
|
/* The integer range is limited by the machine's int representation. */
|
|
s = 0;
|
|
overflow = FALSE;
|
|
while (IS_DIGIT(ptr[1]))
|
|
{
|
|
if (s > INT_MAX / 10 - 1) /* Integer overflow */
|
|
{
|
|
overflow = TRUE;
|
|
break;
|
|
}
|
|
s = s * 10 + (int)(*(++ptr) - CHAR_0);
|
|
}
|
|
if (overflow) /* Integer overflow */
|
|
{
|
|
while (IS_DIGIT(ptr[1]))
|
|
ptr++;
|
|
*errorcodeptr = ERR61;
|
|
break;
|
|
}
|
|
|
|
if (braced && *(++ptr) != CHAR_RIGHT_CURLY_BRACKET)
|
|
{
|
|
*errorcodeptr = ERR57;
|
|
break;
|
|
}
|
|
|
|
if (s == 0)
|
|
{
|
|
*errorcodeptr = ERR58;
|
|
break;
|
|
}
|
|
|
|
if (negated)
|
|
{
|
|
if (s > bracount)
|
|
{
|
|
*errorcodeptr = ERR15;
|
|
break;
|
|
}
|
|
s = bracount - (s - 1);
|
|
}
|
|
|
|
escape = -s;
|
|
break;
|
|
|
|
/* The handling of escape sequences consisting of a string of digits
|
|
starting with one that is not zero is not straightforward. Perl has changed
|
|
over the years. Nowadays \g{} for backreferences and \o{} for octal are
|
|
recommended to avoid the ambiguities in the old syntax.
|
|
|
|
Outside a character class, the digits are read as a decimal number. If the
|
|
number is less than 8 (used to be 10), or if there are that many previous
|
|
extracting left brackets, then it is a back reference. Otherwise, up to
|
|
three octal digits are read to form an escaped byte. Thus \123 is likely to
|
|
be octal 123 (cf \0123, which is octal 012 followed by the literal 3). If
|
|
the octal value is greater than 377, the least significant 8 bits are
|
|
taken. \8 and \9 are treated as the literal characters 8 and 9.
|
|
|
|
Inside a character class, \ followed by a digit is always either a literal
|
|
8 or 9 or an octal number. */
|
|
|
|
case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5:
|
|
case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9:
|
|
|
|
if (!isclass)
|
|
{
|
|
oldptr = ptr;
|
|
/* The integer range is limited by the machine's int representation. */
|
|
s = (int)(c -CHAR_0);
|
|
overflow = FALSE;
|
|
while (IS_DIGIT(ptr[1]))
|
|
{
|
|
if (s > INT_MAX / 10 - 1) /* Integer overflow */
|
|
{
|
|
overflow = TRUE;
|
|
break;
|
|
}
|
|
s = s * 10 + (int)(*(++ptr) - CHAR_0);
|
|
}
|
|
if (overflow) /* Integer overflow */
|
|
{
|
|
while (IS_DIGIT(ptr[1]))
|
|
ptr++;
|
|
*errorcodeptr = ERR61;
|
|
break;
|
|
}
|
|
if (s < 8 || s <= bracount) /* Check for back reference */
|
|
{
|
|
escape = -s;
|
|
break;
|
|
}
|
|
ptr = oldptr; /* Put the pointer back and fall through */
|
|
}
|
|
|
|
/* Handle a digit following \ when the number is not a back reference. If
|
|
the first digit is 8 or 9, Perl used to generate a binary zero byte and
|
|
then treat the digit as a following literal. At least by Perl 5.18 this
|
|
changed so as not to insert the binary zero. */
|
|
|
|
if ((c = *ptr) >= CHAR_8) break;
|
|
|
|
/* Fall through with a digit less than 8 */
|
|
|
|
/* \0 always starts an octal number, but we may drop through to here with a
|
|
larger first octal digit. The original code used just to take the least
|
|
significant 8 bits of octal numbers (I think this is what early Perls used
|
|
to do). Nowadays we allow for larger numbers in UTF-8 mode and 16-bit mode,
|
|
but no more than 3 octal digits. */
|
|
|
|
case CHAR_0:
|
|
c -= CHAR_0;
|
|
while(i++ < 2 && ptr[1] >= CHAR_0 && ptr[1] <= CHAR_7)
|
|
c = c * 8 + *(++ptr) - CHAR_0;
|
|
#ifdef COMPILE_PCRE8
|
|
if (!utf && c > 0xff) *errorcodeptr = ERR51;
|
|
#endif
|
|
break;
|
|
|
|
/* \o is a relatively new Perl feature, supporting a more general way of
|
|
specifying character codes in octal. The only supported form is \o{ddd}. */
|
|
|
|
case CHAR_o:
|
|
if (ptr[1] != CHAR_LEFT_CURLY_BRACKET) *errorcodeptr = ERR81; else
|
|
{
|
|
ptr += 2;
|
|
c = 0;
|
|
overflow = FALSE;
|
|
while (*ptr >= CHAR_0 && *ptr <= CHAR_7)
|
|
{
|
|
register pcre_uint32 cc = *ptr++;
|
|
if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */
|
|
#ifdef COMPILE_PCRE32
|
|
if (c >= 0x20000000l) { overflow = TRUE; break; }
|
|
#endif
|
|
c = (c << 3) + cc - CHAR_0 ;
|
|
#if defined COMPILE_PCRE8
|
|
if (c > (utf ? 0x10ffffU : 0xffU)) { overflow = TRUE; break; }
|
|
#elif defined COMPILE_PCRE16
|
|
if (c > (utf ? 0x10ffffU : 0xffffU)) { overflow = TRUE; break; }
|
|
#elif defined COMPILE_PCRE32
|
|
if (utf && c > 0x10ffffU) { overflow = TRUE; break; }
|
|
#endif
|
|
}
|
|
if (overflow)
|
|
{
|
|
while (*ptr >= CHAR_0 && *ptr <= CHAR_7) ptr++;
|
|
*errorcodeptr = ERR34;
|
|
}
|
|
else if (*ptr == CHAR_RIGHT_CURLY_BRACKET)
|
|
{
|
|
if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73;
|
|
}
|
|
else *errorcodeptr = ERR80;
|
|
}
|
|
break;
|
|
|
|
/* \x is complicated. In JavaScript, \x must be followed by two hexadecimal
|
|
numbers. Otherwise it is a lowercase x letter. */
|
|
|
|
case CHAR_x:
|
|
if ((options & PCRE_JAVASCRIPT_COMPAT) != 0)
|
|
{
|
|
if (MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0
|
|
&& MAX_255(ptr[2]) && (digitab[ptr[2]] & ctype_xdigit) != 0)
|
|
{
|
|
c = 0;
|
|
for (i = 0; i < 2; ++i)
|
|
{
|
|
register pcre_uint32 cc = *(++ptr);
|
|
#ifndef EBCDIC /* ASCII/UTF-8 coding */
|
|
if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
|
|
c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
|
|
#else /* EBCDIC coding */
|
|
if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */
|
|
c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
|
|
#endif
|
|
}
|
|
}
|
|
} /* End JavaScript handling */
|
|
|
|
/* Handle \x in Perl's style. \x{ddd} is a character number which can be
|
|
greater than 0xff in utf or non-8bit mode, but only if the ddd are hex
|
|
digits. If not, { used to be treated as a data character. However, Perl
|
|
seems to read hex digits up to the first non-such, and ignore the rest, so
|
|
that, for example \x{zz} matches a binary zero. This seems crazy, so PCRE
|
|
now gives an error. */
|
|
|
|
else
|
|
{
|
|
if (ptr[1] == CHAR_LEFT_CURLY_BRACKET)
|
|
{
|
|
ptr += 2;
|
|
c = 0;
|
|
overflow = FALSE;
|
|
while (MAX_255(*ptr) && (digitab[*ptr] & ctype_xdigit) != 0)
|
|
{
|
|
register pcre_uint32 cc = *ptr++;
|
|
if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */
|
|
|
|
#ifdef COMPILE_PCRE32
|
|
if (c >= 0x10000000l) { overflow = TRUE; break; }
|
|
#endif
|
|
|
|
#ifndef EBCDIC /* ASCII/UTF-8 coding */
|
|
if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
|
|
c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
|
|
#else /* EBCDIC coding */
|
|
if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */
|
|
c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
|
|
#endif
|
|
|
|
#if defined COMPILE_PCRE8
|
|
if (c > (utf ? 0x10ffffU : 0xffU)) { overflow = TRUE; break; }
|
|
#elif defined COMPILE_PCRE16
|
|
if (c > (utf ? 0x10ffffU : 0xffffU)) { overflow = TRUE; break; }
|
|
#elif defined COMPILE_PCRE32
|
|
if (utf && c > 0x10ffffU) { overflow = TRUE; break; }
|
|
#endif
|
|
}
|
|
|
|
if (overflow)
|
|
{
|
|
while (MAX_255(*ptr) && (digitab[*ptr] & ctype_xdigit) != 0) ptr++;
|
|
*errorcodeptr = ERR34;
|
|
}
|
|
|
|
else if (*ptr == CHAR_RIGHT_CURLY_BRACKET)
|
|
{
|
|
if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73;
|
|
}
|
|
|
|
/* If the sequence of hex digits does not end with '}', give an error.
|
|
We used just to recognize this construct and fall through to the normal
|
|
\x handling, but nowadays Perl gives an error, which seems much more
|
|
sensible, so we do too. */
|
|
|
|
else *errorcodeptr = ERR79;
|
|
} /* End of \x{} processing */
|
|
|
|
/* Read a single-byte hex-defined char (up to two hex digits after \x) */
|
|
|
|
else
|
|
{
|
|
c = 0;
|
|
while (i++ < 2 && MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0)
|
|
{
|
|
pcre_uint32 cc; /* Some compilers don't like */
|
|
cc = *(++ptr); /* ++ in initializers */
|
|
#ifndef EBCDIC /* ASCII/UTF-8 coding */
|
|
if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
|
|
c = c * 16 + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
|
|
#else /* EBCDIC coding */
|
|
if (cc <= CHAR_z) cc += 64; /* Convert to upper case */
|
|
c = c * 16 + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
|
|
#endif
|
|
}
|
|
} /* End of \xdd handling */
|
|
} /* End of Perl-style \x handling */
|
|
break;
|
|
|
|
/* For \c, a following letter is upper-cased; then the 0x40 bit is flipped.
|
|
An error is given if the byte following \c is not an ASCII character. This
|
|
coding is ASCII-specific, but then the whole concept of \cx is
|
|
ASCII-specific. (However, an EBCDIC equivalent has now been added.) */
|
|
|
|
case CHAR_c:
|
|
c = *(++ptr);
|
|
if (c == CHAR_NULL)
|
|
{
|
|
*errorcodeptr = ERR2;
|
|
break;
|
|
}
|
|
#ifndef EBCDIC /* ASCII/UTF-8 coding */
|
|
if (c > 127) /* Excludes all non-ASCII in either mode */
|
|
{
|
|
*errorcodeptr = ERR68;
|
|
break;
|
|
}
|
|
if (c >= CHAR_a && c <= CHAR_z) c -= 32;
|
|
c ^= 0x40;
|
|
#else /* EBCDIC coding */
|
|
if (c >= CHAR_a && c <= CHAR_z) c += 64;
|
|
c ^= 0xC0;
|
|
#endif
|
|
break;
|
|
|
|
/* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any
|
|
other alphanumeric following \ is an error if PCRE_EXTRA was set;
|
|
otherwise, for Perl compatibility, it is a literal. This code looks a bit
|
|
odd, but there used to be some cases other than the default, and there may
|
|
be again in future, so I haven't "optimized" it. */
|
|
|
|
default:
|
|
if ((options & PCRE_EXTRA) != 0) switch(c)
|
|
{
|
|
default:
|
|
*errorcodeptr = ERR3;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Perl supports \N{name} for character names, as well as plain \N for "not
|
|
newline". PCRE does not support \N{name}. However, it does support
|
|
quantification such as \N{2,3}. */
|
|
|
|
if (escape == ESC_N && ptr[1] == CHAR_LEFT_CURLY_BRACKET &&
|
|
!is_counted_repeat(ptr+2))
|
|
*errorcodeptr = ERR37;
|
|
|
|
/* If PCRE_UCP is set, we change the values for \d etc. */
|
|
|
|
if ((options & PCRE_UCP) != 0 && escape >= ESC_D && escape <= ESC_w)
|
|
escape += (ESC_DU - ESC_D);
|
|
|
|
/* Set the pointer to the final character before returning. */
|
|
|
|
*ptrptr = ptr;
|
|
*chptr = c;
|
|
return escape;
|
|
}
|
|
|
|
|
|
|
|
#ifdef SUPPORT_UCP
|
|
/*************************************************
|
|
* Handle \P and \p *
|
|
*************************************************/
|
|
|
|
/* This function is called after \P or \p has been encountered, provided that
|
|
PCRE is compiled with support for Unicode properties. On entry, ptrptr is
|
|
pointing at the P or p. On exit, it is pointing at the final character of the
|
|
escape sequence.
|
|
|
|
Argument:
|
|
ptrptr points to the pattern position pointer
|
|
negptr points to a boolean that is set TRUE for negation else FALSE
|
|
ptypeptr points to an unsigned int that is set to the type value
|
|
pdataptr points to an unsigned int that is set to the detailed property value
|
|
errorcodeptr points to the error code variable
|
|
|
|
Returns: TRUE if the type value was found, or FALSE for an invalid type
|
|
*/
|
|
|
|
static BOOL
|
|
get_ucp(const pcre_uchar **ptrptr, BOOL *negptr, unsigned int *ptypeptr,
|
|
unsigned int *pdataptr, int *errorcodeptr)
|
|
{
|
|
pcre_uchar c;
|
|
int i, bot, top;
|
|
const pcre_uchar *ptr = *ptrptr;
|
|
pcre_uchar name[32];
|
|
|
|
c = *(++ptr);
|
|
if (c == CHAR_NULL) goto ERROR_RETURN;
|
|
|
|
*negptr = FALSE;
|
|
|
|
/* \P or \p can be followed by a name in {}, optionally preceded by ^ for
|
|
negation. */
|
|
|
|
if (c == CHAR_LEFT_CURLY_BRACKET)
|
|
{
|
|
if (ptr[1] == CHAR_CIRCUMFLEX_ACCENT)
|
|
{
|
|
*negptr = TRUE;
|
|
ptr++;
|
|
}
|
|
for (i = 0; i < (int)(sizeof(name) / sizeof(pcre_uchar)) - 1; i++)
|
|
{
|
|
c = *(++ptr);
|
|
if (c == CHAR_NULL) goto ERROR_RETURN;
|
|
if (c == CHAR_RIGHT_CURLY_BRACKET) break;
|
|
name[i] = c;
|
|
}
|
|
if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN;
|
|
name[i] = 0;
|
|
}
|
|
|
|
/* Otherwise there is just one following character */
|
|
|
|
else
|
|
{
|
|
name[0] = c;
|
|
name[1] = 0;
|
|
}
|
|
|
|
*ptrptr = ptr;
|
|
|
|
/* Search for a recognized property name using binary chop */
|
|
|
|
bot = 0;
|
|
top = PRIV(utt_size);
|
|
|
|
while (bot < top)
|
|
{
|
|
int r;
|
|
i = (bot + top) >> 1;
|
|
r = STRCMP_UC_C8(name, PRIV(utt_names) + PRIV(utt)[i].name_offset);
|
|
if (r == 0)
|
|
{
|
|
*ptypeptr = PRIV(utt)[i].type;
|
|
*pdataptr = PRIV(utt)[i].value;
|
|
return TRUE;
|
|
}
|
|
if (r > 0) bot = i + 1; else top = i;
|
|
}
|
|
|
|
*errorcodeptr = ERR47;
|
|
*ptrptr = ptr;
|
|
return FALSE;
|
|
|
|
ERROR_RETURN:
|
|
*errorcodeptr = ERR46;
|
|
*ptrptr = ptr;
|
|
return FALSE;
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Read repeat counts *
|
|
*************************************************/
|
|
|
|
/* Read an item of the form {n,m} and return the values. This is called only
|
|
after is_counted_repeat() has confirmed that a repeat-count quantifier exists,
|
|
so the syntax is guaranteed to be correct, but we need to check the values.
|
|
|
|
Arguments:
|
|
p pointer to first char after '{'
|
|
minp pointer to int for min
|
|
maxp pointer to int for max
|
|
returned as -1 if no max
|
|
errorcodeptr points to error code variable
|
|
|
|
Returns: pointer to '}' on success;
|
|
current ptr on error, with errorcodeptr set non-zero
|
|
*/
|
|
|
|
static const pcre_uchar *
|
|
read_repeat_counts(const pcre_uchar *p, int *minp, int *maxp, int *errorcodeptr)
|
|
{
|
|
int min = 0;
|
|
int max = -1;
|
|
|
|
/* Read the minimum value and do a paranoid check: a negative value indicates
|
|
an integer overflow. */
|
|
|
|
while (IS_DIGIT(*p)) min = min * 10 + (int)(*p++ - CHAR_0);
|
|
if (min < 0 || min > 65535)
|
|
{
|
|
*errorcodeptr = ERR5;
|
|
return p;
|
|
}
|
|
|
|
/* Read the maximum value if there is one, and again do a paranoid on its size.
|
|
Also, max must not be less than min. */
|
|
|
|
if (*p == CHAR_RIGHT_CURLY_BRACKET) max = min; else
|
|
{
|
|
if (*(++p) != CHAR_RIGHT_CURLY_BRACKET)
|
|
{
|
|
max = 0;
|
|
while(IS_DIGIT(*p)) max = max * 10 + (int)(*p++ - CHAR_0);
|
|
if (max < 0 || max > 65535)
|
|
{
|
|
*errorcodeptr = ERR5;
|
|
return p;
|
|
}
|
|
if (max < min)
|
|
{
|
|
*errorcodeptr = ERR4;
|
|
return p;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Fill in the required variables, and pass back the pointer to the terminating
|
|
'}'. */
|
|
|
|
*minp = min;
|
|
*maxp = max;
|
|
return p;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Find first significant op code *
|
|
*************************************************/
|
|
|
|
/* This is called by several functions that scan a compiled expression looking
|
|
for a fixed first character, or an anchoring op code etc. It skips over things
|
|
that do not influence this. For some calls, it makes sense to skip negative
|
|
forward and all backward assertions, and also the \b assertion; for others it
|
|
does not.
|
|
|
|
Arguments:
|
|
code pointer to the start of the group
|
|
skipassert TRUE if certain assertions are to be skipped
|
|
|
|
Returns: pointer to the first significant opcode
|
|
*/
|
|
|
|
static const pcre_uchar*
|
|
first_significant_code(const pcre_uchar *code, BOOL skipassert)
|
|
{
|
|
for (;;)
|
|
{
|
|
switch ((int)*code)
|
|
{
|
|
case OP_ASSERT_NOT:
|
|
case OP_ASSERTBACK:
|
|
case OP_ASSERTBACK_NOT:
|
|
if (!skipassert) return code;
|
|
do code += GET(code, 1); while (*code == OP_ALT);
|
|
code += PRIV(OP_lengths)[*code];
|
|
break;
|
|
|
|
case OP_WORD_BOUNDARY:
|
|
case OP_NOT_WORD_BOUNDARY:
|
|
if (!skipassert) return code;
|
|
/* Fall through */
|
|
|
|
case OP_CALLOUT:
|
|
case OP_CREF:
|
|
case OP_DNCREF:
|
|
case OP_RREF:
|
|
case OP_DNRREF:
|
|
case OP_DEF:
|
|
code += PRIV(OP_lengths)[*code];
|
|
break;
|
|
|
|
default:
|
|
return code;
|
|
}
|
|
}
|
|
/* Control never reaches here */
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Find the fixed length of a branch *
|
|
*************************************************/
|
|
|
|
/* Scan a branch and compute the fixed length of subject that will match it,
|
|
if the length is fixed. This is needed for dealing with backward assertions.
|
|
In UTF8 mode, the result is in characters rather than bytes. The branch is
|
|
temporarily terminated with OP_END when this function is called.
|
|
|
|
This function is called when a backward assertion is encountered, so that if it
|
|
fails, the error message can point to the correct place in the pattern.
|
|
However, we cannot do this when the assertion contains subroutine calls,
|
|
because they can be forward references. We solve this by remembering this case
|
|
and doing the check at the end; a flag specifies which mode we are running in.
|
|
|
|
Arguments:
|
|
code points to the start of the pattern (the bracket)
|
|
utf TRUE in UTF-8 / UTF-16 / UTF-32 mode
|
|
atend TRUE if called when the pattern is complete
|
|
cd the "compile data" structure
|
|
|
|
Returns: the fixed length,
|
|
or -1 if there is no fixed length,
|
|
or -2 if \C was encountered (in UTF-8 mode only)
|
|
or -3 if an OP_RECURSE item was encountered and atend is FALSE
|
|
or -4 if an unknown opcode was encountered (internal error)
|
|
*/
|
|
|
|
static int
|
|
find_fixedlength(pcre_uchar *code, BOOL utf, BOOL atend, compile_data *cd)
|
|
{
|
|
int length = -1;
|
|
|
|
register int branchlength = 0;
|
|
register pcre_uchar *cc = code + 1 + LINK_SIZE;
|
|
|
|
/* Scan along the opcodes for this branch. If we get to the end of the
|
|
branch, check the length against that of the other branches. */
|
|
|
|
for (;;)
|
|
{
|
|
int d;
|
|
pcre_uchar *ce, *cs;
|
|
register pcre_uchar op = *cc;
|
|
|
|
switch (op)
|
|
{
|
|
/* We only need to continue for OP_CBRA (normal capturing bracket) and
|
|
OP_BRA (normal non-capturing bracket) because the other variants of these
|
|
opcodes are all concerned with unlimited repeated groups, which of course
|
|
are not of fixed length. */
|
|
|
|
case OP_CBRA:
|
|
case OP_BRA:
|
|
case OP_ONCE:
|
|
case OP_ONCE_NC:
|
|
case OP_COND:
|
|
d = find_fixedlength(cc + ((op == OP_CBRA)? IMM2_SIZE : 0), utf, atend, cd);
|
|
if (d < 0) return d;
|
|
branchlength += d;
|
|
do cc += GET(cc, 1); while (*cc == OP_ALT);
|
|
cc += 1 + LINK_SIZE;
|
|
break;
|
|
|
|
/* Reached end of a branch; if it's a ket it is the end of a nested call.
|
|
If it's ALT it is an alternation in a nested call. An ACCEPT is effectively
|
|
an ALT. If it is END it's the end of the outer call. All can be handled by
|
|
the same code. Note that we must not include the OP_KETRxxx opcodes here,
|
|
because they all imply an unlimited repeat. */
|
|
|
|
case OP_ALT:
|
|
case OP_KET:
|
|
case OP_END:
|
|
case OP_ACCEPT:
|
|
case OP_ASSERT_ACCEPT:
|
|
if (length < 0) length = branchlength;
|
|
else if (length != branchlength) return -1;
|
|
if (*cc != OP_ALT) return length;
|
|
cc += 1 + LINK_SIZE;
|
|
branchlength = 0;
|
|
break;
|
|
|
|
/* A true recursion implies not fixed length, but a subroutine call may
|
|
be OK. If the subroutine is a forward reference, we can't deal with
|
|
it until the end of the pattern, so return -3. */
|
|
|
|
case OP_RECURSE:
|
|
if (!atend) return -3;
|
|
cs = ce = (pcre_uchar *)cd->start_code + GET(cc, 1); /* Start subpattern */
|
|
do ce += GET(ce, 1); while (*ce == OP_ALT); /* End subpattern */
|
|
if (cc > cs && cc < ce) return -1; /* Recursion */
|
|
d = find_fixedlength(cs + IMM2_SIZE, utf, atend, cd);
|
|
if (d < 0) return d;
|
|
branchlength += d;
|
|
cc += 1 + LINK_SIZE;
|
|
break;
|
|
|
|
/* Skip over assertive subpatterns */
|
|
|
|
case OP_ASSERT:
|
|
case OP_ASSERT_NOT:
|
|
case OP_ASSERTBACK:
|
|
case OP_ASSERTBACK_NOT:
|
|
do cc += GET(cc, 1); while (*cc == OP_ALT);
|
|
cc += PRIV(OP_lengths)[*cc];
|
|
break;
|
|
|
|
/* Skip over things that don't match chars */
|
|
|
|
case OP_MARK:
|
|
case OP_PRUNE_ARG:
|
|
case OP_SKIP_ARG:
|
|
case OP_THEN_ARG:
|
|
cc += cc[1] + PRIV(OP_lengths)[*cc];
|
|
break;
|
|
|
|
case OP_CALLOUT:
|
|
case OP_CIRC:
|
|
case OP_CIRCM:
|
|
case OP_CLOSE:
|
|
case OP_COMMIT:
|
|
case OP_CREF:
|
|
case OP_DEF:
|
|
case OP_DNCREF:
|
|
case OP_DNRREF:
|
|
case OP_DOLL:
|
|
case OP_DOLLM:
|
|
case OP_EOD:
|
|
case OP_EODN:
|
|
case OP_FAIL:
|
|
case OP_NOT_WORD_BOUNDARY:
|
|
case OP_PRUNE:
|
|
case OP_REVERSE:
|
|
case OP_RREF:
|
|
case OP_SET_SOM:
|
|
case OP_SKIP:
|
|
case OP_SOD:
|
|
case OP_SOM:
|
|
case OP_THEN:
|
|
case OP_WORD_BOUNDARY:
|
|
cc += PRIV(OP_lengths)[*cc];
|
|
break;
|
|
|
|
/* Handle literal characters */
|
|
|
|
case OP_CHAR:
|
|
case OP_CHARI:
|
|
case OP_NOT:
|
|
case OP_NOTI:
|
|
branchlength++;
|
|
cc += 2;
|
|
#ifdef SUPPORT_UTF
|
|
if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
|
|
#endif
|
|
break;
|
|
|
|
/* Handle exact repetitions. The count is already in characters, but we
|
|
need to skip over a multibyte character in UTF8 mode. */
|
|
|
|
case OP_EXACT:
|
|
case OP_EXACTI:
|
|
case OP_NOTEXACT:
|
|
case OP_NOTEXACTI:
|
|
branchlength += (int)GET2(cc,1);
|
|
cc += 2 + IMM2_SIZE;
|
|
#ifdef SUPPORT_UTF
|
|
if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
|
|
#endif
|
|
break;
|
|
|
|
case OP_TYPEEXACT:
|
|
branchlength += GET2(cc,1);
|
|
if (cc[1 + IMM2_SIZE] == OP_PROP || cc[1 + IMM2_SIZE] == OP_NOTPROP)
|
|
cc += 2;
|
|
cc += 1 + IMM2_SIZE + 1;
|
|
break;
|
|
|
|
/* Handle single-char matchers */
|
|
|
|
case OP_PROP:
|
|
case OP_NOTPROP:
|
|
cc += 2;
|
|
/* Fall through */
|
|
|
|
case OP_HSPACE:
|
|
case OP_VSPACE:
|
|
case OP_NOT_HSPACE:
|
|
case OP_NOT_VSPACE:
|
|
case OP_NOT_DIGIT:
|
|
case OP_DIGIT:
|
|
case OP_NOT_WHITESPACE:
|
|
case OP_WHITESPACE:
|
|
case OP_NOT_WORDCHAR:
|
|
case OP_WORDCHAR:
|
|
case OP_ANY:
|
|
case OP_ALLANY:
|
|
branchlength++;
|
|
cc++;
|
|
break;
|
|
|
|
/* The single-byte matcher isn't allowed. This only happens in UTF-8 mode;
|
|
otherwise \C is coded as OP_ALLANY. */
|
|
|
|
case OP_ANYBYTE:
|
|
return -2;
|
|
|
|
/* Check a class for variable quantification */
|
|
|
|
case OP_CLASS:
|
|
case OP_NCLASS:
|
|
#if defined SUPPORT_UTF || defined COMPILE_PCRE16 || defined COMPILE_PCRE32
|
|
case OP_XCLASS:
|
|
/* The original code caused an unsigned overflow in 64 bit systems,
|
|
so now we use a conditional statement. */
|
|
if (op == OP_XCLASS)
|
|
cc += GET(cc, 1);
|
|
else
|
|
cc += PRIV(OP_lengths)[OP_CLASS];
|
|
#else
|
|
cc += PRIV(OP_lengths)[OP_CLASS];
|
|
#endif
|
|
|
|
switch (*cc)
|
|
{
|
|
case OP_CRSTAR:
|
|
case OP_CRMINSTAR:
|
|
case OP_CRPLUS:
|
|
case OP_CRMINPLUS:
|
|
case OP_CRQUERY:
|
|
case OP_CRMINQUERY:
|
|
case OP_CRPOSSTAR:
|
|
case OP_CRPOSPLUS:
|
|
case OP_CRPOSQUERY:
|
|
return -1;
|
|
|
|
case OP_CRRANGE:
|
|
case OP_CRMINRANGE:
|
|
case OP_CRPOSRANGE:
|
|
if (GET2(cc,1) != GET2(cc,1+IMM2_SIZE)) return -1;
|
|
branchlength += (int)GET2(cc,1);
|
|
cc += 1 + 2 * IMM2_SIZE;
|
|
break;
|
|
|
|
default:
|
|
branchlength++;
|
|
}
|
|
break;
|
|
|
|
/* Anything else is variable length */
|
|
|
|
case OP_ANYNL:
|
|
case OP_BRAMINZERO:
|
|
case OP_BRAPOS:
|
|
case OP_BRAPOSZERO:
|
|
case OP_BRAZERO:
|
|
case OP_CBRAPOS:
|
|
case OP_EXTUNI:
|
|
case OP_KETRMAX:
|
|
case OP_KETRMIN:
|
|
case OP_KETRPOS:
|
|
case OP_MINPLUS:
|
|
case OP_MINPLUSI:
|
|
case OP_MINQUERY:
|
|
case OP_MINQUERYI:
|
|
case OP_MINSTAR:
|
|
case OP_MINSTARI:
|
|
case OP_MINUPTO:
|
|
case OP_MINUPTOI:
|
|
case OP_NOTMINPLUS:
|
|
case OP_NOTMINPLUSI:
|
|
case OP_NOTMINQUERY:
|
|
case OP_NOTMINQUERYI:
|
|
case OP_NOTMINSTAR:
|
|
case OP_NOTMINSTARI:
|
|
case OP_NOTMINUPTO:
|
|
case OP_NOTMINUPTOI:
|
|
case OP_NOTPLUS:
|
|
case OP_NOTPLUSI:
|
|
case OP_NOTPOSPLUS:
|
|
case OP_NOTPOSPLUSI:
|
|
case OP_NOTPOSQUERY:
|
|
case OP_NOTPOSQUERYI:
|
|
case OP_NOTPOSSTAR:
|
|
case OP_NOTPOSSTARI:
|
|
case OP_NOTPOSUPTO:
|
|
case OP_NOTPOSUPTOI:
|
|
case OP_NOTQUERY:
|
|
case OP_NOTQUERYI:
|
|
case OP_NOTSTAR:
|
|
case OP_NOTSTARI:
|
|
case OP_NOTUPTO:
|
|
case OP_NOTUPTOI:
|
|
case OP_PLUS:
|
|
case OP_PLUSI:
|
|
case OP_POSPLUS:
|
|
case OP_POSPLUSI:
|
|
case OP_POSQUERY:
|
|
case OP_POSQUERYI:
|
|
case OP_POSSTAR:
|
|
case OP_POSSTARI:
|
|
case OP_POSUPTO:
|
|
case OP_POSUPTOI:
|
|
case OP_QUERY:
|
|
case OP_QUERYI:
|
|
case OP_REF:
|
|
case OP_REFI:
|
|
case OP_DNREF:
|
|
case OP_DNREFI:
|
|
case OP_SBRA:
|
|
case OP_SBRAPOS:
|
|
case OP_SCBRA:
|
|
case OP_SCBRAPOS:
|
|
case OP_SCOND:
|
|
case OP_SKIPZERO:
|
|
case OP_STAR:
|
|
case OP_STARI:
|
|
case OP_TYPEMINPLUS:
|
|
case OP_TYPEMINQUERY:
|
|
case OP_TYPEMINSTAR:
|
|
case OP_TYPEMINUPTO:
|
|
case OP_TYPEPLUS:
|
|
case OP_TYPEPOSPLUS:
|
|
case OP_TYPEPOSQUERY:
|
|
case OP_TYPEPOSSTAR:
|
|
case OP_TYPEPOSUPTO:
|
|
case OP_TYPEQUERY:
|
|
case OP_TYPESTAR:
|
|
case OP_TYPEUPTO:
|
|
case OP_UPTO:
|
|
case OP_UPTOI:
|
|
return -1;
|
|
|
|
/* Catch unrecognized opcodes so that when new ones are added they
|
|
are not forgotten, as has happened in the past. */
|
|
|
|
default:
|
|
return -4;
|
|
}
|
|
}
|
|
/* Control never gets here */
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Scan compiled regex for specific bracket *
|
|
*************************************************/
|
|
|
|
/* This little function scans through a compiled pattern until it finds a
|
|
capturing bracket with the given number, or, if the number is negative, an
|
|
instance of OP_REVERSE for a lookbehind. The function is global in the C sense
|
|
so that it can be called from pcre_study() when finding the minimum matching
|
|
length.
|
|
|
|
Arguments:
|
|
code points to start of expression
|
|
utf TRUE in UTF-8 / UTF-16 / UTF-32 mode
|
|
number the required bracket number or negative to find a lookbehind
|
|
|
|
Returns: pointer to the opcode for the bracket, or NULL if not found
|
|
*/
|
|
|
|
const pcre_uchar *
|
|
PRIV(find_bracket)(const pcre_uchar *code, BOOL utf, int number)
|
|
{
|
|
for (;;)
|
|
{
|
|
register pcre_uchar c = *code;
|
|
|
|
if (c == OP_END) return NULL;
|
|
|
|
/* XCLASS is used for classes that cannot be represented just by a bit
|
|
map. This includes negated single high-valued characters. The length in
|
|
the table is zero; the actual length is stored in the compiled code. */
|
|
|
|
if (c == OP_XCLASS) code += GET(code, 1);
|
|
|
|
/* Handle recursion */
|
|
|
|
else if (c == OP_REVERSE)
|
|
{
|
|
if (number < 0) return (pcre_uchar *)code;
|
|
code += PRIV(OP_lengths)[c];
|
|
}
|
|
|
|
/* Handle capturing bracket */
|
|
|
|
else if (c == OP_CBRA || c == OP_SCBRA ||
|
|
c == OP_CBRAPOS || c == OP_SCBRAPOS)
|
|
{
|
|
int n = (int)GET2(code, 1+LINK_SIZE);
|
|
if (n == number) return (pcre_uchar *)code;
|
|
code += PRIV(OP_lengths)[c];
|
|
}
|
|
|
|
/* Otherwise, we can get the item's length from the table, except that for
|
|
repeated character types, we have to test for \p and \P, which have an extra
|
|
two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we
|
|
must add in its length. */
|
|
|
|
else
|
|
{
|
|
switch(c)
|
|
{
|
|
case OP_TYPESTAR:
|
|
case OP_TYPEMINSTAR:
|
|
case OP_TYPEPLUS:
|
|
case OP_TYPEMINPLUS:
|
|
case OP_TYPEQUERY:
|
|
case OP_TYPEMINQUERY:
|
|
case OP_TYPEPOSSTAR:
|
|
case OP_TYPEPOSPLUS:
|
|
case OP_TYPEPOSQUERY:
|
|
if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
|
|
break;
|
|
|
|
case OP_TYPEUPTO:
|
|
case OP_TYPEMINUPTO:
|
|
case OP_TYPEEXACT:
|
|
case OP_TYPEPOSUPTO:
|
|
if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP)
|
|
code += 2;
|
|
break;
|
|
|
|
case OP_MARK:
|
|
case OP_PRUNE_ARG:
|
|
case OP_SKIP_ARG:
|
|
case OP_THEN_ARG:
|
|
code += code[1];
|
|
break;
|
|
}
|
|
|
|
/* Add in the fixed length from the table */
|
|
|
|
code += PRIV(OP_lengths)[c];
|
|
|
|
/* In UTF-8 mode, opcodes that are followed by a character may be followed by
|
|
a multi-byte character. The length in the table is a minimum, so we have to
|
|
arrange to skip the extra bytes. */
|
|
|
|
#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
|
|
if (utf) switch(c)
|
|
{
|
|
case OP_CHAR:
|
|
case OP_CHARI:
|
|
case OP_EXACT:
|
|
case OP_EXACTI:
|
|
case OP_UPTO:
|
|
case OP_UPTOI:
|
|
case OP_MINUPTO:
|
|
case OP_MINUPTOI:
|
|
case OP_POSUPTO:
|
|
case OP_POSUPTOI:
|
|
case OP_STAR:
|
|
case OP_STARI:
|
|
case OP_MINSTAR:
|
|
case OP_MINSTARI:
|
|
case OP_POSSTAR:
|
|
case OP_POSSTARI:
|
|
case OP_PLUS:
|
|
case OP_PLUSI:
|
|
case OP_MINPLUS:
|
|
case OP_MINPLUSI:
|
|
case OP_POSPLUS:
|
|
case OP_POSPLUSI:
|
|
case OP_QUERY:
|
|
case OP_QUERYI:
|
|
case OP_MINQUERY:
|
|
case OP_MINQUERYI:
|
|
case OP_POSQUERY:
|
|
case OP_POSQUERYI:
|
|
if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]);
|
|
break;
|
|
}
|
|
#else
|
|
(void)(utf); /* Keep compiler happy by referencing function argument */
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Scan compiled regex for recursion reference *
|
|
*************************************************/
|
|
|
|
/* This little function scans through a compiled pattern until it finds an
|
|
instance of OP_RECURSE.
|
|
|
|
Arguments:
|
|
code points to start of expression
|
|
utf TRUE in UTF-8 / UTF-16 / UTF-32 mode
|
|
|
|
Returns: pointer to the opcode for OP_RECURSE, or NULL if not found
|
|
*/
|
|
|
|
static const pcre_uchar *
|
|
find_recurse(const pcre_uchar *code, BOOL utf)
|
|
{
|
|
for (;;)
|
|
{
|
|
register pcre_uchar c = *code;
|
|
if (c == OP_END) return NULL;
|
|
if (c == OP_RECURSE) return code;
|
|
|
|
/* XCLASS is used for classes that cannot be represented just by a bit
|
|
map. This includes negated single high-valued characters. The length in
|
|
the table is zero; the actual length is stored in the compiled code. */
|
|
|
|
if (c == OP_XCLASS) code += GET(code, 1);
|
|
|
|
/* Otherwise, we can get the item's length from the table, except that for
|
|
repeated character types, we have to test for \p and \P, which have an extra
|
|
two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we
|
|
must add in its length. */
|
|
|
|
else
|
|
{
|
|
switch(c)
|
|
{
|
|
case OP_TYPESTAR:
|
|
case OP_TYPEMINSTAR:
|
|
case OP_TYPEPLUS:
|
|
case OP_TYPEMINPLUS:
|
|
case OP_TYPEQUERY:
|
|
case OP_TYPEMINQUERY:
|
|
case OP_TYPEPOSSTAR:
|
|
case OP_TYPEPOSPLUS:
|
|
case OP_TYPEPOSQUERY:
|
|
if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
|
|
break;
|
|
|
|
case OP_TYPEPOSUPTO:
|
|
case OP_TYPEUPTO:
|
|
case OP_TYPEMINUPTO:
|
|
case OP_TYPEEXACT:
|
|
if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP)
|
|
code += 2;
|
|
break;
|
|
|
|
case OP_MARK:
|
|
case OP_PRUNE_ARG:
|
|
case OP_SKIP_ARG:
|
|
case OP_THEN_ARG:
|
|
code += code[1];
|
|
break;
|
|
}
|
|
|
|
/* Add in the fixed length from the table */
|
|
|
|
code += PRIV(OP_lengths)[c];
|
|
|
|
/* In UTF-8 mode, opcodes that are followed by a character may be followed
|
|
by a multi-byte character. The length in the table is a minimum, so we have
|
|
to arrange to skip the extra bytes. */
|
|
|
|
#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
|
|
if (utf) switch(c)
|
|
{
|
|
case OP_CHAR:
|
|
case OP_CHARI:
|
|
case OP_NOT:
|
|
case OP_NOTI:
|
|
case OP_EXACT:
|
|
case OP_EXACTI:
|
|
case OP_NOTEXACT:
|
|
case OP_NOTEXACTI:
|
|
case OP_UPTO:
|
|
case OP_UPTOI:
|
|
case OP_NOTUPTO:
|
|
case OP_NOTUPTOI:
|
|
case OP_MINUPTO:
|
|
case OP_MINUPTOI:
|
|
case OP_NOTMINUPTO:
|
|
case OP_NOTMINUPTOI:
|
|
case OP_POSUPTO:
|
|
case OP_POSUPTOI:
|
|
case OP_NOTPOSUPTO:
|
|
case OP_NOTPOSUPTOI:
|
|
case OP_STAR:
|
|
case OP_STARI:
|
|
case OP_NOTSTAR:
|
|
case OP_NOTSTARI:
|
|
case OP_MINSTAR:
|
|
case OP_MINSTARI:
|
|
case OP_NOTMINSTAR:
|
|
case OP_NOTMINSTARI:
|
|
case OP_POSSTAR:
|
|
case OP_POSSTARI:
|
|
case OP_NOTPOSSTAR:
|
|
case OP_NOTPOSSTARI:
|
|
case OP_PLUS:
|
|
case OP_PLUSI:
|
|
case OP_NOTPLUS:
|
|
case OP_NOTPLUSI:
|
|
case OP_MINPLUS:
|
|
case OP_MINPLUSI:
|
|
case OP_NOTMINPLUS:
|
|
case OP_NOTMINPLUSI:
|
|
case OP_POSPLUS:
|
|
case OP_POSPLUSI:
|
|
case OP_NOTPOSPLUS:
|
|
case OP_NOTPOSPLUSI:
|
|
case OP_QUERY:
|
|
case OP_QUERYI:
|
|
case OP_NOTQUERY:
|
|
case OP_NOTQUERYI:
|
|
case OP_MINQUERY:
|
|
case OP_MINQUERYI:
|
|
case OP_NOTMINQUERY:
|
|
case OP_NOTMINQUERYI:
|
|
case OP_POSQUERY:
|
|
case OP_POSQUERYI:
|
|
case OP_NOTPOSQUERY:
|
|
case OP_NOTPOSQUERYI:
|
|
if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]);
|
|
break;
|
|
}
|
|
#else
|
|
(void)(utf); /* Keep compiler happy by referencing function argument */
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Scan compiled branch for non-emptiness *
|
|
*************************************************/
|
|
|
|
/* This function scans through a branch of a compiled pattern to see whether it
|
|
can match the empty string or not. It is called from could_be_empty()
|
|
below and from compile_branch() when checking for an unlimited repeat of a
|
|
group that can match nothing. Note that first_significant_code() skips over
|
|
backward and negative forward assertions when its final argument is TRUE. If we
|
|
hit an unclosed bracket, we return "empty" - this means we've struck an inner
|
|
bracket whose current branch will already have been scanned.
|
|
|
|
Arguments:
|
|
code points to start of search
|
|
endcode points to where to stop
|
|
utf TRUE if in UTF-8 / UTF-16 / UTF-32 mode
|
|
cd contains pointers to tables etc.
|
|
recurses chain of recurse_check to catch mutual recursion
|
|
|
|
Returns: TRUE if what is matched could be empty
|
|
*/
|
|
|
|
typedef struct recurse_check {
|
|
struct recurse_check *prev;
|
|
const pcre_uchar *group;
|
|
} recurse_check;
|
|
|
|
static BOOL
|
|
could_be_empty_branch(const pcre_uchar *code, const pcre_uchar *endcode,
|
|
BOOL utf, compile_data *cd, recurse_check *recurses)
|
|
{
|
|
register pcre_uchar c;
|
|
recurse_check this_recurse;
|
|
|
|
for (code = first_significant_code(code + PRIV(OP_lengths)[*code], TRUE);
|
|
code < endcode;
|
|
code = first_significant_code(code + PRIV(OP_lengths)[c], TRUE))
|
|
{
|
|
const pcre_uchar *ccode;
|
|
|
|
c = *code;
|
|
|
|
/* Skip over forward assertions; the other assertions are skipped by
|
|
first_significant_code() with a TRUE final argument. */
|
|
|
|
if (c == OP_ASSERT)
|
|
{
|
|
do code += GET(code, 1); while (*code == OP_ALT);
|
|
c = *code;
|
|
continue;
|
|
}
|
|
|
|
/* For a recursion/subroutine call, if its end has been reached, which
|
|
implies a backward reference subroutine call, we can scan it. If it's a
|
|
forward reference subroutine call, we can't. To detect forward reference
|
|
we have to scan up the list that is kept in the workspace. This function is
|
|
called only when doing the real compile, not during the pre-compile that
|
|
measures the size of the compiled pattern. */
|
|
|
|
if (c == OP_RECURSE)
|
|
{
|
|
const pcre_uchar *scode = cd->start_code + GET(code, 1);
|
|
BOOL empty_branch;
|
|
|
|
/* Test for forward reference or uncompleted reference. This is disabled
|
|
when called to scan a completed pattern by setting cd->start_workspace to
|
|
NULL. */
|
|
|
|
if (cd->start_workspace != NULL)
|
|
{
|
|
const pcre_uchar *tcode;
|
|
for (tcode = cd->start_workspace; tcode < cd->hwm; tcode += LINK_SIZE)
|
|
if ((int)GET(tcode, 0) == (int)(code + 1 - cd->start_code)) return TRUE;
|
|
if (GET(scode, 1) == 0) return TRUE; /* Unclosed */
|
|
}
|
|
|
|
/* If we are scanning a completed pattern, there are no forward references
|
|
and all groups are complete. We need to detect whether this is a recursive
|
|
call, as otherwise there will be an infinite loop. If it is a recursion,
|
|
just skip over it. Simple recursions are easily detected. For mutual
|
|
recursions we keep a chain on the stack. */
|
|
|
|
else
|
|
{
|
|
recurse_check *r = recurses;
|
|
const pcre_uchar *endgroup = scode;
|
|
|
|
do endgroup += GET(endgroup, 1); while (*endgroup == OP_ALT);
|
|
if (code >= scode && code <= endgroup) continue; /* Simple recursion */
|
|
|
|
for (r = recurses; r != NULL; r = r->prev)
|
|
if (r->group == scode) break;
|
|
if (r != NULL) continue; /* Mutual recursion */
|
|
}
|
|
|
|
/* Completed reference; scan the referenced group, remembering it on the
|
|
stack chain to detect mutual recursions. */
|
|
|
|
empty_branch = FALSE;
|
|
this_recurse.prev = recurses;
|
|
this_recurse.group = scode;
|
|
|
|
do
|
|
{
|
|
if (could_be_empty_branch(scode, endcode, utf, cd, &this_recurse))
|
|
{
|
|
empty_branch = TRUE;
|
|
break;
|
|
}
|
|
scode += GET(scode, 1);
|
|
}
|
|
while (*scode == OP_ALT);
|
|
|
|
if (!empty_branch) return FALSE; /* All branches are non-empty */
|
|
continue;
|
|
}
|
|
|
|
/* Groups with zero repeats can of course be empty; skip them. */
|
|
|
|
if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO ||
|
|
c == OP_BRAPOSZERO)
|
|
{
|
|
code += PRIV(OP_lengths)[c];
|
|
do code += GET(code, 1); while (*code == OP_ALT);
|
|
c = *code;
|
|
continue;
|
|
}
|
|
|
|
/* A nested group that is already marked as "could be empty" can just be
|
|
skipped. */
|
|
|
|
if (c == OP_SBRA || c == OP_SBRAPOS ||
|
|
c == OP_SCBRA || c == OP_SCBRAPOS)
|
|
{
|
|
do code += GET(code, 1); while (*code == OP_ALT);
|
|
c = *code;
|
|
continue;
|
|
}
|
|
|
|
/* For other groups, scan the branches. */
|
|
|
|
if (c == OP_BRA || c == OP_BRAPOS ||
|
|
c == OP_CBRA || c == OP_CBRAPOS ||
|
|
c == OP_ONCE || c == OP_ONCE_NC ||
|
|
c == OP_COND)
|
|
{
|
|
BOOL empty_branch;
|
|
if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */
|
|
|
|
/* If a conditional group has only one branch, there is a second, implied,
|
|
empty branch, so just skip over the conditional, because it could be empty.
|
|
Otherwise, scan the individual branches of the group. */
|
|
|
|
if (c == OP_COND && code[GET(code, 1)] != OP_ALT)
|
|
code += GET(code, 1);
|
|
else
|
|
{
|
|
empty_branch = FALSE;
|
|
do
|
|
{
|
|
if (!empty_branch && could_be_empty_branch(code, endcode, utf, cd, NULL))
|
|
empty_branch = TRUE;
|
|
code += GET(code, 1);
|
|
}
|
|
while (*code == OP_ALT);
|
|
if (!empty_branch) return FALSE; /* All branches are non-empty */
|
|
}
|
|
|
|
c = *code;
|
|
continue;
|
|
}
|
|
|
|
/* Handle the other opcodes */
|
|
|
|
switch (c)
|
|
{
|
|
/* Check for quantifiers after a class. XCLASS is used for classes that
|
|
cannot be represented just by a bit map. This includes negated single
|
|
high-valued characters. The length in PRIV(OP_lengths)[] is zero; the
|
|
actual length is stored in the compiled code, so we must update "code"
|
|
here. */
|
|
|
|
#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
|
|
case OP_XCLASS:
|
|
ccode = code += GET(code, 1);
|
|
goto CHECK_CLASS_REPEAT;
|
|
#endif
|
|
|
|
case OP_CLASS:
|
|
case OP_NCLASS:
|
|
ccode = code + PRIV(OP_lengths)[OP_CLASS];
|
|
|
|
#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
|
|
CHECK_CLASS_REPEAT:
|
|
#endif
|
|
|
|
switch (*ccode)
|
|
{
|
|
case OP_CRSTAR: /* These could be empty; continue */
|
|
case OP_CRMINSTAR:
|
|
case OP_CRQUERY:
|
|
case OP_CRMINQUERY:
|
|
case OP_CRPOSSTAR:
|
|
case OP_CRPOSQUERY:
|
|
break;
|
|
|
|
default: /* Non-repeat => class must match */
|
|
case OP_CRPLUS: /* These repeats aren't empty */
|
|
case OP_CRMINPLUS:
|
|
case OP_CRPOSPLUS:
|
|
return FALSE;
|
|
|
|
case OP_CRRANGE:
|
|
case OP_CRMINRANGE:
|
|
case OP_CRPOSRANGE:
|
|
if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */
|
|
break;
|
|
}
|
|
break;
|
|
|
|
/* Opcodes that must match a character */
|
|
|
|
case OP_ANY:
|
|
case OP_ALLANY:
|
|
case OP_ANYBYTE:
|
|
|
|
case OP_PROP:
|
|
case OP_NOTPROP:
|
|
case OP_ANYNL:
|
|
|
|
case OP_NOT_HSPACE:
|
|
case OP_HSPACE:
|
|
case OP_NOT_VSPACE:
|
|
case OP_VSPACE:
|
|
case OP_EXTUNI:
|
|
|
|
case OP_NOT_DIGIT:
|
|
case OP_DIGIT:
|
|
case OP_NOT_WHITESPACE:
|
|
case OP_WHITESPACE:
|
|
case OP_NOT_WORDCHAR:
|
|
case OP_WORDCHAR:
|
|
|
|
case OP_CHAR:
|
|
case OP_CHARI:
|
|
case OP_NOT:
|
|
case OP_NOTI:
|
|
|
|
case OP_PLUS:
|
|
case OP_PLUSI:
|
|
case OP_MINPLUS:
|
|
case OP_MINPLUSI:
|
|
|
|
case OP_NOTPLUS:
|
|
case OP_NOTPLUSI:
|
|
case OP_NOTMINPLUS:
|
|
case OP_NOTMINPLUSI:
|
|
|
|
case OP_POSPLUS:
|
|
case OP_POSPLUSI:
|
|
case OP_NOTPOSPLUS:
|
|
case OP_NOTPOSPLUSI:
|
|
|
|
case OP_EXACT:
|
|
case OP_EXACTI:
|
|
case OP_NOTEXACT:
|
|
case OP_NOTEXACTI:
|
|
|
|
case OP_TYPEPLUS:
|
|
case OP_TYPEMINPLUS:
|
|
case OP_TYPEPOSPLUS:
|
|
case OP_TYPEEXACT:
|
|
|
|
return FALSE;
|
|
|
|
/* These are going to continue, as they may be empty, but we have to
|
|
fudge the length for the \p and \P cases. */
|
|
|
|
case OP_TYPESTAR:
|
|
case OP_TYPEMINSTAR:
|
|
case OP_TYPEPOSSTAR:
|
|
case OP_TYPEQUERY:
|
|
case OP_TYPEMINQUERY:
|
|
case OP_TYPEPOSQUERY:
|
|
if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
|
|
break;
|
|
|
|
/* Same for these */
|
|
|
|
case OP_TYPEUPTO:
|
|
case OP_TYPEMINUPTO:
|
|
case OP_TYPEPOSUPTO:
|
|
if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP)
|
|
code += 2;
|
|
break;
|
|
|
|
/* End of branch */
|
|
|
|
case OP_KET:
|
|
case OP_KETRMAX:
|
|
case OP_KETRMIN:
|
|
case OP_KETRPOS:
|
|
case OP_ALT:
|
|
return TRUE;
|
|
|
|
/* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO,
|
|
MINUPTO, and POSUPTO and their caseless and negative versions may be
|
|
followed by a multibyte character. */
|
|
|
|
#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
|
|
case OP_STAR:
|
|
case OP_STARI:
|
|
case OP_NOTSTAR:
|
|
case OP_NOTSTARI:
|
|
|
|
case OP_MINSTAR:
|
|
case OP_MINSTARI:
|
|
case OP_NOTMINSTAR:
|
|
case OP_NOTMINSTARI:
|
|
|
|
case OP_POSSTAR:
|
|
case OP_POSSTARI:
|
|
case OP_NOTPOSSTAR:
|
|
case OP_NOTPOSSTARI:
|
|
|
|
case OP_QUERY:
|
|
case OP_QUERYI:
|
|
case OP_NOTQUERY:
|
|
case OP_NOTQUERYI:
|
|
|
|
case OP_MINQUERY:
|
|
case OP_MINQUERYI:
|
|
case OP_NOTMINQUERY:
|
|
case OP_NOTMINQUERYI:
|
|
|
|
case OP_POSQUERY:
|
|
case OP_POSQUERYI:
|
|
case OP_NOTPOSQUERY:
|
|
case OP_NOTPOSQUERYI:
|
|
|
|
if (utf && HAS_EXTRALEN(code[1])) code += GET_EXTRALEN(code[1]);
|
|
break;
|
|
|
|
case OP_UPTO:
|
|
case OP_UPTOI:
|
|
case OP_NOTUPTO:
|
|
case OP_NOTUPTOI:
|
|
|
|
case OP_MINUPTO:
|
|
case OP_MINUPTOI:
|
|
case OP_NOTMINUPTO:
|
|
case OP_NOTMINUPTOI:
|
|
|
|
case OP_POSUPTO:
|
|
case OP_POSUPTOI:
|
|
case OP_NOTPOSUPTO:
|
|
case OP_NOTPOSUPTOI:
|
|
|
|
if (utf && HAS_EXTRALEN(code[1 + IMM2_SIZE])) code += GET_EXTRALEN(code[1 + IMM2_SIZE]);
|
|
break;
|
|
#endif
|
|
|
|
/* MARK, and PRUNE/SKIP/THEN with an argument must skip over the argument
|
|
string. */
|
|
|
|
case OP_MARK:
|
|
case OP_PRUNE_ARG:
|
|
case OP_SKIP_ARG:
|
|
case OP_THEN_ARG:
|
|
code += code[1];
|
|
break;
|
|
|
|
/* None of the remaining opcodes are required to match a character. */
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Scan compiled regex for non-emptiness *
|
|
*************************************************/
|
|
|
|
/* This function is called to check for left recursive calls. We want to check
|
|
the current branch of the current pattern to see if it could match the empty
|
|
string. If it could, we must look outwards for branches at other levels,
|
|
stopping when we pass beyond the bracket which is the subject of the recursion.
|
|
This function is called only during the real compile, not during the
|
|
pre-compile.
|
|
|
|
Arguments:
|
|
code points to start of the recursion
|
|
endcode points to where to stop (current RECURSE item)
|
|
bcptr points to the chain of current (unclosed) branch starts
|
|
utf TRUE if in UTF-8 / UTF-16 / UTF-32 mode
|
|
cd pointers to tables etc
|
|
|
|
Returns: TRUE if what is matched could be empty
|
|
*/
|
|
|
|
static BOOL
|
|
could_be_empty(const pcre_uchar *code, const pcre_uchar *endcode,
|
|
branch_chain *bcptr, BOOL utf, compile_data *cd)
|
|
{
|
|
while (bcptr != NULL && bcptr->current_branch >= code)
|
|
{
|
|
if (!could_be_empty_branch(bcptr->current_branch, endcode, utf, cd, NULL))
|
|
return FALSE;
|
|
bcptr = bcptr->outer;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Base opcode of repeated opcodes *
|
|
*************************************************/
|
|
|
|
/* Returns the base opcode for repeated single character type opcodes. If the
|
|
opcode is not a repeated character type, it returns with the original value.
|
|
|
|
Arguments: c opcode
|
|
Returns: base opcode for the type
|
|
*/
|
|
|
|
static pcre_uchar
|
|
get_repeat_base(pcre_uchar c)
|
|
{
|
|
return (c > OP_TYPEPOSUPTO)? c :
|
|
(c >= OP_TYPESTAR)? OP_TYPESTAR :
|
|
(c >= OP_NOTSTARI)? OP_NOTSTARI :
|
|
(c >= OP_NOTSTAR)? OP_NOTSTAR :
|
|
(c >= OP_STARI)? OP_STARI :
|
|
OP_STAR;
|
|
}
|
|
|
|
|
|
|
|
#ifdef SUPPORT_UCP
|
|
/*************************************************
|
|
* Check a character and a property *
|
|
*************************************************/
|
|
|
|
/* This function is called by check_auto_possessive() when a property item
|
|
is adjacent to a fixed character.
|
|
|
|
Arguments:
|
|
c the character
|
|
ptype the property type
|
|
pdata the data for the type
|
|
negated TRUE if it's a negated property (\P or \p{^)
|
|
|
|
Returns: TRUE if auto-possessifying is OK
|
|
*/
|
|
|
|
static BOOL
|
|
check_char_prop(pcre_uint32 c, unsigned int ptype, unsigned int pdata,
|
|
BOOL negated)
|
|
{
|
|
const pcre_uint32 *p;
|
|
const ucd_record *prop = GET_UCD(c);
|
|
|
|
switch(ptype)
|
|
{
|
|
case PT_LAMP:
|
|
return (prop->chartype == ucp_Lu ||
|
|
prop->chartype == ucp_Ll ||
|
|
prop->chartype == ucp_Lt) == negated;
|
|
|
|
case PT_GC:
|
|
return (pdata == PRIV(ucp_gentype)[prop->chartype]) == negated;
|
|
|
|
case PT_PC:
|
|
return (pdata == prop->chartype) == negated;
|
|
|
|
case PT_SC:
|
|
return (pdata == prop->script) == negated;
|
|
|
|
/* These are specials */
|
|
|
|
case PT_ALNUM:
|
|
return (PRIV(ucp_gentype)[prop->chartype] == ucp_L ||
|
|
PRIV(ucp_gentype)[prop->chartype] == ucp_N) == negated;
|
|
|
|
/* Perl space used to exclude VT, but from Perl 5.18 it is included, which
|
|
means that Perl space and POSIX space are now identical. PCRE was changed
|
|
at release 8.34. */
|
|
|
|
case PT_SPACE: /* Perl space */
|
|
case PT_PXSPACE: /* POSIX space */
|
|
switch(c)
|
|
{
|
|
HSPACE_CASES:
|
|
VSPACE_CASES:
|
|
return negated;
|
|
|
|
default:
|
|
return (PRIV(ucp_gentype)[prop->chartype] == ucp_Z) == negated;
|
|
}
|
|
break; /* Control never reaches here */
|
|
|
|
case PT_WORD:
|
|
return (PRIV(ucp_gentype)[prop->chartype] == ucp_L ||
|
|
PRIV(ucp_gentype)[prop->chartype] == ucp_N ||
|
|
c == CHAR_UNDERSCORE) == negated;
|
|
|
|
case PT_CLIST:
|
|
p = PRIV(ucd_caseless_sets) + prop->caseset;
|
|
for (;;)
|
|
{
|
|
if (c < *p) return !negated;
|
|
if (c == *p++) return negated;
|
|
}
|
|
break; /* Control never reaches here */
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
#endif /* SUPPORT_UCP */
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Fill the character property list *
|
|
*************************************************/
|
|
|
|
/* Checks whether the code points to an opcode that can take part in auto-
|
|
possessification, and if so, fills a list with its properties.
|
|
|
|
Arguments:
|
|
code points to start of expression
|
|
utf TRUE if in UTF-8 / UTF-16 / UTF-32 mode
|
|
fcc points to case-flipping table
|
|
list points to output list
|
|
list[0] will be filled with the opcode
|
|
list[1] will be non-zero if this opcode
|
|
can match an empty character string
|
|
list[2..7] depends on the opcode
|
|
|
|
Returns: points to the start of the next opcode if *code is accepted
|
|
NULL if *code is not accepted
|
|
*/
|
|
|
|
static const pcre_uchar *
|
|
get_chr_property_list(const pcre_uchar *code, BOOL utf,
|
|
const pcre_uint8 *fcc, pcre_uint32 *list)
|
|
{
|
|
pcre_uchar c = *code;
|
|
pcre_uchar base;
|
|
const pcre_uchar *end;
|
|
pcre_uint32 chr;
|
|
|
|
#ifdef SUPPORT_UCP
|
|
pcre_uint32 *clist_dest;
|
|
const pcre_uint32 *clist_src;
|
|
#else
|
|
utf = utf; /* Suppress "unused parameter" compiler warning */
|
|
#endif
|
|
|
|
list[0] = c;
|
|
list[1] = FALSE;
|
|
code++;
|
|
|
|
if (c >= OP_STAR && c <= OP_TYPEPOSUPTO)
|
|
{
|
|
base = get_repeat_base(c);
|
|
c -= (base - OP_STAR);
|
|
|
|
if (c == OP_UPTO || c == OP_MINUPTO || c == OP_EXACT || c == OP_POSUPTO)
|
|
code += IMM2_SIZE;
|
|
|
|
list[1] = (c != OP_PLUS && c != OP_MINPLUS && c != OP_EXACT && c != OP_POSPLUS);
|
|
|
|
switch(base)
|
|
{
|
|
case OP_STAR:
|
|
list[0] = OP_CHAR;
|
|
break;
|
|
|
|
case OP_STARI:
|
|
list[0] = OP_CHARI;
|
|
break;
|
|
|
|
case OP_NOTSTAR:
|
|
list[0] = OP_NOT;
|
|
break;
|
|
|
|
case OP_NOTSTARI:
|
|
list[0] = OP_NOTI;
|
|
break;
|
|
|
|
case OP_TYPESTAR:
|
|
list[0] = *code;
|
|
code++;
|
|
break;
|
|
}
|
|
c = list[0];
|
|
}
|
|
|
|
switch(c)
|
|
{
|
|
case OP_NOT_DIGIT:
|
|
case OP_DIGIT:
|
|
case OP_NOT_WHITESPACE:
|
|
case OP_WHITESPACE:
|
|
case OP_NOT_WORDCHAR:
|
|
case OP_WORDCHAR:
|
|
case OP_ANY:
|
|
case OP_ALLANY:
|
|
case OP_ANYNL:
|
|
case OP_NOT_HSPACE:
|
|
case OP_HSPACE:
|
|
case OP_NOT_VSPACE:
|
|
case OP_VSPACE:
|
|
case OP_EXTUNI:
|
|
case OP_EODN:
|
|
case OP_EOD:
|
|
case OP_DOLL:
|
|
case OP_DOLLM:
|
|
return code;
|
|
|
|
case OP_CHAR:
|
|
case OP_NOT:
|
|
GETCHARINCTEST(chr, code);
|
|
list[2] = chr;
|
|
list[3] = NOTACHAR;
|
|
return code;
|
|
|
|
case OP_CHARI:
|
|
case OP_NOTI:
|
|
list[0] = (c == OP_CHARI) ? OP_CHAR : OP_NOT;
|
|
GETCHARINCTEST(chr, code);
|
|
list[2] = chr;
|
|
|
|
#ifdef SUPPORT_UCP
|
|
if (chr < 128 || (chr < 256 && !utf))
|
|
list[3] = fcc[chr];
|
|
else
|
|
list[3] = UCD_OTHERCASE(chr);
|
|
#elif defined SUPPORT_UTF || !defined COMPILE_PCRE8
|
|
list[3] = (chr < 256) ? fcc[chr] : chr;
|
|
#else
|
|
list[3] = fcc[chr];
|
|
#endif
|
|
|
|
/* The othercase might be the same value. */
|
|
|
|
if (chr == list[3])
|
|
list[3] = NOTACHAR;
|
|
else
|
|
list[4] = NOTACHAR;
|
|
return code;
|
|
|
|
#ifdef SUPPORT_UCP
|
|
case OP_PROP:
|
|
case OP_NOTPROP:
|
|
if (code[0] != PT_CLIST)
|
|
{
|
|
list[2] = code[0];
|
|
list[3] = code[1];
|
|
return code + 2;
|
|
}
|
|
|
|
/* Convert only if we have enough space. */
|
|
|
|
clist_src = PRIV(ucd_caseless_sets) + code[1];
|
|
clist_dest = list + 2;
|
|
code += 2;
|
|
|
|
do {
|
|
if (clist_dest >= list + 8)
|
|
{
|
|
/* Early return if there is not enough space. This should never
|
|
happen, since all clists are shorter than 5 character now. */
|
|
list[2] = code[0];
|
|
list[3] = code[1];
|
|
return code;
|
|
}
|
|
*clist_dest++ = *clist_src;
|
|
}
|
|
while(*clist_src++ != NOTACHAR);
|
|
|
|
/* All characters are stored. The terminating NOTACHAR
|
|
is copied form the clist itself. */
|
|
|
|
list[0] = (c == OP_PROP) ? OP_CHAR : OP_NOT;
|
|
return code;
|
|
#endif
|
|
|
|
case OP_NCLASS:
|
|
case OP_CLASS:
|
|
#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
|
|
case OP_XCLASS:
|
|
if (c == OP_XCLASS)
|
|
end = code + GET(code, 0) - 1;
|
|
else
|
|
#endif
|
|
end = code + 32 / sizeof(pcre_uchar);
|
|
|
|
switch(*end)
|
|
{
|
|
case OP_CRSTAR:
|
|
case OP_CRMINSTAR:
|
|
case OP_CRQUERY:
|
|
case OP_CRMINQUERY:
|
|
case OP_CRPOSSTAR:
|
|
case OP_CRPOSQUERY:
|
|
list[1] = TRUE;
|
|
end++;
|
|
break;
|
|
|
|
case OP_CRPLUS:
|
|
case OP_CRMINPLUS:
|
|
case OP_CRPOSPLUS:
|
|
end++;
|
|
break;
|
|
|
|
case OP_CRRANGE:
|
|
case OP_CRMINRANGE:
|
|
case OP_CRPOSRANGE:
|
|
list[1] = (GET2(end, 1) == 0);
|
|
end += 1 + 2 * IMM2_SIZE;
|
|
break;
|
|
}
|
|
list[2] = end - code;
|
|
return end;
|
|
}
|
|
return NULL; /* Opcode not accepted */
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Scan further character sets for match *
|
|
*************************************************/
|
|
|
|
/* Checks whether the base and the current opcode have a common character, in
|
|
which case the base cannot be possessified.
|
|
|
|
Arguments:
|
|
code points to the byte code
|
|
utf TRUE in UTF-8 / UTF-16 / UTF-32 mode
|
|
cd static compile data
|
|
base_list the data list of the base opcode
|
|
|
|
Returns: TRUE if the auto-possessification is possible
|
|
*/
|
|
|
|
static BOOL
|
|
compare_opcodes(const pcre_uchar *code, BOOL utf, const compile_data *cd,
|
|
const pcre_uint32 *base_list, const pcre_uchar *base_end)
|
|
{
|
|
pcre_uchar c;
|
|
pcre_uint32 list[8];
|
|
const pcre_uint32 *chr_ptr;
|
|
const pcre_uint32 *ochr_ptr;
|
|
const pcre_uint32 *list_ptr;
|
|
const pcre_uchar *next_code;
|
|
#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
|
|
const pcre_uchar *xclass_flags;
|
|
#endif
|
|
const pcre_uint8 *class_bitset;
|
|
const pcre_uint8 *set1, *set2, *set_end;
|
|
pcre_uint32 chr;
|
|
BOOL accepted, invert_bits;
|
|
|
|
/* Note: the base_list[1] contains whether the current opcode has greedy
|
|
(represented by a non-zero value) quantifier. This is a different from
|
|
other character type lists, which stores here that the character iterator
|
|
matches to an empty string (also represented by a non-zero value). */
|
|
|
|
for(;;)
|
|
{
|
|
/* All operations move the code pointer forward.
|
|
Therefore infinite recursions are not possible. */
|
|
|
|
c = *code;
|
|
|
|
/* Skip over callouts */
|
|
|
|
if (c == OP_CALLOUT)
|
|
{
|
|
code += PRIV(OP_lengths)[c];
|
|
continue;
|
|
}
|
|
|
|
if (c == OP_ALT)
|
|
{
|
|
do code += GET(code, 1); while (*code == OP_ALT);
|
|
c = *code;
|
|
}
|
|
|
|
switch(c)
|
|
{
|
|
case OP_END:
|
|
case OP_KETRPOS:
|
|
/* TRUE only in greedy case. The non-greedy case could be replaced by
|
|
an OP_EXACT, but it is probably not worth it. (And note that OP_EXACT
|
|
uses more memory, which we cannot get at this stage.) */
|
|
|
|
return base_list[1] != 0;
|
|
|
|
case OP_KET:
|
|
/* If the bracket is capturing, and referenced by an OP_RECURSE, or
|
|
it is an atomic sub-pattern (assert, once, etc.) the non-greedy case
|
|
cannot be converted to a possessive form. */
|
|
|
|
if (base_list[1] == 0) return FALSE;
|
|
|
|
switch(*(code - GET(code, 1)))
|
|
{
|
|
case OP_ASSERT:
|
|
case OP_ASSERT_NOT:
|
|
case OP_ASSERTBACK:
|
|
case OP_ASSERTBACK_NOT:
|
|
case OP_ONCE:
|
|
case OP_ONCE_NC:
|
|
/* Atomic sub-patterns and assertions can always auto-possessify their
|
|
last iterator. */
|
|
return TRUE;
|
|
}
|
|
|
|
code += PRIV(OP_lengths)[c];
|
|
continue;
|
|
|
|
case OP_ONCE:
|
|
case OP_ONCE_NC:
|
|
case OP_BRA:
|
|
case OP_CBRA:
|
|
next_code = code + GET(code, 1);
|
|
code += PRIV(OP_lengths)[c];
|
|
|
|
while (*next_code == OP_ALT)
|
|
{
|
|
if (!compare_opcodes(code, utf, cd, base_list, base_end)) return FALSE;
|
|
code = next_code + 1 + LINK_SIZE;
|
|
next_code += GET(next_code, 1);
|
|
}
|
|
continue;
|
|
|
|
case OP_BRAZERO:
|
|
case OP_BRAMINZERO:
|
|
|
|
next_code = code + 1;
|
|
if (*next_code != OP_BRA && *next_code != OP_CBRA
|
|
&& *next_code != OP_ONCE && *next_code != OP_ONCE_NC) return FALSE;
|
|
|
|
do next_code += GET(next_code, 1); while (*next_code == OP_ALT);
|
|
|
|
/* The bracket content will be checked by the
|
|
OP_BRA/OP_CBRA case above. */
|
|
next_code += 1 + LINK_SIZE;
|
|
if (!compare_opcodes(next_code, utf, cd, base_list, base_end))
|
|
return FALSE;
|
|
|
|
code += PRIV(OP_lengths)[c];
|
|
continue;
|
|
}
|
|
|
|
/* Check for a supported opcode, and load its properties. */
|
|
|
|
code = get_chr_property_list(code, utf, cd->fcc, list);
|
|
if (code == NULL) return FALSE; /* Unsupported */
|
|
|
|
/* If either opcode is a small character list, set pointers for comparing
|
|
characters from that list with another list, or with a property. */
|
|
|
|
if (base_list[0] == OP_CHAR)
|
|
{
|
|
chr_ptr = base_list + 2;
|
|
list_ptr = list;
|
|
}
|
|
else if (list[0] == OP_CHAR)
|
|
{
|
|
chr_ptr = list + 2;
|
|
list_ptr = base_list;
|
|
}
|
|
|
|
/* Character bitsets can also be compared to certain opcodes. */
|
|
|
|
else if (base_list[0] == OP_CLASS || list[0] == OP_CLASS
|
|
#ifdef COMPILE_PCRE8
|
|
/* In 8 bit, non-UTF mode, OP_CLASS and OP_NCLASS are the same. */
|
|
|| (!utf && (base_list[0] == OP_NCLASS || list[0] == OP_NCLASS))
|
|
#endif
|
|
)
|
|
{
|
|
#ifdef COMPILE_PCRE8
|
|
if (base_list[0] == OP_CLASS || (!utf && base_list[0] == OP_NCLASS))
|
|
#else
|
|
if (base_list[0] == OP_CLASS)
|
|
#endif
|
|
{
|
|
set1 = (pcre_uint8 *)(base_end - base_list[2]);
|
|
list_ptr = list;
|
|
}
|
|
else
|
|
{
|
|
set1 = (pcre_uint8 *)(code - list[2]);
|
|
list_ptr = base_list;
|
|
}
|
|
|
|
invert_bits = FALSE;
|
|
switch(list_ptr[0])
|
|
{
|
|
case OP_CLASS:
|
|
case OP_NCLASS:
|
|
set2 = (pcre_uint8 *)
|
|
((list_ptr == list ? code : base_end) - list_ptr[2]);
|
|
break;
|
|
|
|
#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
|
|
case OP_XCLASS:
|
|
xclass_flags = (list_ptr == list ? code : base_end) - list_ptr[2] + LINK_SIZE;
|
|
if ((*xclass_flags & XCL_HASPROP) != 0) return FALSE;
|
|
if ((*xclass_flags & XCL_MAP) == 0)
|
|
{
|
|
/* No bits are set for characters < 256. */
|
|
if (list[1] == 0) return TRUE;
|
|
/* Might be an empty repeat. */
|
|
continue;
|
|
}
|
|
set2 = (pcre_uint8 *)(xclass_flags + 1);
|
|
break;
|
|
#endif
|
|
|
|
case OP_NOT_DIGIT:
|
|
invert_bits = TRUE;
|
|
/* Fall through */
|
|
case OP_DIGIT:
|
|
set2 = (pcre_uint8 *)(cd->cbits + cbit_digit);
|
|
break;
|
|
|
|
case OP_NOT_WHITESPACE:
|
|
invert_bits = TRUE;
|
|
/* Fall through */
|
|
case OP_WHITESPACE:
|
|
set2 = (pcre_uint8 *)(cd->cbits + cbit_space);
|
|
break;
|
|
|
|
case OP_NOT_WORDCHAR:
|
|
invert_bits = TRUE;
|
|
/* Fall through */
|
|
case OP_WORDCHAR:
|
|
set2 = (pcre_uint8 *)(cd->cbits + cbit_word);
|
|
break;
|
|
|
|
default:
|
|
return FALSE;
|
|
}
|
|
|
|
/* Because the sets are unaligned, we need
|
|
to perform byte comparison here. */
|
|
set_end = set1 + 32;
|
|
if (invert_bits)
|
|
{
|
|
do
|
|
{
|
|
if ((*set1++ & ~(*set2++)) != 0) return FALSE;
|
|
}
|
|
while (set1 < set_end);
|
|
}
|
|
else
|
|
{
|
|
do
|
|
{
|
|
if ((*set1++ & *set2++) != 0) return FALSE;
|
|
}
|
|
while (set1 < set_end);
|
|
}
|
|
|
|
if (list[1] == 0) return TRUE;
|
|
/* Might be an empty repeat. */
|
|
continue;
|
|
}
|
|
|
|
/* Some property combinations also acceptable. Unicode property opcodes are
|
|
processed specially; the rest can be handled with a lookup table. */
|
|
|
|
else
|
|
{
|
|
pcre_uint32 leftop, rightop;
|
|
|
|
leftop = base_list[0];
|
|
rightop = list[0];
|
|
|
|
#ifdef SUPPORT_UCP
|
|
accepted = FALSE; /* Always set in non-unicode case. */
|
|
if (leftop == OP_PROP || leftop == OP_NOTPROP)
|
|
{
|
|
if (rightop == OP_EOD)
|
|
accepted = TRUE;
|
|
else if (rightop == OP_PROP || rightop == OP_NOTPROP)
|
|
{
|
|
int n;
|
|
const pcre_uint8 *p;
|
|
BOOL same = leftop == rightop;
|
|
BOOL lisprop = leftop == OP_PROP;
|
|
BOOL risprop = rightop == OP_PROP;
|
|
BOOL bothprop = lisprop && risprop;
|
|
|
|
/* There's a table that specifies how each combination is to be
|
|
processed:
|
|
0 Always return FALSE (never auto-possessify)
|
|
1 Character groups are distinct (possessify if both are OP_PROP)
|
|
2 Check character categories in the same group (general or particular)
|
|
3 Return TRUE if the two opcodes are not the same
|
|
... see comments below
|
|
*/
|
|
|
|
n = propposstab[base_list[2]][list[2]];
|
|
switch(n)
|
|
{
|
|
case 0: break;
|
|
case 1: accepted = bothprop; break;
|
|
case 2: accepted = (base_list[3] == list[3]) != same; break;
|
|
case 3: accepted = !same; break;
|
|
|
|
case 4: /* Left general category, right particular category */
|
|
accepted = risprop && catposstab[base_list[3]][list[3]] == same;
|
|
break;
|
|
|
|
case 5: /* Right general category, left particular category */
|
|
accepted = lisprop && catposstab[list[3]][base_list[3]] == same;
|
|
break;
|
|
|
|
/* This code is logically tricky. Think hard before fiddling with it.
|
|
The posspropstab table has four entries per row. Each row relates to
|
|
one of PCRE's special properties such as ALNUM or SPACE or WORD.
|
|
Only WORD actually needs all four entries, but using repeats for the
|
|
others means they can all use the same code below.
|
|
|
|
The first two entries in each row are Unicode general categories, and
|
|
apply always, because all the characters they include are part of the
|
|
PCRE character set. The third and fourth entries are a general and a
|
|
particular category, respectively, that include one or more relevant
|
|
characters. One or the other is used, depending on whether the check
|
|
is for a general or a particular category. However, in both cases the
|
|
category contains more characters than the specials that are defined
|
|
for the property being tested against. Therefore, it cannot be used
|
|
in a NOTPROP case.
|
|
|
|
Example: the row for WORD contains ucp_L, ucp_N, ucp_P, ucp_Po.
|
|
Underscore is covered by ucp_P or ucp_Po. */
|
|
|
|
case 6: /* Left alphanum vs right general category */
|
|
case 7: /* Left space vs right general category */
|
|
case 8: /* Left word vs right general category */
|
|
p = posspropstab[n-6];
|
|
accepted = risprop && lisprop ==
|
|
(list[3] != p[0] &&
|
|
list[3] != p[1] &&
|
|
(list[3] != p[2] || !lisprop));
|
|
break;
|
|
|
|
case 9: /* Right alphanum vs left general category */
|
|
case 10: /* Right space vs left general category */
|
|
case 11: /* Right word vs left general category */
|
|
p = posspropstab[n-9];
|
|
accepted = lisprop && risprop ==
|
|
(base_list[3] != p[0] &&
|
|
base_list[3] != p[1] &&
|
|
(base_list[3] != p[2] || !risprop));
|
|
break;
|
|
|
|
case 12: /* Left alphanum vs right particular category */
|
|
case 13: /* Left space vs right particular category */
|
|
case 14: /* Left word vs right particular category */
|
|
p = posspropstab[n-12];
|
|
accepted = risprop && lisprop ==
|
|
(catposstab[p[0]][list[3]] &&
|
|
catposstab[p[1]][list[3]] &&
|
|
(list[3] != p[3] || !lisprop));
|
|
break;
|
|
|
|
case 15: /* Right alphanum vs left particular category */
|
|
case 16: /* Right space vs left particular category */
|
|
case 17: /* Right word vs left particular category */
|
|
p = posspropstab[n-15];
|
|
accepted = lisprop && risprop ==
|
|
(catposstab[p[0]][base_list[3]] &&
|
|
catposstab[p[1]][base_list[3]] &&
|
|
(base_list[3] != p[3] || !risprop));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
else
|
|
#endif /* SUPPORT_UCP */
|
|
|
|
accepted = leftop >= FIRST_AUTOTAB_OP && leftop <= LAST_AUTOTAB_LEFT_OP &&
|
|
rightop >= FIRST_AUTOTAB_OP && rightop <= LAST_AUTOTAB_RIGHT_OP &&
|
|
autoposstab[leftop - FIRST_AUTOTAB_OP][rightop - FIRST_AUTOTAB_OP];
|
|
|
|
if (!accepted)
|
|
return FALSE;
|
|
|
|
if (list[1] == 0) return TRUE;
|
|
/* Might be an empty repeat. */
|
|
continue;
|
|
}
|
|
|
|
/* Control reaches here only if one of the items is a small character list.
|
|
All characters are checked against the other side. */
|
|
|
|
do
|
|
{
|
|
chr = *chr_ptr;
|
|
|
|
switch(list_ptr[0])
|
|
{
|
|
case OP_CHAR:
|
|
ochr_ptr = list_ptr + 2;
|
|
do
|
|
{
|
|
if (chr == *ochr_ptr) return FALSE;
|
|
ochr_ptr++;
|
|
}
|
|
while(*ochr_ptr != NOTACHAR);
|
|
break;
|
|
|
|
case OP_NOT:
|
|
ochr_ptr = list_ptr + 2;
|
|
do
|
|
{
|
|
if (chr == *ochr_ptr)
|
|
break;
|
|
ochr_ptr++;
|
|
}
|
|
while(*ochr_ptr != NOTACHAR);
|
|
if (*ochr_ptr == NOTACHAR) return FALSE; /* Not found */
|
|
break;
|
|
|
|
/* Note that OP_DIGIT etc. are generated only when PCRE_UCP is *not*
|
|
set. When it is set, \d etc. are converted into OP_(NOT_)PROP codes. */
|
|
|
|
case OP_DIGIT:
|
|
if (chr < 256 && (cd->ctypes[chr] & ctype_digit) != 0) return FALSE;
|
|
break;
|
|
|
|
case OP_NOT_DIGIT:
|
|
if (chr > 255 || (cd->ctypes[chr] & ctype_digit) == 0) return FALSE;
|
|
break;
|
|
|
|
case OP_WHITESPACE:
|
|
if (chr < 256 && (cd->ctypes[chr] & ctype_space) != 0) return FALSE;
|
|
break;
|
|
|
|
case OP_NOT_WHITESPACE:
|
|
if (chr > 255 || (cd->ctypes[chr] & ctype_space) == 0) return FALSE;
|
|
break;
|
|
|
|
case OP_WORDCHAR:
|
|
if (chr < 255 && (cd->ctypes[chr] & ctype_word) != 0) return FALSE;
|
|
break;
|
|
|
|
case OP_NOT_WORDCHAR:
|
|
if (chr > 255 || (cd->ctypes[chr] & ctype_word) == 0) return FALSE;
|
|
break;
|
|
|
|
case OP_HSPACE:
|
|
switch(chr)
|
|
{
|
|
HSPACE_CASES: return FALSE;
|
|
default: break;
|
|
}
|
|
break;
|
|
|
|
case OP_NOT_HSPACE:
|
|
switch(chr)
|
|
{
|
|
HSPACE_CASES: break;
|
|
default: return FALSE;
|
|
}
|
|
break;
|
|
|
|
case OP_ANYNL:
|
|
case OP_VSPACE:
|
|
switch(chr)
|
|
{
|
|
VSPACE_CASES: return FALSE;
|
|
default: break;
|
|
}
|
|
break;
|
|
|
|
case OP_NOT_VSPACE:
|
|
switch(chr)
|
|
{
|
|
VSPACE_CASES: break;
|
|
default: return FALSE;
|
|
}
|
|
break;
|
|
|
|
case OP_DOLL:
|
|
case OP_EODN:
|
|
switch (chr)
|
|
{
|
|
case CHAR_CR:
|
|
case CHAR_LF:
|
|
case CHAR_VT:
|
|
case CHAR_FF:
|
|
case CHAR_NEL:
|
|
#ifndef EBCDIC
|
|
case 0x2028:
|
|
case 0x2029:
|
|
#endif /* Not EBCDIC */
|
|
return FALSE;
|
|
}
|
|
break;
|
|
|
|
case OP_EOD: /* Can always possessify before \z */
|
|
break;
|
|
|
|
#ifdef SUPPORT_UCP
|
|
case OP_PROP:
|
|
case OP_NOTPROP:
|
|
if (!check_char_prop(chr, list_ptr[2], list_ptr[3],
|
|
list_ptr[0] == OP_NOTPROP))
|
|
return FALSE;
|
|
break;
|
|
#endif
|
|
|
|
case OP_NCLASS:
|
|
if (chr > 255) return FALSE;
|
|
/* Fall through */
|
|
|
|
case OP_CLASS:
|
|
if (chr > 255) break;
|
|
class_bitset = (pcre_uint8 *)
|
|
((list_ptr == list ? code : base_end) - list_ptr[2]);
|
|
if ((class_bitset[chr >> 3] & (1 << (chr & 7))) != 0) return FALSE;
|
|
break;
|
|
|
|
#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
|
|
case OP_XCLASS:
|
|
if (PRIV(xclass)(chr, (list_ptr == list ? code : base_end) -
|
|
list_ptr[2] + LINK_SIZE, utf)) return FALSE;
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
return FALSE;
|
|
}
|
|
|
|
chr_ptr++;
|
|
}
|
|
while(*chr_ptr != NOTACHAR);
|
|
|
|
/* At least one character must be matched from this opcode. */
|
|
|
|
if (list[1] == 0) return TRUE;
|
|
}
|
|
|
|
/* Control never reaches here. There used to be a fail-save return FALSE; here,
|
|
but some compilers complain about an unreachable statement. */
|
|
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Scan compiled regex for auto-possession *
|
|
*************************************************/
|
|
|
|
/* Replaces single character iterations with their possessive alternatives
|
|
if appropriate. This function modifies the compiled opcode!
|
|
|
|
Arguments:
|
|
code points to start of the byte code
|
|
utf TRUE in UTF-8 / UTF-16 / UTF-32 mode
|
|
cd static compile data
|
|
|
|
Returns: nothing
|
|
*/
|
|
|
|
static void
|
|
auto_possessify(pcre_uchar *code, BOOL utf, const compile_data *cd)
|
|
{
|
|
register pcre_uchar c;
|
|
const pcre_uchar *end;
|
|
pcre_uchar *repeat_opcode;
|
|
pcre_uint32 list[8];
|
|
|
|
for (;;)
|
|
{
|
|
c = *code;
|
|
|
|
if (c >= OP_STAR && c <= OP_TYPEPOSUPTO)
|
|
{
|
|
c -= get_repeat_base(c) - OP_STAR;
|
|
end = (c <= OP_MINUPTO) ?
|
|
get_chr_property_list(code, utf, cd->fcc, list) : NULL;
|
|
list[1] = c == OP_STAR || c == OP_PLUS || c == OP_QUERY || c == OP_UPTO;
|
|
|
|
if (end != NULL && compare_opcodes(end, utf, cd, list, end))
|
|
{
|
|
switch(c)
|
|
{
|
|
case OP_STAR:
|
|
*code += OP_POSSTAR - OP_STAR;
|
|
break;
|
|
|
|
case OP_MINSTAR:
|
|
*code += OP_POSSTAR - OP_MINSTAR;
|
|
break;
|
|
|
|
case OP_PLUS:
|
|
*code += OP_POSPLUS - OP_PLUS;
|
|
break;
|
|
|
|
case OP_MINPLUS:
|
|
*code += OP_POSPLUS - OP_MINPLUS;
|
|
break;
|
|
|
|
case OP_QUERY:
|
|
*code += OP_POSQUERY - OP_QUERY;
|
|
break;
|
|
|
|
case OP_MINQUERY:
|
|
*code += OP_POSQUERY - OP_MINQUERY;
|
|
break;
|
|
|
|
case OP_UPTO:
|
|
*code += OP_POSUPTO - OP_UPTO;
|
|
break;
|
|
|
|
case OP_MINUPTO:
|
|
*code += OP_POSUPTO - OP_MINUPTO;
|
|
break;
|
|
}
|
|
}
|
|
c = *code;
|
|
}
|
|
else if (c == OP_CLASS || c == OP_NCLASS || c == OP_XCLASS)
|
|
{
|
|
#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
|
|
if (c == OP_XCLASS)
|
|
repeat_opcode = code + GET(code, 1);
|
|
else
|
|
#endif
|
|
repeat_opcode = code + 1 + (32 / sizeof(pcre_uchar));
|
|
|
|
c = *repeat_opcode;
|
|
if (c >= OP_CRSTAR && c <= OP_CRMINRANGE)
|
|
{
|
|
/* end must not be NULL. */
|
|
end = get_chr_property_list(code, utf, cd->fcc, list);
|
|
|
|
list[1] = (c & 1) == 0;
|
|
|
|
if (compare_opcodes(end, utf, cd, list, end))
|
|
{
|
|
switch (c)
|
|
{
|
|
case OP_CRSTAR:
|
|
case OP_CRMINSTAR:
|
|
*repeat_opcode = OP_CRPOSSTAR;
|
|
break;
|
|
|
|
case OP_CRPLUS:
|
|
case OP_CRMINPLUS:
|
|
*repeat_opcode = OP_CRPOSPLUS;
|
|
break;
|
|
|
|
case OP_CRQUERY:
|
|
case OP_CRMINQUERY:
|
|
*repeat_opcode = OP_CRPOSQUERY;
|
|
break;
|
|
|
|
case OP_CRRANGE:
|
|
case OP_CRMINRANGE:
|
|
*repeat_opcode = OP_CRPOSRANGE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
c = *code;
|
|
}
|
|
|
|
switch(c)
|
|
{
|
|
case OP_END:
|
|
return;
|
|
|
|
case OP_TYPESTAR:
|
|
case OP_TYPEMINSTAR:
|
|
case OP_TYPEPLUS:
|
|
case OP_TYPEMINPLUS:
|
|
case OP_TYPEQUERY:
|
|
case OP_TYPEMINQUERY:
|
|
case OP_TYPEPOSSTAR:
|
|
case OP_TYPEPOSPLUS:
|
|
case OP_TYPEPOSQUERY:
|
|
if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
|
|
break;
|
|
|
|
case OP_TYPEUPTO:
|
|
case OP_TYPEMINUPTO:
|
|
case OP_TYPEEXACT:
|
|
case OP_TYPEPOSUPTO:
|
|
if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP)
|
|
code += 2;
|
|
break;
|
|
|
|
#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
|
|
case OP_XCLASS:
|
|
code += GET(code, 1);
|
|
break;
|
|
#endif
|
|
|
|
case OP_MARK:
|
|
case OP_PRUNE_ARG:
|
|
case OP_SKIP_ARG:
|
|
case OP_THEN_ARG:
|
|
code += code[1];
|
|
break;
|
|
}
|
|
|
|
/* Add in the fixed length from the table */
|
|
|
|
code += PRIV(OP_lengths)[c];
|
|
|
|
/* In UTF-8 mode, opcodes that are followed by a character may be followed by
|
|
a multi-byte character. The length in the table is a minimum, so we have to
|
|
arrange to skip the extra bytes. */
|
|
|
|
#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
|
|
if (utf) switch(c)
|
|
{
|
|
case OP_CHAR:
|
|
case OP_CHARI:
|
|
case OP_NOT:
|
|
case OP_NOTI:
|
|
case OP_STAR:
|
|
case OP_MINSTAR:
|
|
case OP_PLUS:
|
|
case OP_MINPLUS:
|
|
case OP_QUERY:
|
|
case OP_MINQUERY:
|
|
case OP_UPTO:
|
|
case OP_MINUPTO:
|
|
case OP_EXACT:
|
|
case OP_POSSTAR:
|
|
case OP_POSPLUS:
|
|
case OP_POSQUERY:
|
|
case OP_POSUPTO:
|
|
case OP_STARI:
|
|
case OP_MINSTARI:
|
|
case OP_PLUSI:
|
|
case OP_MINPLUSI:
|
|
case OP_QUERYI:
|
|
case OP_MINQUERYI:
|
|
case OP_UPTOI:
|
|
case OP_MINUPTOI:
|
|
case OP_EXACTI:
|
|
case OP_POSSTARI:
|
|
case OP_POSPLUSI:
|
|
case OP_POSQUERYI:
|
|
case OP_POSUPTOI:
|
|
case OP_NOTSTAR:
|
|
case OP_NOTMINSTAR:
|
|
case OP_NOTPLUS:
|
|
case OP_NOTMINPLUS:
|
|
case OP_NOTQUERY:
|
|
case OP_NOTMINQUERY:
|
|
case OP_NOTUPTO:
|
|
case OP_NOTMINUPTO:
|
|
case OP_NOTEXACT:
|
|
case OP_NOTPOSSTAR:
|
|
case OP_NOTPOSPLUS:
|
|
case OP_NOTPOSQUERY:
|
|
case OP_NOTPOSUPTO:
|
|
case OP_NOTSTARI:
|
|
case OP_NOTMINSTARI:
|
|
case OP_NOTPLUSI:
|
|
case OP_NOTMINPLUSI:
|
|
case OP_NOTQUERYI:
|
|
case OP_NOTMINQUERYI:
|
|
case OP_NOTUPTOI:
|
|
case OP_NOTMINUPTOI:
|
|
case OP_NOTEXACTI:
|
|
case OP_NOTPOSSTARI:
|
|
case OP_NOTPOSPLUSI:
|
|
case OP_NOTPOSQUERYI:
|
|
case OP_NOTPOSUPTOI:
|
|
if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]);
|
|
break;
|
|
}
|
|
#else
|
|
(void)(utf); /* Keep compiler happy by referencing function argument */
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Check for POSIX class syntax *
|
|
*************************************************/
|
|
|
|
/* This function is called when the sequence "[:" or "[." or "[=" is
|
|
encountered in a character class. It checks whether this is followed by a
|
|
sequence of characters terminated by a matching ":]" or ".]" or "=]". If we
|
|
reach an unescaped ']' without the special preceding character, return FALSE.
|
|
|
|
Originally, this function only recognized a sequence of letters between the
|
|
terminators, but it seems that Perl recognizes any sequence of characters,
|
|
though of course unknown POSIX names are subsequently rejected. Perl gives an
|
|
"Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE
|
|
didn't consider this to be a POSIX class. Likewise for [:1234:].
|
|
|
|
The problem in trying to be exactly like Perl is in the handling of escapes. We
|
|
have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX
|
|
class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code
|
|
below handles the special case of \], but does not try to do any other escape
|
|
processing. This makes it different from Perl for cases such as [:l\ower:]
|
|
where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize
|
|
"l\ower". This is a lesser evil than not diagnosing bad classes when Perl does,
|
|
I think.
|
|
|
|
A user pointed out that PCRE was rejecting [:a[:digit:]] whereas Perl was not.
|
|
It seems that the appearance of a nested POSIX class supersedes an apparent
|
|
external class. For example, [:a[:digit:]b:] matches "a", "b", ":", or
|
|
a digit.
|
|
|
|
In Perl, unescaped square brackets may also appear as part of class names. For
|
|
example, [:a[:abc]b:] gives unknown POSIX class "[:abc]b:]". However, for
|
|
[:a[:abc]b][b:] it gives unknown POSIX class "[:abc]b][b:]", which does not
|
|
seem right at all. PCRE does not allow closing square brackets in POSIX class
|
|
names.
|
|
|
|
Arguments:
|
|
ptr pointer to the initial [
|
|
endptr where to return the end pointer
|
|
|
|
Returns: TRUE or FALSE
|
|
*/
|
|
|
|
static BOOL
|
|
check_posix_syntax(const pcre_uchar *ptr, const pcre_uchar **endptr)
|
|
{
|
|
pcre_uchar terminator; /* Don't combine these lines; the Solaris cc */
|
|
terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */
|
|
for (++ptr; *ptr != CHAR_NULL; ptr++)
|
|
{
|
|
if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
|
|
ptr++;
|
|
else if (*ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE;
|
|
else
|
|
{
|
|
if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
|
|
{
|
|
*endptr = ptr;
|
|
return TRUE;
|
|
}
|
|
if (*ptr == CHAR_LEFT_SQUARE_BRACKET &&
|
|
(ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
|
|
ptr[1] == CHAR_EQUALS_SIGN) &&
|
|
check_posix_syntax(ptr, endptr))
|
|
return FALSE;
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Check POSIX class name *
|
|
*************************************************/
|
|
|
|
/* This function is called to check the name given in a POSIX-style class entry
|
|
such as [:alnum:].
|
|
|
|
Arguments:
|
|
ptr points to the first letter
|
|
len the length of the name
|
|
|
|
Returns: a value representing the name, or -1 if unknown
|
|
*/
|
|
|
|
static int
|
|
check_posix_name(const pcre_uchar *ptr, int len)
|
|
{
|
|
const char *pn = posix_names;
|
|
register int yield = 0;
|
|
while (posix_name_lengths[yield] != 0)
|
|
{
|
|
if (len == posix_name_lengths[yield] &&
|
|
STRNCMP_UC_C8(ptr, pn, (unsigned int)len) == 0) return yield;
|
|
pn += posix_name_lengths[yield] + 1;
|
|
yield++;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
/*************************************************
|
|
* Adjust OP_RECURSE items in repeated group *
|
|
*************************************************/
|
|
|
|
/* OP_RECURSE items contain an offset from the start of the regex to the group
|
|
that is referenced. This means that groups can be replicated for fixed
|
|
repetition simply by copying (because the recursion is allowed to refer to
|
|
earlier groups that are outside the current group). However, when a group is
|
|
optional (i.e. the minimum quantifier is zero), OP_BRAZERO or OP_SKIPZERO is
|
|
inserted before it, after it has been compiled. This means that any OP_RECURSE
|
|
items within it that refer to the group itself or any contained groups have to
|
|
have their offsets adjusted. That one of the jobs of this function. Before it
|
|
is called, the partially compiled regex must be temporarily terminated with
|
|
OP_END.
|
|
|
|
This function has been extended with the possibility of forward references for
|
|
recursions and subroutine calls. It must also check the list of such references
|
|
for the group we are dealing with. If it finds that one of the recursions in
|
|
the current group is on this list, it adjusts the offset in the list, not the
|
|
value in the reference (which is a group number).
|
|
|
|
Arguments:
|
|
group points to the start of the group
|
|
adjust the amount by which the group is to be moved
|
|
utf TRUE in UTF-8 / UTF-16 / UTF-32 mode
|
|
cd contains pointers to tables etc.
|
|
save_hwm the hwm forward reference pointer at the start of the group
|
|
|
|
Returns: nothing
|
|
*/
|
|
|
|
static void
|
|
adjust_recurse(pcre_uchar *group, int adjust, BOOL utf, compile_data *cd,
|
|
pcre_uchar *save_hwm)
|
|
{
|
|
pcre_uchar *ptr = group;
|
|
|
|
while ((ptr = (pcre_uchar *)find_recurse(ptr, utf)) != NULL)
|
|
{
|
|
int offset;
|
|
pcre_uchar *hc;
|
|
|
|
/* See if this recursion is on the forward reference list. If so, adjust the
|
|
reference. */
|
|
|
|
for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE)
|
|
{
|
|
offset = (int)GET(hc, 0);
|
|
if (cd->start_code + offset == ptr + 1)
|
|
{
|
|
PUT(hc, 0, offset + adjust);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Otherwise, adjust the recursion offset if it's after the start of this
|
|
group. */
|
|
|
|
if (hc >= cd->hwm)
|
|
{
|
|
offset = (int)GET(ptr, 1);
|
|
if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust);
|
|
}
|
|
|
|
ptr += 1 + LINK_SIZE;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Insert an automatic callout point *
|
|
*************************************************/
|
|
|
|
/* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert
|
|
callout points before each pattern item.
|
|
|
|
Arguments:
|
|
code current code pointer
|
|
ptr current pattern pointer
|
|
cd pointers to tables etc
|
|
|
|
Returns: new code pointer
|
|
*/
|
|
|
|
static pcre_uchar *
|
|
auto_callout(pcre_uchar *code, const pcre_uchar *ptr, compile_data *cd)
|
|
{
|
|
*code++ = OP_CALLOUT;
|
|
*code++ = 255;
|
|
PUT(code, 0, (int)(ptr - cd->start_pattern)); /* Pattern offset */
|
|
PUT(code, LINK_SIZE, 0); /* Default length */
|
|
return code + 2 * LINK_SIZE;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Complete a callout item *
|
|
*************************************************/
|
|
|
|
/* A callout item contains the length of the next item in the pattern, which
|
|
we can't fill in till after we have reached the relevant point. This is used
|
|
for both automatic and manual callouts.
|
|
|
|
Arguments:
|
|
previous_callout points to previous callout item
|
|
ptr current pattern pointer
|
|
cd pointers to tables etc
|
|
|
|
Returns: nothing
|
|
*/
|
|
|
|
static void
|
|
complete_callout(pcre_uchar *previous_callout, const pcre_uchar *ptr, compile_data *cd)
|
|
{
|
|
int length = (int)(ptr - cd->start_pattern - GET(previous_callout, 2));
|
|
PUT(previous_callout, 2 + LINK_SIZE, length);
|
|
}
|
|
|
|
|
|
|
|
#ifdef SUPPORT_UCP
|
|
/*************************************************
|
|
* Get othercase range *
|
|
*************************************************/
|
|
|
|
/* This function is passed the start and end of a class range, in UTF-8 mode
|
|
with UCP support. It searches up the characters, looking for ranges of
|
|
characters in the "other" case. Each call returns the next one, updating the
|
|
start address. A character with multiple other cases is returned on its own
|
|
with a special return value.
|
|
|
|
Arguments:
|
|
cptr points to starting character value; updated
|
|
d end value
|
|
ocptr where to put start of othercase range
|
|
odptr where to put end of othercase range
|
|
|
|
Yield: -1 when no more
|
|
0 when a range is returned
|
|
>0 the CASESET offset for char with multiple other cases
|
|
in this case, ocptr contains the original
|
|
*/
|
|
|
|
static int
|
|
get_othercase_range(pcre_uint32 *cptr, pcre_uint32 d, pcre_uint32 *ocptr,
|
|
pcre_uint32 *odptr)
|
|
{
|
|
pcre_uint32 c, othercase, next;
|
|
unsigned int co;
|
|
|
|
/* Find the first character that has an other case. If it has multiple other
|
|
cases, return its case offset value. */
|
|
|
|
for (c = *cptr; c <= d; c++)
|
|
{
|
|
if ((co = UCD_CASESET(c)) != 0)
|
|
{
|
|
*ocptr = c++; /* Character that has the set */
|
|
*cptr = c; /* Rest of input range */
|
|
return (int)co;
|
|
}
|
|
if ((othercase = UCD_OTHERCASE(c)) != c) break;
|
|
}
|
|
|
|
if (c > d) return -1; /* Reached end of range */
|
|
|
|
/* Found a character that has a single other case. Search for the end of the
|
|
range, which is either the end of the input range, or a character that has zero
|
|
or more than one other cases. */
|
|
|
|
*ocptr = othercase;
|
|
next = othercase + 1;
|
|
|
|
for (++c; c <= d; c++)
|
|
{
|
|
if ((co = UCD_CASESET(c)) != 0 || UCD_OTHERCASE(c) != next) break;
|
|
next++;
|
|
}
|
|
|
|
*odptr = next - 1; /* End of othercase range */
|
|
*cptr = c; /* Rest of input range */
|
|
return 0;
|
|
}
|
|
#endif /* SUPPORT_UCP */
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Add a character or range to a class *
|
|
*************************************************/
|
|
|
|
/* This function packages up the logic of adding a character or range of
|
|
characters to a class. The character values in the arguments will be within the
|
|
valid values for the current mode (8-bit, 16-bit, UTF, etc). This function is
|
|
mutually recursive with the function immediately below.
|
|
|
|
Arguments:
|
|
classbits the bit map for characters < 256
|
|
uchardptr points to the pointer for extra data
|
|
options the options word
|
|
cd contains pointers to tables etc.
|
|
start start of range character
|
|
end end of range character
|
|
|
|
Returns: the number of < 256 characters added
|
|
the pointer to extra data is updated
|
|
*/
|
|
|
|
static int
|
|
add_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr, int options,
|
|
compile_data *cd, pcre_uint32 start, pcre_uint32 end)
|
|
{
|
|
pcre_uint32 c;
|
|
pcre_uint32 classbits_end = (end <= 0xff ? end : 0xff);
|
|
int n8 = 0;
|
|
|
|
/* If caseless matching is required, scan the range and process alternate
|
|
cases. In Unicode, there are 8-bit characters that have alternate cases that
|
|
are greater than 255 and vice-versa. Sometimes we can just extend the original
|
|
range. */
|
|
|
|
if ((options & PCRE_CASELESS) != 0)
|
|
{
|
|
#ifdef SUPPORT_UCP
|
|
if ((options & PCRE_UTF8) != 0)
|
|
{
|
|
int rc;
|
|
pcre_uint32 oc, od;
|
|
|
|
options &= ~PCRE_CASELESS; /* Remove for recursive calls */
|
|
c = start;
|
|
|
|
while ((rc = get_othercase_range(&c, end, &oc, &od)) >= 0)
|
|
{
|
|
/* Handle a single character that has more than one other case. */
|
|
|
|
if (rc > 0) n8 += add_list_to_class(classbits, uchardptr, options, cd,
|
|
PRIV(ucd_caseless_sets) + rc, oc);
|
|
|
|
/* Do nothing if the other case range is within the original range. */
|
|
|
|
else if (oc >= start && od <= end) continue;
|
|
|
|
/* Extend the original range if there is overlap, noting that if oc < c, we
|
|
can't have od > end because a subrange is always shorter than the basic
|
|
range. Otherwise, use a recursive call to add the additional range. */
|
|
|
|
else if (oc < start && od >= start - 1) start = oc; /* Extend downwards */
|
|
else if (od > end && oc <= end + 1) end = od; /* Extend upwards */
|
|
else n8 += add_to_class(classbits, uchardptr, options, cd, oc, od);
|
|
}
|
|
}
|
|
else
|
|
#endif /* SUPPORT_UCP */
|
|
|
|
/* Not UTF-mode, or no UCP */
|
|
|
|
for (c = start; c <= classbits_end; c++)
|
|
{
|
|
SETBIT(classbits, cd->fcc[c]);
|
|
n8++;
|
|
}
|
|
}
|
|
|
|
/* Now handle the original range. Adjust the final value according to the bit
|
|
length - this means that the same lists of (e.g.) horizontal spaces can be used
|
|
in all cases. */
|
|
|
|
#if defined COMPILE_PCRE8
|
|
#ifdef SUPPORT_UTF
|
|
if ((options & PCRE_UTF8) == 0)
|
|
#endif
|
|
if (end > 0xff) end = 0xff;
|
|
|
|
#elif defined COMPILE_PCRE16
|
|
#ifdef SUPPORT_UTF
|
|
if ((options & PCRE_UTF16) == 0)
|
|
#endif
|
|
if (end > 0xffff) end = 0xffff;
|
|
|
|
#endif /* COMPILE_PCRE[8|16] */
|
|
|
|
/* Use the bitmap for characters < 256. Otherwise use extra data.*/
|
|
|
|
for (c = start; c <= classbits_end; c++)
|
|
{
|
|
/* Regardless of start, c will always be <= 255. */
|
|
SETBIT(classbits, c);
|
|
n8++;
|
|
}
|
|
|
|
#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
|
|
if (start <= 0xff) start = 0xff + 1;
|
|
|
|
if (end >= start)
|
|
{
|
|
pcre_uchar *uchardata = *uchardptr;
|
|
#ifdef SUPPORT_UTF
|
|
if ((options & PCRE_UTF8) != 0) /* All UTFs use the same flag bit */
|
|
{
|
|
if (start < end)
|
|
{
|
|
*uchardata++ = XCL_RANGE;
|
|
uchardata += PRIV(ord2utf)(start, uchardata);
|
|
uchardata += PRIV(ord2utf)(end, uchardata);
|
|
}
|
|
else if (start == end)
|
|
{
|
|
*uchardata++ = XCL_SINGLE;
|
|
uchardata += PRIV(ord2utf)(start, uchardata);
|
|
}
|
|
}
|
|
else
|
|
#endif /* SUPPORT_UTF */
|
|
|
|
/* Without UTF support, character values are constrained by the bit length,
|
|
and can only be > 256 for 16-bit and 32-bit libraries. */
|
|
|
|
#ifdef COMPILE_PCRE8
|
|
{}
|
|
#else
|
|
if (start < end)
|
|
{
|
|
*uchardata++ = XCL_RANGE;
|
|
*uchardata++ = start;
|
|
*uchardata++ = end;
|
|
}
|
|
else if (start == end)
|
|
{
|
|
*uchardata++ = XCL_SINGLE;
|
|
*uchardata++ = start;
|
|
}
|
|
#endif
|
|
|
|
*uchardptr = uchardata; /* Updata extra data pointer */
|
|
}
|
|
#endif /* SUPPORT_UTF || !COMPILE_PCRE8 */
|
|
|
|
return n8; /* Number of 8-bit characters */
|
|
}
|
|
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Add a list of characters to a class *
|
|
*************************************************/
|
|
|
|
/* This function is used for adding a list of case-equivalent characters to a
|
|
class, and also for adding a list of horizontal or vertical whitespace. If the
|
|
list is in order (which it should be), ranges of characters are detected and
|
|
handled appropriately. This function is mutually recursive with the function
|
|
above.
|
|
|
|
Arguments:
|
|
classbits the bit map for characters < 256
|
|
uchardptr points to the pointer for extra data
|
|
options the options word
|
|
cd contains pointers to tables etc.
|
|
p points to row of 32-bit values, terminated by NOTACHAR
|
|
except character to omit; this is used when adding lists of
|
|
case-equivalent characters to avoid including the one we
|
|
already know about
|
|
|
|
Returns: the number of < 256 characters added
|
|
the pointer to extra data is updated
|
|
*/
|
|
|
|
static int
|
|
add_list_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr, int options,
|
|
compile_data *cd, const pcre_uint32 *p, unsigned int except)
|
|
{
|
|
int n8 = 0;
|
|
while (p[0] < NOTACHAR)
|
|
{
|
|
int n = 0;
|
|
if (p[0] != except)
|
|
{
|
|
while(p[n+1] == p[0] + n + 1) n++;
|
|
n8 += add_to_class(classbits, uchardptr, options, cd, p[0], p[n]);
|
|
}
|
|
p += n + 1;
|
|
}
|
|
return n8;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Add characters not in a list to a class *
|
|
*************************************************/
|
|
|
|
/* This function is used for adding the complement of a list of horizontal or
|
|
vertical whitespace to a class. The list must be in order.
|
|
|
|
Arguments:
|
|
classbits the bit map for characters < 256
|
|
uchardptr points to the pointer for extra data
|
|
options the options word
|
|
cd contains pointers to tables etc.
|
|
p points to row of 32-bit values, terminated by NOTACHAR
|
|
|
|
Returns: the number of < 256 characters added
|
|
the pointer to extra data is updated
|
|
*/
|
|
|
|
static int
|
|
add_not_list_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr,
|
|
int options, compile_data *cd, const pcre_uint32 *p)
|
|
{
|
|
BOOL utf = (options & PCRE_UTF8) != 0;
|
|
int n8 = 0;
|
|
if (p[0] > 0)
|
|
n8 += add_to_class(classbits, uchardptr, options, cd, 0, p[0] - 1);
|
|
while (p[0] < NOTACHAR)
|
|
{
|
|
while (p[1] == p[0] + 1) p++;
|
|
n8 += add_to_class(classbits, uchardptr, options, cd, p[0] + 1,
|
|
(p[1] == NOTACHAR) ? (utf ? 0x10ffffu : 0xffffffffu) : p[1] - 1);
|
|
p++;
|
|
}
|
|
return n8;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Compile one branch *
|
|
*************************************************/
|
|
|
|
/* Scan the pattern, compiling it into the a vector. If the options are
|
|
changed during the branch, the pointer is used to change the external options
|
|
bits. This function is used during the pre-compile phase when we are trying
|
|
to find out the amount of memory needed, as well as during the real compile
|
|
phase. The value of lengthptr distinguishes the two phases.
|
|
|
|
Arguments:
|
|
optionsptr pointer to the option bits
|
|
codeptr points to the pointer to the current code point
|
|
ptrptr points to the current pattern pointer
|
|
errorcodeptr points to error code variable
|
|
firstcharptr place to put the first required character
|
|
firstcharflagsptr place to put the first character flags, or a negative number
|
|
reqcharptr place to put the last required character
|
|
reqcharflagsptr place to put the last required character flags, or a negative number
|
|
bcptr points to current branch chain
|
|
cond_depth conditional nesting depth
|
|
cd contains pointers to tables etc.
|
|
lengthptr NULL during the real compile phase
|
|
points to length accumulator during pre-compile phase
|
|
|
|
Returns: TRUE on success
|
|
FALSE, with *errorcodeptr set non-zero on error
|
|
*/
|
|
|
|
static BOOL
|
|
compile_branch(int *optionsptr, pcre_uchar **codeptr,
|
|
const pcre_uchar **ptrptr, int *errorcodeptr,
|
|
pcre_uint32 *firstcharptr, pcre_int32 *firstcharflagsptr,
|
|
pcre_uint32 *reqcharptr, pcre_int32 *reqcharflagsptr,
|
|
branch_chain *bcptr, int cond_depth,
|
|
compile_data *cd, int *lengthptr)
|
|
{
|
|
int repeat_type, op_type;
|
|
int repeat_min = 0, repeat_max = 0; /* To please picky compilers */
|
|
int bravalue = 0;
|
|
int greedy_default, greedy_non_default;
|
|
pcre_uint32 firstchar, reqchar;
|
|
pcre_int32 firstcharflags, reqcharflags;
|
|
pcre_uint32 zeroreqchar, zerofirstchar;
|
|
pcre_int32 zeroreqcharflags, zerofirstcharflags;
|
|
pcre_int32 req_caseopt, reqvary, tempreqvary;
|
|
int options = *optionsptr; /* May change dynamically */
|
|
int after_manual_callout = 0;
|
|
int length_prevgroup = 0;
|
|
register pcre_uint32 c;
|
|
int escape;
|
|
register pcre_uchar *code = *codeptr;
|
|
pcre_uchar *last_code = code;
|
|
pcre_uchar *orig_code = code;
|
|
pcre_uchar *tempcode;
|
|
BOOL inescq = FALSE;
|
|
BOOL groupsetfirstchar = FALSE;
|
|
const pcre_uchar *ptr = *ptrptr;
|
|
const pcre_uchar *tempptr;
|
|
const pcre_uchar *nestptr = NULL;
|
|
pcre_uchar *previous = NULL;
|
|
pcre_uchar *previous_callout = NULL;
|
|
pcre_uchar *save_hwm = NULL;
|
|
pcre_uint8 classbits[32];
|
|
|
|
/* We can fish out the UTF-8 setting once and for all into a BOOL, but we
|
|
must not do this for other options (e.g. PCRE_EXTENDED) because they may change
|
|
dynamically as we process the pattern. */
|
|
|
|
#ifdef SUPPORT_UTF
|
|
/* PCRE_UTF[16|32] have the same value as PCRE_UTF8. */
|
|
BOOL utf = (options & PCRE_UTF8) != 0;
|
|
#ifndef COMPILE_PCRE32
|
|
pcre_uchar utf_chars[6];
|
|
#endif
|
|
#else
|
|
BOOL utf = FALSE;
|
|
#endif
|
|
|
|
/* Helper variables for OP_XCLASS opcode (for characters > 255). We define
|
|
class_uchardata always so that it can be passed to add_to_class() always,
|
|
though it will not be used in non-UTF 8-bit cases. This avoids having to supply
|
|
alternative calls for the different cases. */
|
|
|
|
pcre_uchar *class_uchardata;
|
|
#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
|
|
BOOL xclass;
|
|
pcre_uchar *class_uchardata_base;
|
|
#endif
|
|
|
|
#ifdef PCRE_DEBUG
|
|
if (lengthptr != NULL) DPRINTF((">> start branch\n"));
|
|
#endif
|
|
|
|
/* Set up the default and non-default settings for greediness */
|
|
|
|
greedy_default = ((options & PCRE_UNGREEDY) != 0);
|
|
greedy_non_default = greedy_default ^ 1;
|
|
|
|
/* Initialize no first byte, no required byte. REQ_UNSET means "no char
|
|
matching encountered yet". It gets changed to REQ_NONE if we hit something that
|
|
matches a non-fixed char first char; reqchar just remains unset if we never
|
|
find one.
|
|
|
|
When we hit a repeat whose minimum is zero, we may have to adjust these values
|
|
to take the zero repeat into account. This is implemented by setting them to
|
|
zerofirstbyte and zeroreqchar when such a repeat is encountered. The individual
|
|
item types that can be repeated set these backoff variables appropriately. */
|
|
|
|
firstchar = reqchar = zerofirstchar = zeroreqchar = 0;
|
|
firstcharflags = reqcharflags = zerofirstcharflags = zeroreqcharflags = REQ_UNSET;
|
|
|
|
/* The variable req_caseopt contains either the REQ_CASELESS value
|
|
or zero, according to the current setting of the caseless flag. The
|
|
REQ_CASELESS leaves the lower 28 bit empty. It is added into the
|
|
firstchar or reqchar variables to record the case status of the
|
|
value. This is used only for ASCII characters. */
|
|
|
|
req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS:0;
|
|
|
|
/* Switch on next character until the end of the branch */
|
|
|
|
for (;; ptr++)
|
|
{
|
|
BOOL negate_class;
|
|
BOOL should_flip_negation;
|
|
BOOL possessive_quantifier;
|
|
BOOL is_quantifier;
|
|
BOOL is_recurse;
|
|
BOOL reset_bracount;
|
|
int class_has_8bitchar;
|
|
int class_one_char;
|
|
#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
|
|
BOOL xclass_has_prop;
|
|
#endif
|
|
int newoptions;
|
|
int recno;
|
|
int refsign;
|
|
int skipbytes;
|
|
pcre_uint32 subreqchar, subfirstchar;
|
|
pcre_int32 subreqcharflags, subfirstcharflags;
|
|
int terminator;
|
|
unsigned int mclength;
|
|
unsigned int tempbracount;
|
|
pcre_uint32 ec;
|
|
pcre_uchar mcbuffer[8];
|
|
|
|
/* Get next character in the pattern */
|
|
|
|
c = *ptr;
|
|
|
|
/* If we are at the end of a nested substitution, revert to the outer level
|
|
string. Nesting only happens one level deep. */
|
|
|
|
if (c == CHAR_NULL && nestptr != NULL)
|
|
{
|
|
ptr = nestptr;
|
|
nestptr = NULL;
|
|
c = *ptr;
|
|
}
|
|
|
|
/* If we are in the pre-compile phase, accumulate the length used for the
|
|
previous cycle of this loop. */
|
|
|
|
if (lengthptr != NULL)
|
|
{
|
|
#ifdef PCRE_DEBUG
|
|
if (code > cd->hwm) cd->hwm = code; /* High water info */
|
|
#endif
|
|
if (code > cd->start_workspace + cd->workspace_size -
|
|
WORK_SIZE_SAFETY_MARGIN) /* Check for overrun */
|
|
{
|
|
*errorcodeptr = ERR52;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* There is at least one situation where code goes backwards: this is the
|
|
case of a zero quantifier after a class (e.g. [ab]{0}). At compile time,
|
|
the class is simply eliminated. However, it is created first, so we have to
|
|
allow memory for it. Therefore, don't ever reduce the length at this point.
|
|
*/
|
|
|
|
if (code < last_code) code = last_code;
|
|
|
|
/* Paranoid check for integer overflow */
|
|
|
|
if (OFLOW_MAX - *lengthptr < code - last_code)
|
|
{
|
|
*errorcodeptr = ERR20;
|
|
goto FAILED;
|
|
}
|
|
|
|
*lengthptr += (int)(code - last_code);
|
|
DPRINTF(("length=%d added %d c=%c (0x%x)\n", *lengthptr,
|
|
(int)(code - last_code), c, c));
|
|
|
|
/* If "previous" is set and it is not at the start of the work space, move
|
|
it back to there, in order to avoid filling up the work space. Otherwise,
|
|
if "previous" is NULL, reset the current code pointer to the start. */
|
|
|
|
if (previous != NULL)
|
|
{
|
|
if (previous > orig_code)
|
|
{
|
|
memmove(orig_code, previous, IN_UCHARS(code - previous));
|
|
code -= previous - orig_code;
|
|
previous = orig_code;
|
|
}
|
|
}
|
|
else code = orig_code;
|
|
|
|
/* Remember where this code item starts so we can pick up the length
|
|
next time round. */
|
|
|
|
last_code = code;
|
|
}
|
|
|
|
/* In the real compile phase, just check the workspace used by the forward
|
|
reference list. */
|
|
|
|
else if (cd->hwm > cd->start_workspace + cd->workspace_size -
|
|
WORK_SIZE_SAFETY_MARGIN)
|
|
{
|
|
*errorcodeptr = ERR52;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* If in \Q...\E, check for the end; if not, we have a literal */
|
|
|
|
if (inescq && c != CHAR_NULL)
|
|
{
|
|
if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E)
|
|
{
|
|
inescq = FALSE;
|
|
ptr++;
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
if (previous_callout != NULL)
|
|
{
|
|
if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
|
|
complete_callout(previous_callout, ptr, cd);
|
|
previous_callout = NULL;
|
|
}
|
|
if ((options & PCRE_AUTO_CALLOUT) != 0)
|
|
{
|
|
previous_callout = code;
|
|
code = auto_callout(code, ptr, cd);
|
|
}
|
|
goto NORMAL_CHAR;
|
|
}
|
|
/* Control does not reach here. */
|
|
}
|
|
|
|
/* In extended mode, skip white space and comments. We need a loop in order
|
|
to check for more white space and more comments after a comment. */
|
|
|
|
if ((options & PCRE_EXTENDED) != 0)
|
|
{
|
|
for (;;)
|
|
{
|
|
while (MAX_255(c) && (cd->ctypes[c] & ctype_space) != 0) c = *(++ptr);
|
|
if (c != CHAR_NUMBER_SIGN) break;
|
|
ptr++;
|
|
while (*ptr != CHAR_NULL)
|
|
{
|
|
if (IS_NEWLINE(ptr)) /* For non-fixed-length newline cases, */
|
|
{ /* IS_NEWLINE sets cd->nllen. */
|
|
ptr += cd->nllen;
|
|
break;
|
|
}
|
|
ptr++;
|
|
#ifdef SUPPORT_UTF
|
|
if (utf) FORWARDCHAR(ptr);
|
|
#endif
|
|
}
|
|
c = *ptr; /* Either NULL or the char after a newline */
|
|
}
|
|
}
|
|
|
|
/* See if the next thing is a quantifier. */
|
|
|
|
is_quantifier =
|
|
c == CHAR_ASTERISK || c == CHAR_PLUS || c == CHAR_QUESTION_MARK ||
|
|
(c == CHAR_LEFT_CURLY_BRACKET && is_counted_repeat(ptr+1));
|
|
|
|
/* Fill in length of a previous callout, except when the next thing is a
|
|
quantifier or when processing a property substitution string in UCP mode. */
|
|
|
|
if (!is_quantifier && previous_callout != NULL && nestptr == NULL &&
|
|
after_manual_callout-- <= 0)
|
|
{
|
|
if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
|
|
complete_callout(previous_callout, ptr, cd);
|
|
previous_callout = NULL;
|
|
}
|
|
|
|
/* Create auto callout, except for quantifiers, or while processing property
|
|
strings that are substituted for \w etc in UCP mode. */
|
|
|
|
if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier && nestptr == NULL)
|
|
{
|
|
previous_callout = code;
|
|
code = auto_callout(code, ptr, cd);
|
|
}
|
|
|
|
/* Process the next pattern item. */
|
|
|
|
switch(c)
|
|
{
|
|
/* ===================================================================*/
|
|
case CHAR_NULL: /* The branch terminates at string end */
|
|
case CHAR_VERTICAL_LINE: /* or | or ) */
|
|
case CHAR_RIGHT_PARENTHESIS:
|
|
*firstcharptr = firstchar;
|
|
*firstcharflagsptr = firstcharflags;
|
|
*reqcharptr = reqchar;
|
|
*reqcharflagsptr = reqcharflags;
|
|
*codeptr = code;
|
|
*ptrptr = ptr;
|
|
if (lengthptr != NULL)
|
|
{
|
|
if (OFLOW_MAX - *lengthptr < code - last_code)
|
|
{
|
|
*errorcodeptr = ERR20;
|
|
goto FAILED;
|
|
}
|
|
*lengthptr += (int)(code - last_code); /* To include callout length */
|
|
DPRINTF((">> end branch\n"));
|
|
}
|
|
return TRUE;
|
|
|
|
|
|
/* ===================================================================*/
|
|
/* Handle single-character metacharacters. In multiline mode, ^ disables
|
|
the setting of any following char as a first character. */
|
|
|
|
case CHAR_CIRCUMFLEX_ACCENT:
|
|
previous = NULL;
|
|
if ((options & PCRE_MULTILINE) != 0)
|
|
{
|
|
if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
|
|
*code++ = OP_CIRCM;
|
|
}
|
|
else *code++ = OP_CIRC;
|
|
break;
|
|
|
|
case CHAR_DOLLAR_SIGN:
|
|
previous = NULL;
|
|
*code++ = ((options & PCRE_MULTILINE) != 0)? OP_DOLLM : OP_DOLL;
|
|
break;
|
|
|
|
/* There can never be a first char if '.' is first, whatever happens about
|
|
repeats. The value of reqchar doesn't change either. */
|
|
|
|
case CHAR_DOT:
|
|
if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
|
|
zerofirstchar = firstchar;
|
|
zerofirstcharflags = firstcharflags;
|
|
zeroreqchar = reqchar;
|
|
zeroreqcharflags = reqcharflags;
|
|
previous = code;
|
|
*code++ = ((options & PCRE_DOTALL) != 0)? OP_ALLANY: OP_ANY;
|
|
break;
|
|
|
|
|
|
/* ===================================================================*/
|
|
/* Character classes. If the included characters are all < 256, we build a
|
|
32-byte bitmap of the permitted characters, except in the special case
|
|
where there is only one such character. For negated classes, we build the
|
|
map as usual, then invert it at the end. However, we use a different opcode
|
|
so that data characters > 255 can be handled correctly.
|
|
|
|
If the class contains characters outside the 0-255 range, a different
|
|
opcode is compiled. It may optionally have a bit map for characters < 256,
|
|
but those above are are explicitly listed afterwards. A flag byte tells
|
|
whether the bitmap is present, and whether this is a negated class or not.
|
|
|
|
In JavaScript compatibility mode, an isolated ']' causes an error. In
|
|
default (Perl) mode, it is treated as a data character. */
|
|
|
|
case CHAR_RIGHT_SQUARE_BRACKET:
|
|
if ((cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0)
|
|
{
|
|
*errorcodeptr = ERR64;
|
|
goto FAILED;
|
|
}
|
|
goto NORMAL_CHAR;
|
|
|
|
/* In another (POSIX) regex library, the ugly syntax [[:<:]] and [[:>:]] is
|
|
used for "start of word" and "end of word". As these are otherwise illegal
|
|
sequences, we don't break anything by recognizing them. They are replaced
|
|
by \b(?=\w) and \b(?<=\w) respectively. Sequences like [a[:<:]] are
|
|
erroneous and are handled by the normal code below. */
|
|
|
|
case CHAR_LEFT_SQUARE_BRACKET:
|
|
if (STRNCMP_UC_C8(ptr+1, STRING_WEIRD_STARTWORD, 6) == 0)
|
|
{
|
|
nestptr = ptr + 7;
|
|
ptr = sub_start_of_word - 1;
|
|
continue;
|
|
}
|
|
|
|
if (STRNCMP_UC_C8(ptr+1, STRING_WEIRD_ENDWORD, 6) == 0)
|
|
{
|
|
nestptr = ptr + 7;
|
|
ptr = sub_end_of_word - 1;
|
|
continue;
|
|
}
|
|
|
|
/* Handle a real character class. */
|
|
|
|
previous = code;
|
|
|
|
/* PCRE supports POSIX class stuff inside a class. Perl gives an error if
|
|
they are encountered at the top level, so we'll do that too. */
|
|
|
|
if ((ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
|
|
ptr[1] == CHAR_EQUALS_SIGN) &&
|
|
check_posix_syntax(ptr, &tempptr))
|
|
{
|
|
*errorcodeptr = (ptr[1] == CHAR_COLON)? ERR13 : ERR31;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* If the first character is '^', set the negation flag and skip it. Also,
|
|
if the first few characters (either before or after ^) are \Q\E or \E we
|
|
skip them too. This makes for compatibility with Perl. */
|
|
|
|
negate_class = FALSE;
|
|
for (;;)
|
|
{
|
|
c = *(++ptr);
|
|
if (c == CHAR_BACKSLASH)
|
|
{
|
|
if (ptr[1] == CHAR_E)
|
|
ptr++;
|
|
else if (STRNCMP_UC_C8(ptr + 1, STR_Q STR_BACKSLASH STR_E, 3) == 0)
|
|
ptr += 3;
|
|
else
|
|
break;
|
|
}
|
|
else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT)
|
|
negate_class = TRUE;
|
|
else break;
|
|
}
|
|
|
|
/* Empty classes are allowed in JavaScript compatibility mode. Otherwise,
|
|
an initial ']' is taken as a data character -- the code below handles
|
|
that. In JS mode, [] must always fail, so generate OP_FAIL, whereas
|
|
[^] must match any character, so generate OP_ALLANY. */
|
|
|
|
if (c == CHAR_RIGHT_SQUARE_BRACKET &&
|
|
(cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0)
|
|
{
|
|
*code++ = negate_class? OP_ALLANY : OP_FAIL;
|
|
if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
|
|
zerofirstchar = firstchar;
|
|
zerofirstcharflags = firstcharflags;
|
|
break;
|
|
}
|
|
|
|
/* If a class contains a negative special such as \S, we need to flip the
|
|
negation flag at the end, so that support for characters > 255 works
|
|
correctly (they are all included in the class). */
|
|
|
|
should_flip_negation = FALSE;
|
|
|
|
/* Extended class (xclass) will be used when characters > 255
|
|
might match. */
|
|
|
|
#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
|
|
xclass = FALSE;
|
|
class_uchardata = code + LINK_SIZE + 2; /* For XCLASS items */
|
|
class_uchardata_base = class_uchardata; /* Save the start */
|
|
#endif
|
|
|
|
/* For optimization purposes, we track some properties of the class:
|
|
class_has_8bitchar will be non-zero if the class contains at least one <
|
|
256 character; class_one_char will be 1 if the class contains just one
|
|
character; xclass_has_prop will be TRUE if unicode property checks
|
|
are present in the class. */
|
|
|
|
class_has_8bitchar = 0;
|
|
class_one_char = 0;
|
|
#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
|
|
xclass_has_prop = FALSE;
|
|
#endif
|
|
|
|
/* Initialize the 32-char bit map to all zeros. We build the map in a
|
|
temporary bit of memory, in case the class contains fewer than two
|
|
8-bit characters because in that case the compiled code doesn't use the bit
|
|
map. */
|
|
|
|
memset(classbits, 0, 32 * sizeof(pcre_uint8));
|
|
|
|
/* Process characters until ] is reached. By writing this as a "do" it
|
|
means that an initial ] is taken as a data character. At the start of the
|
|
loop, c contains the first byte of the character. */
|
|
|
|
if (c != CHAR_NULL) do
|
|
{
|
|
const pcre_uchar *oldptr;
|
|
|
|
#ifdef SUPPORT_UTF
|
|
if (utf && HAS_EXTRALEN(c))
|
|
{ /* Braces are required because the */
|
|
GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */
|
|
}
|
|
#endif
|
|
|
|
#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
|
|
/* In the pre-compile phase, accumulate the length of any extra
|
|
data and reset the pointer. This is so that very large classes that
|
|
contain a zillion > 255 characters no longer overwrite the work space
|
|
(which is on the stack). We have to remember that there was XCLASS data,
|
|
however. */
|
|
|
|
if (lengthptr != NULL && class_uchardata > class_uchardata_base)
|
|
{
|
|
xclass = TRUE;
|
|
*lengthptr += class_uchardata - class_uchardata_base;
|
|
class_uchardata = class_uchardata_base;
|
|
}
|
|
#endif
|
|
|
|
/* Inside \Q...\E everything is literal except \E */
|
|
|
|
if (inescq)
|
|
{
|
|
if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */
|
|
{
|
|
inescq = FALSE; /* Reset literal state */
|
|
ptr++; /* Skip the 'E' */
|
|
continue; /* Carry on with next */
|
|
}
|
|
goto CHECK_RANGE; /* Could be range if \E follows */
|
|
}
|
|
|
|
/* Handle POSIX class names. Perl allows a negation extension of the
|
|
form [:^name:]. A square bracket that doesn't match the syntax is
|
|
treated as a literal. We also recognize the POSIX constructions
|
|
[.ch.] and [=ch=] ("collating elements") and fault them, as Perl
|
|
5.6 and 5.8 do. */
|
|
|
|
if (c == CHAR_LEFT_SQUARE_BRACKET &&
|
|
(ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
|
|
ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr))
|
|
{
|
|
BOOL local_negate = FALSE;
|
|
int posix_class, taboffset, tabopt;
|
|
register const pcre_uint8 *cbits = cd->cbits;
|
|
pcre_uint8 pbits[32];
|
|
|
|
if (ptr[1] != CHAR_COLON)
|
|
{
|
|
*errorcodeptr = ERR31;
|
|
goto FAILED;
|
|
}
|
|
|
|
ptr += 2;
|
|
if (*ptr == CHAR_CIRCUMFLEX_ACCENT)
|
|
{
|
|
local_negate = TRUE;
|
|
should_flip_negation = TRUE; /* Note negative special */
|
|
ptr++;
|
|
}
|
|
|
|
posix_class = check_posix_name(ptr, (int)(tempptr - ptr));
|
|
if (posix_class < 0)
|
|
{
|
|
*errorcodeptr = ERR30;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* If matching is caseless, upper and lower are converted to
|
|
alpha. This relies on the fact that the class table starts with
|
|
alpha, lower, upper as the first 3 entries. */
|
|
|
|
if ((options & PCRE_CASELESS) != 0 && posix_class <= 2)
|
|
posix_class = 0;
|
|
|
|
/* When PCRE_UCP is set, some of the POSIX classes are converted to
|
|
different escape sequences that use Unicode properties \p or \P. Others
|
|
that are not available via \p or \P generate XCL_PROP/XCL_NOTPROP
|
|
directly. */
|
|
|
|
#ifdef SUPPORT_UCP
|
|
if ((options & PCRE_UCP) != 0)
|
|
{
|
|
unsigned int ptype = 0;
|
|
int pc = posix_class + ((local_negate)? POSIX_SUBSIZE/2 : 0);
|
|
|
|
/* The posix_substitutes table specifies which POSIX classes can be
|
|
converted to \p or \P items. */
|
|
|
|
if (posix_substitutes[pc] != NULL)
|
|
{
|
|
nestptr = tempptr + 1;
|
|
ptr = posix_substitutes[pc] - 1;
|
|
continue;
|
|
}
|
|
|
|
/* There are three other classes that generate special property calls
|
|
that are recognized only in an XCLASS. */
|
|
|
|
else switch(posix_class)
|
|
{
|
|
case PC_GRAPH:
|
|
ptype = PT_PXGRAPH;
|
|
/* Fall through */
|
|
case PC_PRINT:
|
|
if (ptype == 0) ptype = PT_PXPRINT;
|
|
/* Fall through */
|
|
case PC_PUNCT:
|
|
if (ptype == 0) ptype = PT_PXPUNCT;
|
|
*class_uchardata++ = local_negate? XCL_NOTPROP : XCL_PROP;
|
|
*class_uchardata++ = ptype;
|
|
*class_uchardata++ = 0;
|
|
xclass_has_prop = TRUE;
|
|
ptr = tempptr + 1;
|
|
continue;
|
|
|
|
/* For all other POSIX classes, no special action is taken in UCP
|
|
mode. Fall through to the non_UCP case. */
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
/* In the non-UCP case, or when UCP makes no difference, we build the
|
|
bit map for the POSIX class in a chunk of local store because we may be
|
|
adding and subtracting from it, and we don't want to subtract bits that
|
|
may be in the main map already. At the end we or the result into the
|
|
bit map that is being built. */
|
|
|
|
posix_class *= 3;
|
|
|
|
/* Copy in the first table (always present) */
|
|
|
|
memcpy(pbits, cbits + posix_class_maps[posix_class],
|
|
32 * sizeof(pcre_uint8));
|
|
|
|
/* If there is a second table, add or remove it as required. */
|
|
|
|
taboffset = posix_class_maps[posix_class + 1];
|
|
tabopt = posix_class_maps[posix_class + 2];
|
|
|
|
if (taboffset >= 0)
|
|
{
|
|
if (tabopt >= 0)
|
|
for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset];
|
|
else
|
|
for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset];
|
|
}
|
|
|
|
/* Now see if we need to remove any special characters. An option
|
|
value of 1 removes vertical space and 2 removes underscore. */
|
|
|
|
if (tabopt < 0) tabopt = -tabopt;
|
|
if (tabopt == 1) pbits[1] &= ~0x3c;
|
|
else if (tabopt == 2) pbits[11] &= 0x7f;
|
|
|
|
/* Add the POSIX table or its complement into the main table that is
|
|
being built and we are done. */
|
|
|
|
if (local_negate)
|
|
for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c];
|
|
else
|
|
for (c = 0; c < 32; c++) classbits[c] |= pbits[c];
|
|
|
|
ptr = tempptr + 1;
|
|
/* Every class contains at least one < 256 character. */
|
|
class_has_8bitchar = 1;
|
|
/* Every class contains at least two characters. */
|
|
class_one_char = 2;
|
|
continue; /* End of POSIX syntax handling */
|
|
}
|
|
|
|
/* Backslash may introduce a single character, or it may introduce one
|
|
of the specials, which just set a flag. The sequence \b is a special
|
|
case. Inside a class (and only there) it is treated as backspace. We
|
|
assume that other escapes have more than one character in them, so
|
|
speculatively set both class_has_8bitchar and class_one_char bigger
|
|
than one. Unrecognized escapes fall through and are either treated
|
|
as literal characters (by default), or are faulted if
|
|
PCRE_EXTRA is set. */
|
|
|
|
if (c == CHAR_BACKSLASH)
|
|
{
|
|
escape = check_escape(&ptr, &ec, errorcodeptr, cd->bracount, options,
|
|
TRUE);
|
|
if (*errorcodeptr != 0) goto FAILED;
|
|
if (escape == 0) c = ec;
|
|
else if (escape == ESC_b) c = CHAR_BS; /* \b is backspace in a class */
|
|
else if (escape == ESC_N) /* \N is not supported in a class */
|
|
{
|
|
*errorcodeptr = ERR71;
|
|
goto FAILED;
|
|
}
|
|
else if (escape == ESC_Q) /* Handle start of quoted string */
|
|
{
|
|
if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
|
|
{
|
|
ptr += 2; /* avoid empty string */
|
|
}
|
|
else inescq = TRUE;
|
|
continue;
|
|
}
|
|
else if (escape == ESC_E) continue; /* Ignore orphan \E */
|
|
|
|
else
|
|
{
|
|
register const pcre_uint8 *cbits = cd->cbits;
|
|
/* Every class contains at least two < 256 characters. */
|
|
class_has_8bitchar++;
|
|
/* Every class contains at least two characters. */
|
|
class_one_char += 2;
|
|
|
|
switch (escape)
|
|
{
|
|
#ifdef SUPPORT_UCP
|
|
case ESC_du: /* These are the values given for \d etc */
|
|
case ESC_DU: /* when PCRE_UCP is set. We replace the */
|
|
case ESC_wu: /* escape sequence with an appropriate \p */
|
|
case ESC_WU: /* or \P to test Unicode properties instead */
|
|
case ESC_su: /* of the default ASCII testing. */
|
|
case ESC_SU:
|
|
nestptr = ptr;
|
|
ptr = substitutes[escape - ESC_DU] - 1; /* Just before substitute */
|
|
class_has_8bitchar--; /* Undo! */
|
|
continue;
|
|
#endif
|
|
case ESC_d:
|
|
for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit];
|
|
continue;
|
|
|
|
case ESC_D:
|
|
should_flip_negation = TRUE;
|
|
for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit];
|
|
continue;
|
|
|
|
case ESC_w:
|
|
for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word];
|
|
continue;
|
|
|
|
case ESC_W:
|
|
should_flip_negation = TRUE;
|
|
for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word];
|
|
continue;
|
|
|
|
/* Perl 5.004 onwards omitted VT from \s, but restored it at Perl
|
|
5.18. Before PCRE 8.34, we had to preserve the VT bit if it was
|
|
previously set by something earlier in the character class.
|
|
Luckily, the value of CHAR_VT is 0x0b in both ASCII and EBCDIC, so
|
|
we could just adjust the appropriate bit. From PCRE 8.34 we no
|
|
longer treat \s and \S specially. */
|
|
|
|
case ESC_s:
|
|
for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_space];
|
|
continue;
|
|
|
|
case ESC_S:
|
|
should_flip_negation = TRUE;
|
|
for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space];
|
|
continue;
|
|
|
|
/* The rest apply in both UCP and non-UCP cases. */
|
|
|
|
case ESC_h:
|
|
(void)add_list_to_class(classbits, &class_uchardata, options, cd,
|
|
PRIV(hspace_list), NOTACHAR);
|
|
continue;
|
|
|
|
case ESC_H:
|
|
(void)add_not_list_to_class(classbits, &class_uchardata, options,
|
|
cd, PRIV(hspace_list));
|
|
continue;
|
|
|
|
case ESC_v:
|
|
(void)add_list_to_class(classbits, &class_uchardata, options, cd,
|
|
PRIV(vspace_list), NOTACHAR);
|
|
continue;
|
|
|
|
case ESC_V:
|
|
(void)add_not_list_to_class(classbits, &class_uchardata, options,
|
|
cd, PRIV(vspace_list));
|
|
continue;
|
|
|
|
#ifdef SUPPORT_UCP
|
|
case ESC_p:
|
|
case ESC_P:
|
|
{
|
|
BOOL negated;
|
|
unsigned int ptype = 0, pdata = 0;
|
|
if (!get_ucp(&ptr, &negated, &ptype, &pdata, errorcodeptr))
|
|
goto FAILED;
|
|
*class_uchardata++ = ((escape == ESC_p) != negated)?
|
|
XCL_PROP : XCL_NOTPROP;
|
|
*class_uchardata++ = ptype;
|
|
*class_uchardata++ = pdata;
|
|
xclass_has_prop = TRUE;
|
|
class_has_8bitchar--; /* Undo! */
|
|
continue;
|
|
}
|
|
#endif
|
|
/* Unrecognized escapes are faulted if PCRE is running in its
|
|
strict mode. By default, for compatibility with Perl, they are
|
|
treated as literals. */
|
|
|
|
default:
|
|
if ((options & PCRE_EXTRA) != 0)
|
|
{
|
|
*errorcodeptr = ERR7;
|
|
goto FAILED;
|
|
}
|
|
class_has_8bitchar--; /* Undo the speculative increase. */
|
|
class_one_char -= 2; /* Undo the speculative increase. */
|
|
c = *ptr; /* Get the final character and fall through */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Fall through if the escape just defined a single character (c >= 0).
|
|
This may be greater than 256. */
|
|
|
|
escape = 0;
|
|
|
|
} /* End of backslash handling */
|
|
|
|
/* A character may be followed by '-' to form a range. However, Perl does
|
|
not permit ']' to be the end of the range. A '-' character at the end is
|
|
treated as a literal. Perl ignores orphaned \E sequences entirely. The
|
|
code for handling \Q and \E is messy. */
|
|
|
|
CHECK_RANGE:
|
|
while (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
|
|
{
|
|
inescq = FALSE;
|
|
ptr += 2;
|
|
}
|
|
oldptr = ptr;
|
|
|
|
/* Remember if \r or \n were explicitly used */
|
|
|
|
if (c == CHAR_CR || c == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF;
|
|
|
|
/* Check for range */
|
|
|
|
if (!inescq && ptr[1] == CHAR_MINUS)
|
|
{
|
|
pcre_uint32 d;
|
|
ptr += 2;
|
|
while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) ptr += 2;
|
|
|
|
/* If we hit \Q (not followed by \E) at this point, go into escaped
|
|
mode. */
|
|
|
|
while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_Q)
|
|
{
|
|
ptr += 2;
|
|
if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E)
|
|
{ ptr += 2; continue; }
|
|
inescq = TRUE;
|
|
break;
|
|
}
|
|
|
|
/* Minus (hyphen) at the end of a class is treated as a literal, so put
|
|
back the pointer and jump to handle the character that preceded it. */
|
|
|
|
if (*ptr == CHAR_NULL || (!inescq && *ptr == CHAR_RIGHT_SQUARE_BRACKET))
|
|
{
|
|
ptr = oldptr;
|
|
goto CLASS_SINGLE_CHARACTER;
|
|
}
|
|
|
|
/* Otherwise, we have a potential range; pick up the next character */
|
|
|
|
#ifdef SUPPORT_UTF
|
|
if (utf)
|
|
{ /* Braces are required because the */
|
|
GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */
|
|
}
|
|
else
|
|
#endif
|
|
d = *ptr; /* Not UTF-8 mode */
|
|
|
|
/* The second part of a range can be a single-character escape
|
|
sequence, but not any of the other escapes. Perl treats a hyphen as a
|
|
literal in such circumstances. However, in Perl's warning mode, a
|
|
warning is given, so PCRE now faults it as it is almost certainly a
|
|
mistake on the user's part. */
|
|
|
|
if (!inescq)
|
|
{
|
|
if (d == CHAR_BACKSLASH)
|
|
{
|
|
int descape;
|
|
descape = check_escape(&ptr, &d, errorcodeptr, cd->bracount, options, TRUE);
|
|
if (*errorcodeptr != 0) goto FAILED;
|
|
|
|
/* 0 means a character was put into d; \b is backspace; any other
|
|
special causes an error. */
|
|
|
|
if (descape != 0)
|
|
{
|
|
if (descape == ESC_b) d = CHAR_BS; else
|
|
{
|
|
*errorcodeptr = ERR83;
|
|
goto FAILED;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* A hyphen followed by a POSIX class is treated in the same way. */
|
|
|
|
else if (d == CHAR_LEFT_SQUARE_BRACKET &&
|
|
(ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
|
|
ptr[1] == CHAR_EQUALS_SIGN) &&
|
|
check_posix_syntax(ptr, &tempptr))
|
|
{
|
|
*errorcodeptr = ERR83;
|
|
goto FAILED;
|
|
}
|
|
}
|
|
|
|
/* Check that the two values are in the correct order. Optimize
|
|
one-character ranges. */
|
|
|
|
if (d < c)
|
|
{
|
|
*errorcodeptr = ERR8;
|
|
goto FAILED;
|
|
}
|
|
if (d == c) goto CLASS_SINGLE_CHARACTER; /* A few lines below */
|
|
|
|
/* We have found a character range, so single character optimizations
|
|
cannot be done anymore. Any value greater than 1 indicates that there
|
|
is more than one character. */
|
|
|
|
class_one_char = 2;
|
|
|
|
/* Remember an explicit \r or \n, and add the range to the class. */
|
|
|
|
if (d == CHAR_CR || d == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF;
|
|
|
|
class_has_8bitchar +=
|
|
add_to_class(classbits, &class_uchardata, options, cd, c, d);
|
|
|
|
continue; /* Go get the next char in the class */
|
|
}
|
|
|
|
/* Handle a single character - we can get here for a normal non-escape
|
|
char, or after \ that introduces a single character or for an apparent
|
|
range that isn't. Only the value 1 matters for class_one_char, so don't
|
|
increase it if it is already 2 or more ... just in case there's a class
|
|
with a zillion characters in it. */
|
|
|
|
CLASS_SINGLE_CHARACTER:
|
|
if (class_one_char < 2) class_one_char++;
|
|
|
|
/* If class_one_char is 1, we have the first single character in the
|
|
class, and there have been no prior ranges, or XCLASS items generated by
|
|
escapes. If this is the final character in the class, we can optimize by
|
|
turning the item into a 1-character OP_CHAR[I] if it's positive, or
|
|
OP_NOT[I] if it's negative. In the positive case, it can cause firstchar
|
|
to be set. Otherwise, there can be no first char if this item is first,
|
|
whatever repeat count may follow. In the case of reqchar, save the
|
|
previous value for reinstating. */
|
|
|
|
if (class_one_char == 1 && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
|
|
{
|
|
ptr++;
|
|
zeroreqchar = reqchar;
|
|
zeroreqcharflags = reqcharflags;
|
|
|
|
if (negate_class)
|
|
{
|
|
#ifdef SUPPORT_UCP
|
|
int d;
|
|
#endif
|
|
if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
|
|
zerofirstchar = firstchar;
|
|
zerofirstcharflags = firstcharflags;
|
|
|
|
/* For caseless UTF-8 mode when UCP support is available, check
|
|
whether this character has more than one other case. If so, generate
|
|
a special OP_NOTPROP item instead of OP_NOTI. */
|
|
|
|
#ifdef SUPPORT_UCP
|
|
if (utf && (options & PCRE_CASELESS) != 0 &&
|
|
(d = UCD_CASESET(c)) != 0)
|
|
{
|
|
*code++ = OP_NOTPROP;
|
|
*code++ = PT_CLIST;
|
|
*code++ = d;
|
|
}
|
|
else
|
|
#endif
|
|
/* Char has only one other case, or UCP not available */
|
|
|
|
{
|
|
*code++ = ((options & PCRE_CASELESS) != 0)? OP_NOTI: OP_NOT;
|
|
#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
|
|
if (utf && c > MAX_VALUE_FOR_SINGLE_CHAR)
|
|
code += PRIV(ord2utf)(c, code);
|
|
else
|
|
#endif
|
|
*code++ = c;
|
|
}
|
|
|
|
/* We are finished with this character class */
|
|
|
|
goto END_CLASS;
|
|
}
|
|
|
|
/* For a single, positive character, get the value into mcbuffer, and
|
|
then we can handle this with the normal one-character code. */
|
|
|
|
#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
|
|
if (utf && c > MAX_VALUE_FOR_SINGLE_CHAR)
|
|
mclength = PRIV(ord2utf)(c, mcbuffer);
|
|
else
|
|
#endif
|
|
{
|
|
mcbuffer[0] = c;
|
|
mclength = 1;
|
|
}
|
|
goto ONE_CHAR;
|
|
} /* End of 1-char optimization */
|
|
|
|
/* There is more than one character in the class, or an XCLASS item
|
|
has been generated. Add this character to the class. */
|
|
|
|
class_has_8bitchar +=
|
|
add_to_class(classbits, &class_uchardata, options, cd, c, c);
|
|
}
|
|
|
|
/* Loop until ']' reached. This "while" is the end of the "do" far above.
|
|
If we are at the end of an internal nested string, revert to the outer
|
|
string. */
|
|
|
|
while (((c = *(++ptr)) != CHAR_NULL ||
|
|
(nestptr != NULL &&
|
|
(ptr = nestptr, nestptr = NULL, c = *(++ptr)) != CHAR_NULL)) &&
|
|
(c != CHAR_RIGHT_SQUARE_BRACKET || inescq));
|
|
|
|
/* Check for missing terminating ']' */
|
|
|
|
if (c == CHAR_NULL)
|
|
{
|
|
*errorcodeptr = ERR6;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* We will need an XCLASS if data has been placed in class_uchardata. In
|
|
the second phase this is a sufficient test. However, in the pre-compile
|
|
phase, class_uchardata gets emptied to prevent workspace overflow, so it
|
|
only if the very last character in the class needs XCLASS will it contain
|
|
anything at this point. For this reason, xclass gets set TRUE above when
|
|
uchar_classdata is emptied, and that's why this code is the way it is here
|
|
instead of just doing a test on class_uchardata below. */
|
|
|
|
#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
|
|
if (class_uchardata > class_uchardata_base) xclass = TRUE;
|
|
#endif
|
|
|
|
/* If this is the first thing in the branch, there can be no first char
|
|
setting, whatever the repeat count. Any reqchar setting must remain
|
|
unchanged after any kind of repeat. */
|
|
|
|
if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
|
|
zerofirstchar = firstchar;
|
|
zerofirstcharflags = firstcharflags;
|
|
zeroreqchar = reqchar;
|
|
zeroreqcharflags = reqcharflags;
|
|
|
|
/* If there are characters with values > 255, we have to compile an
|
|
extended class, with its own opcode, unless there was a negated special
|
|
such as \S in the class, and PCRE_UCP is not set, because in that case all
|
|
characters > 255 are in the class, so any that were explicitly given as
|
|
well can be ignored. If (when there are explicit characters > 255 that must
|
|
be listed) there are no characters < 256, we can omit the bitmap in the
|
|
actual compiled code. */
|
|
|
|
#ifdef SUPPORT_UTF
|
|
if (xclass && (!should_flip_negation || (options & PCRE_UCP) != 0))
|
|
#elif !defined COMPILE_PCRE8
|
|
if (xclass && !should_flip_negation)
|
|
#endif
|
|
#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
|
|
{
|
|
*class_uchardata++ = XCL_END; /* Marks the end of extra data */
|
|
*code++ = OP_XCLASS;
|
|
code += LINK_SIZE;
|
|
*code = negate_class? XCL_NOT:0;
|
|
if (xclass_has_prop) *code |= XCL_HASPROP;
|
|
|
|
/* If the map is required, move up the extra data to make room for it;
|
|
otherwise just move the code pointer to the end of the extra data. */
|
|
|
|
if (class_has_8bitchar > 0)
|
|
{
|
|
*code++ |= XCL_MAP;
|
|
memmove(code + (32 / sizeof(pcre_uchar)), code,
|
|
IN_UCHARS(class_uchardata - code));
|
|
if (negate_class && !xclass_has_prop)
|
|
for (c = 0; c < 32; c++) classbits[c] = ~classbits[c];
|
|
memcpy(code, classbits, 32);
|
|
code = class_uchardata + (32 / sizeof(pcre_uchar));
|
|
}
|
|
else code = class_uchardata;
|
|
|
|
/* Now fill in the complete length of the item */
|
|
|
|
PUT(previous, 1, (int)(code - previous));
|
|
break; /* End of class handling */
|
|
}
|
|
#endif
|
|
|
|
/* If there are no characters > 255, or they are all to be included or
|
|
excluded, set the opcode to OP_CLASS or OP_NCLASS, depending on whether the
|
|
whole class was negated and whether there were negative specials such as \S
|
|
(non-UCP) in the class. Then copy the 32-byte map into the code vector,
|
|
negating it if necessary. */
|
|
|
|
*code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS;
|
|
if (lengthptr == NULL) /* Save time in the pre-compile phase */
|
|
{
|
|
if (negate_class)
|
|
for (c = 0; c < 32; c++) classbits[c] = ~classbits[c];
|
|
memcpy(code, classbits, 32);
|
|
}
|
|
code += 32 / sizeof(pcre_uchar);
|
|
|
|
END_CLASS:
|
|
break;
|
|
|
|
|
|
/* ===================================================================*/
|
|
/* Various kinds of repeat; '{' is not necessarily a quantifier, but this
|
|
has been tested above. */
|
|
|
|
case CHAR_LEFT_CURLY_BRACKET:
|
|
if (!is_quantifier) goto NORMAL_CHAR;
|
|
ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr);
|
|
if (*errorcodeptr != 0) goto FAILED;
|
|
goto REPEAT;
|
|
|
|
case CHAR_ASTERISK:
|
|
repeat_min = 0;
|
|
repeat_max = -1;
|
|
goto REPEAT;
|
|
|
|
case CHAR_PLUS:
|
|
repeat_min = 1;
|
|
repeat_max = -1;
|
|
goto REPEAT;
|
|
|
|
case CHAR_QUESTION_MARK:
|
|
repeat_min = 0;
|
|
repeat_max = 1;
|
|
|
|
REPEAT:
|
|
if (previous == NULL)
|
|
{
|
|
*errorcodeptr = ERR9;
|
|
goto FAILED;
|
|
}
|
|
|
|
if (repeat_min == 0)
|
|
{
|
|
firstchar = zerofirstchar; /* Adjust for zero repeat */
|
|
firstcharflags = zerofirstcharflags;
|
|
reqchar = zeroreqchar; /* Ditto */
|
|
reqcharflags = zeroreqcharflags;
|
|
}
|
|
|
|
/* Remember whether this is a variable length repeat */
|
|
|
|
reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY;
|
|
|
|
op_type = 0; /* Default single-char op codes */
|
|
possessive_quantifier = FALSE; /* Default not possessive quantifier */
|
|
|
|
/* Save start of previous item, in case we have to move it up in order to
|
|
insert something before it. */
|
|
|
|
tempcode = previous;
|
|
|
|
/* Before checking for a possessive quantifier, we must skip over
|
|
whitespace and comments in extended mode because Perl allows white space at
|
|
this point. */
|
|
|
|
if ((options & PCRE_EXTENDED) != 0)
|
|
{
|
|
const pcre_uchar *p = ptr + 1;
|
|
for (;;)
|
|
{
|
|
while (MAX_255(*p) && (cd->ctypes[*p] & ctype_space) != 0) p++;
|
|
if (*p != CHAR_NUMBER_SIGN) break;
|
|
p++;
|
|
while (*p != CHAR_NULL)
|
|
{
|
|
if (IS_NEWLINE(p)) /* For non-fixed-length newline cases, */
|
|
{ /* IS_NEWLINE sets cd->nllen. */
|
|
p += cd->nllen;
|
|
break;
|
|
}
|
|
p++;
|
|
#ifdef SUPPORT_UTF
|
|
if (utf) FORWARDCHAR(p);
|
|
#endif
|
|
} /* Loop for comment characters */
|
|
} /* Loop for multiple comments */
|
|
ptr = p - 1; /* Character before the next significant one. */
|
|
}
|
|
|
|
/* If the next character is '+', we have a possessive quantifier. This
|
|
implies greediness, whatever the setting of the PCRE_UNGREEDY option.
|
|
If the next character is '?' this is a minimizing repeat, by default,
|
|
but if PCRE_UNGREEDY is set, it works the other way round. We change the
|
|
repeat type to the non-default. */
|
|
|
|
if (ptr[1] == CHAR_PLUS)
|
|
{
|
|
repeat_type = 0; /* Force greedy */
|
|
possessive_quantifier = TRUE;
|
|
ptr++;
|
|
}
|
|
else if (ptr[1] == CHAR_QUESTION_MARK)
|
|
{
|
|
repeat_type = greedy_non_default;
|
|
ptr++;
|
|
}
|
|
else repeat_type = greedy_default;
|
|
|
|
/* If previous was a recursion call, wrap it in atomic brackets so that
|
|
previous becomes the atomic group. All recursions were so wrapped in the
|
|
past, but it no longer happens for non-repeated recursions. In fact, the
|
|
repeated ones could be re-implemented independently so as not to need this,
|
|
but for the moment we rely on the code for repeating groups. */
|
|
|
|
if (*previous == OP_RECURSE)
|
|
{
|
|
memmove(previous + 1 + LINK_SIZE, previous, IN_UCHARS(1 + LINK_SIZE));
|
|
*previous = OP_ONCE;
|
|
PUT(previous, 1, 2 + 2*LINK_SIZE);
|
|
previous[2 + 2*LINK_SIZE] = OP_KET;
|
|
PUT(previous, 3 + 2*LINK_SIZE, 2 + 2*LINK_SIZE);
|
|
code += 2 + 2 * LINK_SIZE;
|
|
length_prevgroup = 3 + 3*LINK_SIZE;
|
|
|
|
/* When actually compiling, we need to check whether this was a forward
|
|
reference, and if so, adjust the offset. */
|
|
|
|
if (lengthptr == NULL && cd->hwm >= cd->start_workspace + LINK_SIZE)
|
|
{
|
|
int offset = GET(cd->hwm, -LINK_SIZE);
|
|
if (offset == previous + 1 - cd->start_code)
|
|
PUT(cd->hwm, -LINK_SIZE, offset + 1 + LINK_SIZE);
|
|
}
|
|
}
|
|
|
|
/* Now handle repetition for the different types of item. */
|
|
|
|
/* If previous was a character or negated character match, abolish the item
|
|
and generate a repeat item instead. If a char item has a minimum of more
|
|
than one, ensure that it is set in reqchar - it might not be if a sequence
|
|
such as x{3} is the first thing in a branch because the x will have gone
|
|
into firstchar instead. */
|
|
|
|
if (*previous == OP_CHAR || *previous == OP_CHARI
|
|
|| *previous == OP_NOT || *previous == OP_NOTI)
|
|
{
|
|
switch (*previous)
|
|
{
|
|
default: /* Make compiler happy. */
|
|
case OP_CHAR: op_type = OP_STAR - OP_STAR; break;
|
|
case OP_CHARI: op_type = OP_STARI - OP_STAR; break;
|
|
case OP_NOT: op_type = OP_NOTSTAR - OP_STAR; break;
|
|
case OP_NOTI: op_type = OP_NOTSTARI - OP_STAR; break;
|
|
}
|
|
|
|
/* Deal with UTF characters that take up more than one character. It's
|
|
easier to write this out separately than try to macrify it. Use c to
|
|
hold the length of the character in bytes, plus UTF_LENGTH to flag that
|
|
it's a length rather than a small character. */
|
|
|
|
#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
|
|
if (utf && NOT_FIRSTCHAR(code[-1]))
|
|
{
|
|
pcre_uchar *lastchar = code - 1;
|
|
BACKCHAR(lastchar);
|
|
c = (int)(code - lastchar); /* Length of UTF-8 character */
|
|
memcpy(utf_chars, lastchar, IN_UCHARS(c)); /* Save the char */
|
|
c |= UTF_LENGTH; /* Flag c as a length */
|
|
}
|
|
else
|
|
#endif /* SUPPORT_UTF */
|
|
|
|
/* Handle the case of a single charater - either with no UTF support, or
|
|
with UTF disabled, or for a single character UTF character. */
|
|
{
|
|
c = code[-1];
|
|
if (*previous <= OP_CHARI && repeat_min > 1)
|
|
{
|
|
reqchar = c;
|
|
reqcharflags = req_caseopt | cd->req_varyopt;
|
|
}
|
|
}
|
|
|
|
goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */
|
|
}
|
|
|
|
/* If previous was a character type match (\d or similar), abolish it and
|
|
create a suitable repeat item. The code is shared with single-character
|
|
repeats by setting op_type to add a suitable offset into repeat_type. Note
|
|
the the Unicode property types will be present only when SUPPORT_UCP is
|
|
defined, but we don't wrap the little bits of code here because it just
|
|
makes it horribly messy. */
|
|
|
|
else if (*previous < OP_EODN)
|
|
{
|
|
pcre_uchar *oldcode;
|
|
int prop_type, prop_value;
|
|
op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */
|
|
c = *previous;
|
|
|
|
OUTPUT_SINGLE_REPEAT:
|
|
if (*previous == OP_PROP || *previous == OP_NOTPROP)
|
|
{
|
|
prop_type = previous[1];
|
|
prop_value = previous[2];
|
|
}
|
|
else prop_type = prop_value = -1;
|
|
|
|
oldcode = code;
|
|
code = previous; /* Usually overwrite previous item */
|
|
|
|
/* If the maximum is zero then the minimum must also be zero; Perl allows
|
|
this case, so we do too - by simply omitting the item altogether. */
|
|
|
|
if (repeat_max == 0) goto END_REPEAT;
|
|
|
|
/* Combine the op_type with the repeat_type */
|
|
|
|
repeat_type += op_type;
|
|
|
|
/* A minimum of zero is handled either as the special case * or ?, or as
|
|
an UPTO, with the maximum given. */
|
|
|
|
if (repeat_min == 0)
|
|
{
|
|
if (repeat_max == -1) *code++ = OP_STAR + repeat_type;
|
|
else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type;
|
|
else
|
|
{
|
|
*code++ = OP_UPTO + repeat_type;
|
|
PUT2INC(code, 0, repeat_max);
|
|
}
|
|
}
|
|
|
|
/* A repeat minimum of 1 is optimized into some special cases. If the
|
|
maximum is unlimited, we use OP_PLUS. Otherwise, the original item is
|
|
left in place and, if the maximum is greater than 1, we use OP_UPTO with
|
|
one less than the maximum. */
|
|
|
|
else if (repeat_min == 1)
|
|
{
|
|
if (repeat_max == -1)
|
|
*code++ = OP_PLUS + repeat_type;
|
|
else
|
|
{
|
|
code = oldcode; /* leave previous item in place */
|
|
if (repeat_max == 1) goto END_REPEAT;
|
|
*code++ = OP_UPTO + repeat_type;
|
|
PUT2INC(code, 0, repeat_max - 1);
|
|
}
|
|
}
|
|
|
|
/* The case {n,n} is just an EXACT, while the general case {n,m} is
|
|
handled as an EXACT followed by an UPTO. */
|
|
|
|
else
|
|
{
|
|
*code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */
|
|
PUT2INC(code, 0, repeat_min);
|
|
|
|
/* If the maximum is unlimited, insert an OP_STAR. Before doing so,
|
|
we have to insert the character for the previous code. For a repeated
|
|
Unicode property match, there are two extra bytes that define the
|
|
required property. In UTF-8 mode, long characters have their length in
|
|
c, with the UTF_LENGTH bit as a flag. */
|
|
|
|
if (repeat_max < 0)
|
|
{
|
|
#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
|
|
if (utf && (c & UTF_LENGTH) != 0)
|
|
{
|
|
memcpy(code, utf_chars, IN_UCHARS(c & 7));
|
|
code += c & 7;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
*code++ = c;
|
|
if (prop_type >= 0)
|
|
{
|
|
*code++ = prop_type;
|
|
*code++ = prop_value;
|
|
}
|
|
}
|
|
*code++ = OP_STAR + repeat_type;
|
|
}
|
|
|
|
/* Else insert an UPTO if the max is greater than the min, again
|
|
preceded by the character, for the previously inserted code. If the
|
|
UPTO is just for 1 instance, we can use QUERY instead. */
|
|
|
|
else if (repeat_max != repeat_min)
|
|
{
|
|
#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
|
|
if (utf && (c & UTF_LENGTH) != 0)
|
|
{
|
|
memcpy(code, utf_chars, IN_UCHARS(c & 7));
|
|
code += c & 7;
|
|
}
|
|
else
|
|
#endif
|
|
*code++ = c;
|
|
if (prop_type >= 0)
|
|
{
|
|
*code++ = prop_type;
|
|
*code++ = prop_value;
|
|
}
|
|
repeat_max -= repeat_min;
|
|
|
|
if (repeat_max == 1)
|
|
{
|
|
*code++ = OP_QUERY + repeat_type;
|
|
}
|
|
else
|
|
{
|
|
*code++ = OP_UPTO + repeat_type;
|
|
PUT2INC(code, 0, repeat_max);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The character or character type itself comes last in all cases. */
|
|
|
|
#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
|
|
if (utf && (c & UTF_LENGTH) != 0)
|
|
{
|
|
memcpy(code, utf_chars, IN_UCHARS(c & 7));
|
|
code += c & 7;
|
|
}
|
|
else
|
|
#endif
|
|
*code++ = c;
|
|
|
|
/* For a repeated Unicode property match, there are two extra bytes that
|
|
define the required property. */
|
|
|
|
#ifdef SUPPORT_UCP
|
|
if (prop_type >= 0)
|
|
{
|
|
*code++ = prop_type;
|
|
*code++ = prop_value;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* If previous was a character class or a back reference, we put the repeat
|
|
stuff after it, but just skip the item if the repeat was {0,0}. */
|
|
|
|
else if (*previous == OP_CLASS || *previous == OP_NCLASS ||
|
|
#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
|
|
*previous == OP_XCLASS ||
|
|
#endif
|
|
*previous == OP_REF || *previous == OP_REFI ||
|
|
*previous == OP_DNREF || *previous == OP_DNREFI)
|
|
{
|
|
if (repeat_max == 0)
|
|
{
|
|
code = previous;
|
|
goto END_REPEAT;
|
|
}
|
|
|
|
if (repeat_min == 0 && repeat_max == -1)
|
|
*code++ = OP_CRSTAR + repeat_type;
|
|
else if (repeat_min == 1 && repeat_max == -1)
|
|
*code++ = OP_CRPLUS + repeat_type;
|
|
else if (repeat_min == 0 && repeat_max == 1)
|
|
*code++ = OP_CRQUERY + repeat_type;
|
|
else
|
|
{
|
|
*code++ = OP_CRRANGE + repeat_type;
|
|
PUT2INC(code, 0, repeat_min);
|
|
if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */
|
|
PUT2INC(code, 0, repeat_max);
|
|
}
|
|
}
|
|
|
|
/* If previous was a bracket group, we may have to replicate it in certain
|
|
cases. Note that at this point we can encounter only the "basic" bracket
|
|
opcodes such as BRA and CBRA, as this is the place where they get converted
|
|
into the more special varieties such as BRAPOS and SBRA. A test for >=
|
|
OP_ASSERT and <= OP_COND includes ASSERT, ASSERT_NOT, ASSERTBACK,
|
|
ASSERTBACK_NOT, ONCE, ONCE_NC, BRA, BRAPOS, CBRA, CBRAPOS, and COND.
|
|
Originally, PCRE did not allow repetition of assertions, but now it does,
|
|
for Perl compatibility. */
|
|
|
|
else if (*previous >= OP_ASSERT && *previous <= OP_COND)
|
|
{
|
|
register int i;
|
|
int len = (int)(code - previous);
|
|
pcre_uchar *bralink = NULL;
|
|
pcre_uchar *brazeroptr = NULL;
|
|
|
|
/* Repeating a DEFINE group is pointless, but Perl allows the syntax, so
|
|
we just ignore the repeat. */
|
|
|
|
if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF)
|
|
goto END_REPEAT;
|
|
|
|
/* There is no sense in actually repeating assertions. The only potential
|
|
use of repetition is in cases when the assertion is optional. Therefore,
|
|
if the minimum is greater than zero, just ignore the repeat. If the
|
|
maximum is not zero or one, set it to 1. */
|
|
|
|
if (*previous < OP_ONCE) /* Assertion */
|
|
{
|
|
if (repeat_min > 0) goto END_REPEAT;
|
|
if (repeat_max < 0 || repeat_max > 1) repeat_max = 1;
|
|
}
|
|
|
|
/* The case of a zero minimum is special because of the need to stick
|
|
OP_BRAZERO in front of it, and because the group appears once in the
|
|
data, whereas in other cases it appears the minimum number of times. For
|
|
this reason, it is simplest to treat this case separately, as otherwise
|
|
the code gets far too messy. There are several special subcases when the
|
|
minimum is zero. */
|
|
|
|
if (repeat_min == 0)
|
|
{
|
|
/* If the maximum is also zero, we used to just omit the group from the
|
|
output altogether, like this:
|
|
|
|
** if (repeat_max == 0)
|
|
** {
|
|
** code = previous;
|
|
** goto END_REPEAT;
|
|
** }
|
|
|
|
However, that fails when a group or a subgroup within it is referenced
|
|
as a subroutine from elsewhere in the pattern, so now we stick in
|
|
OP_SKIPZERO in front of it so that it is skipped on execution. As we
|
|
don't have a list of which groups are referenced, we cannot do this
|
|
selectively.
|
|
|
|
If the maximum is 1 or unlimited, we just have to stick in the BRAZERO
|
|
and do no more at this point. However, we do need to adjust any
|
|
OP_RECURSE calls inside the group that refer to the group itself or any
|
|
internal or forward referenced group, because the offset is from the
|
|
start of the whole regex. Temporarily terminate the pattern while doing
|
|
this. */
|
|
|
|
if (repeat_max <= 1) /* Covers 0, 1, and unlimited */
|
|
{
|
|
*code = OP_END;
|
|
adjust_recurse(previous, 1, utf, cd, save_hwm);
|
|
memmove(previous + 1, previous, IN_UCHARS(len));
|
|
code++;
|
|
if (repeat_max == 0)
|
|
{
|
|
*previous++ = OP_SKIPZERO;
|
|
goto END_REPEAT;
|
|
}
|
|
brazeroptr = previous; /* Save for possessive optimizing */
|
|
*previous++ = OP_BRAZERO + repeat_type;
|
|
}
|
|
|
|
/* If the maximum is greater than 1 and limited, we have to replicate
|
|
in a nested fashion, sticking OP_BRAZERO before each set of brackets.
|
|
The first one has to be handled carefully because it's the original
|
|
copy, which has to be moved up. The remainder can be handled by code
|
|
that is common with the non-zero minimum case below. We have to
|
|
adjust the value or repeat_max, since one less copy is required. Once
|
|
again, we may have to adjust any OP_RECURSE calls inside the group. */
|
|
|
|
else
|
|
{
|
|
int offset;
|
|
*code = OP_END;
|
|
adjust_recurse(previous, 2 + LINK_SIZE, utf, cd, save_hwm);
|
|
memmove(previous + 2 + LINK_SIZE, previous, IN_UCHARS(len));
|
|
code += 2 + LINK_SIZE;
|
|
*previous++ = OP_BRAZERO + repeat_type;
|
|
*previous++ = OP_BRA;
|
|
|
|
/* We chain together the bracket offset fields that have to be
|
|
filled in later when the ends of the brackets are reached. */
|
|
|
|
offset = (bralink == NULL)? 0 : (int)(previous - bralink);
|
|
bralink = previous;
|
|
PUTINC(previous, 0, offset);
|
|
}
|
|
|
|
repeat_max--;
|
|
}
|
|
|
|
/* If the minimum is greater than zero, replicate the group as many
|
|
times as necessary, and adjust the maximum to the number of subsequent
|
|
copies that we need. If we set a first char from the group, and didn't
|
|
set a required char, copy the latter from the former. If there are any
|
|
forward reference subroutine calls in the group, there will be entries on
|
|
the workspace list; replicate these with an appropriate increment. */
|
|
|
|
else
|
|
{
|
|
if (repeat_min > 1)
|
|
{
|
|
/* In the pre-compile phase, we don't actually do the replication. We
|
|
just adjust the length as if we had. Do some paranoid checks for
|
|
potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit
|
|
integer type when available, otherwise double. */
|
|
|
|
if (lengthptr != NULL)
|
|
{
|
|
int delta = (repeat_min - 1)*length_prevgroup;
|
|
if ((INT64_OR_DOUBLE)(repeat_min - 1)*
|
|
(INT64_OR_DOUBLE)length_prevgroup >
|
|
(INT64_OR_DOUBLE)INT_MAX ||
|
|
OFLOW_MAX - *lengthptr < delta)
|
|
{
|
|
*errorcodeptr = ERR20;
|
|
goto FAILED;
|
|
}
|
|
*lengthptr += delta;
|
|
}
|
|
|
|
/* This is compiling for real. If there is a set first byte for
|
|
the group, and we have not yet set a "required byte", set it. Make
|
|
sure there is enough workspace for copying forward references before
|
|
doing the copy. */
|
|
|
|
else
|
|
{
|
|
if (groupsetfirstchar && reqcharflags < 0)
|
|
{
|
|
reqchar = firstchar;
|
|
reqcharflags = firstcharflags;
|
|
}
|
|
|
|
for (i = 1; i < repeat_min; i++)
|
|
{
|
|
pcre_uchar *hc;
|
|
pcre_uchar *this_hwm = cd->hwm;
|
|
memcpy(code, previous, IN_UCHARS(len));
|
|
|
|
while (cd->hwm > cd->start_workspace + cd->workspace_size -
|
|
WORK_SIZE_SAFETY_MARGIN - (this_hwm - save_hwm))
|
|
{
|
|
int save_offset = save_hwm - cd->start_workspace;
|
|
int this_offset = this_hwm - cd->start_workspace;
|
|
*errorcodeptr = expand_workspace(cd);
|
|
if (*errorcodeptr != 0) goto FAILED;
|
|
save_hwm = (pcre_uchar *)cd->start_workspace + save_offset;
|
|
this_hwm = (pcre_uchar *)cd->start_workspace + this_offset;
|
|
}
|
|
|
|
for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
|
|
{
|
|
PUT(cd->hwm, 0, GET(hc, 0) + len);
|
|
cd->hwm += LINK_SIZE;
|
|
}
|
|
save_hwm = this_hwm;
|
|
code += len;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (repeat_max > 0) repeat_max -= repeat_min;
|
|
}
|
|
|
|
/* This code is common to both the zero and non-zero minimum cases. If
|
|
the maximum is limited, it replicates the group in a nested fashion,
|
|
remembering the bracket starts on a stack. In the case of a zero minimum,
|
|
the first one was set up above. In all cases the repeat_max now specifies
|
|
the number of additional copies needed. Again, we must remember to
|
|
replicate entries on the forward reference list. */
|
|
|
|
if (repeat_max >= 0)
|
|
{
|
|
/* In the pre-compile phase, we don't actually do the replication. We
|
|
just adjust the length as if we had. For each repetition we must add 1
|
|
to the length for BRAZERO and for all but the last repetition we must
|
|
add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some
|
|
paranoid checks to avoid integer overflow. The INT64_OR_DOUBLE type is
|
|
a 64-bit integer type when available, otherwise double. */
|
|
|
|
if (lengthptr != NULL && repeat_max > 0)
|
|
{
|
|
int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) -
|
|
2 - 2*LINK_SIZE; /* Last one doesn't nest */
|
|
if ((INT64_OR_DOUBLE)repeat_max *
|
|
(INT64_OR_DOUBLE)(length_prevgroup + 1 + 2 + 2*LINK_SIZE)
|
|
> (INT64_OR_DOUBLE)INT_MAX ||
|
|
OFLOW_MAX - *lengthptr < delta)
|
|
{
|
|
*errorcodeptr = ERR20;
|
|
goto FAILED;
|
|
}
|
|
*lengthptr += delta;
|
|
}
|
|
|
|
/* This is compiling for real */
|
|
|
|
else for (i = repeat_max - 1; i >= 0; i--)
|
|
{
|
|
pcre_uchar *hc;
|
|
pcre_uchar *this_hwm = cd->hwm;
|
|
|
|
*code++ = OP_BRAZERO + repeat_type;
|
|
|
|
/* All but the final copy start a new nesting, maintaining the
|
|
chain of brackets outstanding. */
|
|
|
|
if (i != 0)
|
|
{
|
|
int offset;
|
|
*code++ = OP_BRA;
|
|
offset = (bralink == NULL)? 0 : (int)(code - bralink);
|
|
bralink = code;
|
|
PUTINC(code, 0, offset);
|
|
}
|
|
|
|
memcpy(code, previous, IN_UCHARS(len));
|
|
|
|
/* Ensure there is enough workspace for forward references before
|
|
copying them. */
|
|
|
|
while (cd->hwm > cd->start_workspace + cd->workspace_size -
|
|
WORK_SIZE_SAFETY_MARGIN - (this_hwm - save_hwm))
|
|
{
|
|
int save_offset = save_hwm - cd->start_workspace;
|
|
int this_offset = this_hwm - cd->start_workspace;
|
|
*errorcodeptr = expand_workspace(cd);
|
|
if (*errorcodeptr != 0) goto FAILED;
|
|
save_hwm = (pcre_uchar *)cd->start_workspace + save_offset;
|
|
this_hwm = (pcre_uchar *)cd->start_workspace + this_offset;
|
|
}
|
|
|
|
for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
|
|
{
|
|
PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1));
|
|
cd->hwm += LINK_SIZE;
|
|
}
|
|
save_hwm = this_hwm;
|
|
code += len;
|
|
}
|
|
|
|
/* Now chain through the pending brackets, and fill in their length
|
|
fields (which are holding the chain links pro tem). */
|
|
|
|
while (bralink != NULL)
|
|
{
|
|
int oldlinkoffset;
|
|
int offset = (int)(code - bralink + 1);
|
|
pcre_uchar *bra = code - offset;
|
|
oldlinkoffset = GET(bra, 1);
|
|
bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset;
|
|
*code++ = OP_KET;
|
|
PUTINC(code, 0, offset);
|
|
PUT(bra, 1, offset);
|
|
}
|
|
}
|
|
|
|
/* If the maximum is unlimited, set a repeater in the final copy. For
|
|
ONCE brackets, that's all we need to do. However, possessively repeated
|
|
ONCE brackets can be converted into non-capturing brackets, as the
|
|
behaviour of (?:xx)++ is the same as (?>xx)++ and this saves having to
|
|
deal with possessive ONCEs specially.
|
|
|
|
Otherwise, when we are doing the actual compile phase, check to see
|
|
whether this group is one that could match an empty string. If so,
|
|
convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so
|
|
that runtime checking can be done. [This check is also applied to ONCE
|
|
groups at runtime, but in a different way.]
|
|
|
|
Then, if the quantifier was possessive and the bracket is not a
|
|
conditional, we convert the BRA code to the POS form, and the KET code to
|
|
KETRPOS. (It turns out to be convenient at runtime to detect this kind of
|
|
subpattern at both the start and at the end.) The use of special opcodes
|
|
makes it possible to reduce greatly the stack usage in pcre_exec(). If
|
|
the group is preceded by OP_BRAZERO, convert this to OP_BRAPOSZERO.
|
|
|
|
Then, if the minimum number of matches is 1 or 0, cancel the possessive
|
|
flag so that the default action below, of wrapping everything inside
|
|
atomic brackets, does not happen. When the minimum is greater than 1,
|
|
there will be earlier copies of the group, and so we still have to wrap
|
|
the whole thing. */
|
|
|
|
else
|
|
{
|
|
pcre_uchar *ketcode = code - 1 - LINK_SIZE;
|
|
pcre_uchar *bracode = ketcode - GET(ketcode, 1);
|
|
|
|
/* Convert possessive ONCE brackets to non-capturing */
|
|
|
|
if ((*bracode == OP_ONCE || *bracode == OP_ONCE_NC) &&
|
|
possessive_quantifier) *bracode = OP_BRA;
|
|
|
|
/* For non-possessive ONCE brackets, all we need to do is to
|
|
set the KET. */
|
|
|
|
if (*bracode == OP_ONCE || *bracode == OP_ONCE_NC)
|
|
*ketcode = OP_KETRMAX + repeat_type;
|
|
|
|
/* Handle non-ONCE brackets and possessive ONCEs (which have been
|
|
converted to non-capturing above). */
|
|
|
|
else
|
|
{
|
|
/* In the compile phase, check for empty string matching. */
|
|
|
|
if (lengthptr == NULL)
|
|
{
|
|
pcre_uchar *scode = bracode;
|
|
do
|
|
{
|
|
if (could_be_empty_branch(scode, ketcode, utf, cd, NULL))
|
|
{
|
|
*bracode += OP_SBRA - OP_BRA;
|
|
break;
|
|
}
|
|
scode += GET(scode, 1);
|
|
}
|
|
while (*scode == OP_ALT);
|
|
}
|
|
|
|
/* Handle possessive quantifiers. */
|
|
|
|
if (possessive_quantifier)
|
|
{
|
|
/* For COND brackets, we wrap the whole thing in a possessively
|
|
repeated non-capturing bracket, because we have not invented POS
|
|
versions of the COND opcodes. Because we are moving code along, we
|
|
must ensure that any pending recursive references are updated. */
|
|
|
|
if (*bracode == OP_COND || *bracode == OP_SCOND)
|
|
{
|
|
int nlen = (int)(code - bracode);
|
|
*code = OP_END;
|
|
adjust_recurse(bracode, 1 + LINK_SIZE, utf, cd, save_hwm);
|
|
memmove(bracode + 1 + LINK_SIZE, bracode, IN_UCHARS(nlen));
|
|
code += 1 + LINK_SIZE;
|
|
nlen += 1 + LINK_SIZE;
|
|
*bracode = OP_BRAPOS;
|
|
*code++ = OP_KETRPOS;
|
|
PUTINC(code, 0, nlen);
|
|
PUT(bracode, 1, nlen);
|
|
}
|
|
|
|
/* For non-COND brackets, we modify the BRA code and use KETRPOS. */
|
|
|
|
else
|
|
{
|
|
*bracode += 1; /* Switch to xxxPOS opcodes */
|
|
*ketcode = OP_KETRPOS;
|
|
}
|
|
|
|
/* If the minimum is zero, mark it as possessive, then unset the
|
|
possessive flag when the minimum is 0 or 1. */
|
|
|
|
if (brazeroptr != NULL) *brazeroptr = OP_BRAPOSZERO;
|
|
if (repeat_min < 2) possessive_quantifier = FALSE;
|
|
}
|
|
|
|
/* Non-possessive quantifier */
|
|
|
|
else *ketcode = OP_KETRMAX + repeat_type;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If previous is OP_FAIL, it was generated by an empty class [] in
|
|
JavaScript mode. The other ways in which OP_FAIL can be generated, that is
|
|
by (*FAIL) or (?!) set previous to NULL, which gives a "nothing to repeat"
|
|
error above. We can just ignore the repeat in JS case. */
|
|
|
|
else if (*previous == OP_FAIL) goto END_REPEAT;
|
|
|
|
/* Else there's some kind of shambles */
|
|
|
|
else
|
|
{
|
|
*errorcodeptr = ERR11;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* If the character following a repeat is '+', possessive_quantifier is
|
|
TRUE. For some opcodes, there are special alternative opcodes for this
|
|
case. For anything else, we wrap the entire repeated item inside OP_ONCE
|
|
brackets. Logically, the '+' notation is just syntactic sugar, taken from
|
|
Sun's Java package, but the special opcodes can optimize it.
|
|
|
|
Some (but not all) possessively repeated subpatterns have already been
|
|
completely handled in the code just above. For them, possessive_quantifier
|
|
is always FALSE at this stage. Note that the repeated item starts at
|
|
tempcode, not at previous, which might be the first part of a string whose
|
|
(former) last char we repeated. */
|
|
|
|
if (possessive_quantifier)
|
|
{
|
|
int len;
|
|
|
|
/* Possessifying an EXACT quantifier has no effect, so we can ignore it.
|
|
However, QUERY, STAR, or UPTO may follow (for quantifiers such as {5,6},
|
|
{5,}, or {5,10}). We skip over an EXACT item; if the length of what
|
|
remains is greater than zero, there's a further opcode that can be
|
|
handled. If not, do nothing, leaving the EXACT alone. */
|
|
|
|
switch(*tempcode)
|
|
{
|
|
case OP_TYPEEXACT:
|
|
tempcode += PRIV(OP_lengths)[*tempcode] +
|
|
((tempcode[1 + IMM2_SIZE] == OP_PROP
|
|
|| tempcode[1 + IMM2_SIZE] == OP_NOTPROP)? 2 : 0);
|
|
break;
|
|
|
|
/* CHAR opcodes are used for exacts whose count is 1. */
|
|
|
|
case OP_CHAR:
|
|
case OP_CHARI:
|
|
case OP_NOT:
|
|
case OP_NOTI:
|
|
case OP_EXACT:
|
|
case OP_EXACTI:
|
|
case OP_NOTEXACT:
|
|
case OP_NOTEXACTI:
|
|
tempcode += PRIV(OP_lengths)[*tempcode];
|
|
#ifdef SUPPORT_UTF
|
|
if (utf && HAS_EXTRALEN(tempcode[-1]))
|
|
tempcode += GET_EXTRALEN(tempcode[-1]);
|
|
#endif
|
|
break;
|
|
|
|
/* For the class opcodes, the repeat operator appears at the end;
|
|
adjust tempcode to point to it. */
|
|
|
|
case OP_CLASS:
|
|
case OP_NCLASS:
|
|
tempcode += 1 + 32/sizeof(pcre_uchar);
|
|
break;
|
|
|
|
#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
|
|
case OP_XCLASS:
|
|
tempcode += GET(tempcode, 1);
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
/* If tempcode is equal to code (which points to the end of the repeated
|
|
item), it means we have skipped an EXACT item but there is no following
|
|
QUERY, STAR, or UPTO; the value of len will be 0, and we do nothing. In
|
|
all other cases, tempcode will be pointing to the repeat opcode, and will
|
|
be less than code, so the value of len will be greater than 0. */
|
|
|
|
len = (int)(code - tempcode);
|
|
if (len > 0)
|
|
{
|
|
unsigned int repcode = *tempcode;
|
|
|
|
/* There is a table for possessifying opcodes, all of which are less
|
|
than OP_CALLOUT. A zero entry means there is no possessified version.
|
|
*/
|
|
|
|
if (repcode < OP_CALLOUT && opcode_possessify[repcode] > 0)
|
|
*tempcode = opcode_possessify[repcode];
|
|
|
|
/* For opcode without a special possessified version, wrap the item in
|
|
ONCE brackets. Because we are moving code along, we must ensure that any
|
|
pending recursive references are updated. */
|
|
|
|
else
|
|
{
|
|
*code = OP_END;
|
|
adjust_recurse(tempcode, 1 + LINK_SIZE, utf, cd, save_hwm);
|
|
memmove(tempcode + 1 + LINK_SIZE, tempcode, IN_UCHARS(len));
|
|
code += 1 + LINK_SIZE;
|
|
len += 1 + LINK_SIZE;
|
|
tempcode[0] = OP_ONCE;
|
|
*code++ = OP_KET;
|
|
PUTINC(code, 0, len);
|
|
PUT(tempcode, 1, len);
|
|
}
|
|
}
|
|
|
|
#ifdef NEVER
|
|
if (len > 0) switch (*tempcode)
|
|
{
|
|
case OP_STAR: *tempcode = OP_POSSTAR; break;
|
|
case OP_PLUS: *tempcode = OP_POSPLUS; break;
|
|
case OP_QUERY: *tempcode = OP_POSQUERY; break;
|
|
case OP_UPTO: *tempcode = OP_POSUPTO; break;
|
|
|
|
case OP_STARI: *tempcode = OP_POSSTARI; break;
|
|
case OP_PLUSI: *tempcode = OP_POSPLUSI; break;
|
|
case OP_QUERYI: *tempcode = OP_POSQUERYI; break;
|
|
case OP_UPTOI: *tempcode = OP_POSUPTOI; break;
|
|
|
|
case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break;
|
|
case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break;
|
|
case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break;
|
|
case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break;
|
|
|
|
case OP_NOTSTARI: *tempcode = OP_NOTPOSSTARI; break;
|
|
case OP_NOTPLUSI: *tempcode = OP_NOTPOSPLUSI; break;
|
|
case OP_NOTQUERYI: *tempcode = OP_NOTPOSQUERYI; break;
|
|
case OP_NOTUPTOI: *tempcode = OP_NOTPOSUPTOI; break;
|
|
|
|
case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break;
|
|
case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break;
|
|
case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break;
|
|
case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break;
|
|
|
|
case OP_CRSTAR: *tempcode = OP_CRPOSSTAR; break;
|
|
case OP_CRPLUS: *tempcode = OP_CRPOSPLUS; break;
|
|
case OP_CRQUERY: *tempcode = OP_CRPOSQUERY; break;
|
|
case OP_CRRANGE: *tempcode = OP_CRPOSRANGE; break;
|
|
|
|
/* Because we are moving code along, we must ensure that any
|
|
pending recursive references are updated. */
|
|
|
|
default:
|
|
*code = OP_END;
|
|
adjust_recurse(tempcode, 1 + LINK_SIZE, utf, cd, save_hwm);
|
|
memmove(tempcode + 1 + LINK_SIZE, tempcode, IN_UCHARS(len));
|
|
code += 1 + LINK_SIZE;
|
|
len += 1 + LINK_SIZE;
|
|
tempcode[0] = OP_ONCE;
|
|
*code++ = OP_KET;
|
|
PUTINC(code, 0, len);
|
|
PUT(tempcode, 1, len);
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* In all case we no longer have a previous item. We also set the
|
|
"follows varying string" flag for subsequently encountered reqchars if
|
|
it isn't already set and we have just passed a varying length item. */
|
|
|
|
END_REPEAT:
|
|
previous = NULL;
|
|
cd->req_varyopt |= reqvary;
|
|
break;
|
|
|
|
|
|
/* ===================================================================*/
|
|
/* Start of nested parenthesized sub-expression, or comment or lookahead or
|
|
lookbehind or option setting or condition or all the other extended
|
|
parenthesis forms. */
|
|
|
|
case CHAR_LEFT_PARENTHESIS:
|
|
newoptions = options;
|
|
skipbytes = 0;
|
|
bravalue = OP_CBRA;
|
|
save_hwm = cd->hwm;
|
|
reset_bracount = FALSE;
|
|
|
|
/* First deal with various "verbs" that can be introduced by '*'. */
|
|
|
|
ptr++;
|
|
if (ptr[0] == CHAR_ASTERISK && (ptr[1] == ':'
|
|
|| (MAX_255(ptr[1]) && ((cd->ctypes[ptr[1]] & ctype_letter) != 0))))
|
|
{
|
|
int i, namelen;
|
|
int arglen = 0;
|
|
const char *vn = verbnames;
|
|
const pcre_uchar *name = ptr + 1;
|
|
const pcre_uchar *arg = NULL;
|
|
previous = NULL;
|
|
ptr++;
|
|
while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_letter) != 0) ptr++;
|
|
namelen = (int)(ptr - name);
|
|
|
|
/* It appears that Perl allows any characters whatsoever, other than
|
|
a closing parenthesis, to appear in arguments, so we no longer insist on
|
|
letters, digits, and underscores. */
|
|
|
|
if (*ptr == CHAR_COLON)
|
|
{
|
|
arg = ++ptr;
|
|
while (*ptr != CHAR_NULL && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
|
|
arglen = (int)(ptr - arg);
|
|
if ((unsigned int)arglen > MAX_MARK)
|
|
{
|
|
*errorcodeptr = ERR75;
|
|
goto FAILED;
|
|
}
|
|
}
|
|
|
|
if (*ptr != CHAR_RIGHT_PARENTHESIS)
|
|
{
|
|
*errorcodeptr = ERR60;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* Scan the table of verb names */
|
|
|
|
for (i = 0; i < verbcount; i++)
|
|
{
|
|
if (namelen == verbs[i].len &&
|
|
STRNCMP_UC_C8(name, vn, namelen) == 0)
|
|
{
|
|
int setverb;
|
|
|
|
/* Check for open captures before ACCEPT and convert it to
|
|
ASSERT_ACCEPT if in an assertion. */
|
|
|
|
if (verbs[i].op == OP_ACCEPT)
|
|
{
|
|
open_capitem *oc;
|
|
if (arglen != 0)
|
|
{
|
|
*errorcodeptr = ERR59;
|
|
goto FAILED;
|
|
}
|
|
cd->had_accept = TRUE;
|
|
for (oc = cd->open_caps; oc != NULL; oc = oc->next)
|
|
{
|
|
*code++ = OP_CLOSE;
|
|
PUT2INC(code, 0, oc->number);
|
|
}
|
|
setverb = *code++ =
|
|
(cd->assert_depth > 0)? OP_ASSERT_ACCEPT : OP_ACCEPT;
|
|
|
|
/* Do not set firstchar after *ACCEPT */
|
|
if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
|
|
}
|
|
|
|
/* Handle other cases with/without an argument */
|
|
|
|
else if (arglen == 0)
|
|
{
|
|
if (verbs[i].op < 0) /* Argument is mandatory */
|
|
{
|
|
*errorcodeptr = ERR66;
|
|
goto FAILED;
|
|
}
|
|
setverb = *code++ = verbs[i].op;
|
|
}
|
|
|
|
else
|
|
{
|
|
if (verbs[i].op_arg < 0) /* Argument is forbidden */
|
|
{
|
|
*errorcodeptr = ERR59;
|
|
goto FAILED;
|
|
}
|
|
setverb = *code++ = verbs[i].op_arg;
|
|
*code++ = arglen;
|
|
memcpy(code, arg, IN_UCHARS(arglen));
|
|
code += arglen;
|
|
*code++ = 0;
|
|
}
|
|
|
|
switch (setverb)
|
|
{
|
|
case OP_THEN:
|
|
case OP_THEN_ARG:
|
|
cd->external_flags |= PCRE_HASTHEN;
|
|
break;
|
|
|
|
case OP_PRUNE:
|
|
case OP_PRUNE_ARG:
|
|
case OP_SKIP:
|
|
case OP_SKIP_ARG:
|
|
cd->had_pruneorskip = TRUE;
|
|
break;
|
|
}
|
|
|
|
break; /* Found verb, exit loop */
|
|
}
|
|
|
|
vn += verbs[i].len + 1;
|
|
}
|
|
|
|
if (i < verbcount) continue; /* Successfully handled a verb */
|
|
*errorcodeptr = ERR60; /* Verb not recognized */
|
|
goto FAILED;
|
|
}
|
|
|
|
/* Deal with the extended parentheses; all are introduced by '?', and the
|
|
appearance of any of them means that this is not a capturing group. */
|
|
|
|
else if (*ptr == CHAR_QUESTION_MARK)
|
|
{
|
|
int i, set, unset, namelen;
|
|
int *optset;
|
|
const pcre_uchar *name;
|
|
pcre_uchar *slot;
|
|
|
|
switch (*(++ptr))
|
|
{
|
|
case CHAR_NUMBER_SIGN: /* Comment; skip to ket */
|
|
ptr++;
|
|
while (*ptr != CHAR_NULL && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
|
|
if (*ptr == CHAR_NULL)
|
|
{
|
|
*errorcodeptr = ERR18;
|
|
goto FAILED;
|
|
}
|
|
continue;
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_VERTICAL_LINE: /* Reset capture count for each branch */
|
|
reset_bracount = TRUE;
|
|
/* Fall through */
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_COLON: /* Non-capturing bracket */
|
|
bravalue = OP_BRA;
|
|
ptr++;
|
|
break;
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_LEFT_PARENTHESIS:
|
|
bravalue = OP_COND; /* Conditional group */
|
|
tempptr = ptr;
|
|
|
|
/* A condition can be an assertion, a number (referring to a numbered
|
|
group's having been set), a name (referring to a named group), or 'R',
|
|
referring to recursion. R<digits> and R&name are also permitted for
|
|
recursion tests.
|
|
|
|
There are ways of testing a named group: (?(name)) is used by Python;
|
|
Perl 5.10 onwards uses (?(<name>) or (?('name')).
|
|
|
|
There is one unfortunate ambiguity, caused by history. 'R' can be the
|
|
recursive thing or the name 'R' (and similarly for 'R' followed by
|
|
digits). We look for a name first; if not found, we try the other case.
|
|
|
|
For compatibility with auto-callouts, we allow a callout to be
|
|
specified before a condition that is an assertion. First, check for the
|
|
syntax of a callout; if found, adjust the temporary pointer that is
|
|
used to check for an assertion condition. That's all that is needed! */
|
|
|
|
if (ptr[1] == CHAR_QUESTION_MARK && ptr[2] == CHAR_C)
|
|
{
|
|
for (i = 3;; i++) if (!IS_DIGIT(ptr[i])) break;
|
|
if (ptr[i] == CHAR_RIGHT_PARENTHESIS)
|
|
tempptr += i + 1;
|
|
}
|
|
|
|
/* For conditions that are assertions, check the syntax, and then exit
|
|
the switch. This will take control down to where bracketed groups,
|
|
including assertions, are processed. */
|
|
|
|
if (tempptr[1] == CHAR_QUESTION_MARK &&
|
|
(tempptr[2] == CHAR_EQUALS_SIGN ||
|
|
tempptr[2] == CHAR_EXCLAMATION_MARK ||
|
|
tempptr[2] == CHAR_LESS_THAN_SIGN))
|
|
break;
|
|
|
|
/* Other conditions use OP_CREF/OP_DNCREF/OP_RREF/OP_DNRREF, and all
|
|
need to skip at least 1+IMM2_SIZE bytes at the start of the group. */
|
|
|
|
code[1+LINK_SIZE] = OP_CREF;
|
|
skipbytes = 1+IMM2_SIZE;
|
|
refsign = -1; /* => not a number */
|
|
namelen = -1; /* => not a name; must set to avoid warning */
|
|
name = NULL; /* Always set to avoid warning */
|
|
recno = 0; /* Always set to avoid warning */
|
|
|
|
/* Check for a test for recursion in a named group. */
|
|
|
|
ptr++;
|
|
if (*ptr == CHAR_R && ptr[1] == CHAR_AMPERSAND)
|
|
{
|
|
terminator = -1;
|
|
ptr += 2;
|
|
code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */
|
|
}
|
|
|
|
/* Check for a test for a named group's having been set, using the Perl
|
|
syntax (?(<name>) or (?('name'), and also allow for the original PCRE
|
|
syntax of (?(name) or for (?(+n), (?(-n), and just (?(n). */
|
|
|
|
else if (*ptr == CHAR_LESS_THAN_SIGN)
|
|
{
|
|
terminator = CHAR_GREATER_THAN_SIGN;
|
|
ptr++;
|
|
}
|
|
else if (*ptr == CHAR_APOSTROPHE)
|
|
{
|
|
terminator = CHAR_APOSTROPHE;
|
|
ptr++;
|
|
}
|
|
else
|
|
{
|
|
terminator = CHAR_NULL;
|
|
if (*ptr == CHAR_MINUS || *ptr == CHAR_PLUS) refsign = *ptr++;
|
|
else if (IS_DIGIT(*ptr)) refsign = 0;
|
|
}
|
|
|
|
/* Handle a number */
|
|
|
|
if (refsign >= 0)
|
|
{
|
|
while (IS_DIGIT(*ptr))
|
|
{
|
|
recno = recno * 10 + (int)(*ptr - CHAR_0);
|
|
ptr++;
|
|
}
|
|
}
|
|
|
|
/* Otherwise we expect to read a name; anything else is an error. When
|
|
a name is one of a number of duplicates, a different opcode is used and
|
|
it needs more memory. Unfortunately we cannot tell whether a name is a
|
|
duplicate in the first pass, so we have to allow for more memory. */
|
|
|
|
else
|
|
{
|
|
if (IS_DIGIT(*ptr))
|
|
{
|
|
*errorcodeptr = ERR84;
|
|
goto FAILED;
|
|
}
|
|
if (!MAX_255(*ptr) || (cd->ctypes[*ptr] & ctype_word) == 0)
|
|
{
|
|
*errorcodeptr = ERR28; /* Assertion expected */
|
|
goto FAILED;
|
|
}
|
|
name = ptr++;
|
|
while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0)
|
|
{
|
|
ptr++;
|
|
}
|
|
namelen = (int)(ptr - name);
|
|
if (lengthptr != NULL) *lengthptr += IMM2_SIZE;
|
|
}
|
|
|
|
/* Check the terminator */
|
|
|
|
if ((terminator > 0 && *ptr++ != (pcre_uchar)terminator) ||
|
|
*ptr++ != CHAR_RIGHT_PARENTHESIS)
|
|
{
|
|
ptr--; /* Error offset */
|
|
*errorcodeptr = ERR26; /* Malformed number or name */
|
|
goto FAILED;
|
|
}
|
|
|
|
/* Do no further checking in the pre-compile phase. */
|
|
|
|
if (lengthptr != NULL) break;
|
|
|
|
/* In the real compile we do the work of looking for the actual
|
|
reference. If refsign is not negative, it means we have a number in
|
|
recno. */
|
|
|
|
if (refsign >= 0)
|
|
{
|
|
if (recno <= 0)
|
|
{
|
|
*errorcodeptr = ERR35;
|
|
goto FAILED;
|
|
}
|
|
if (refsign != 0) recno = (refsign == CHAR_MINUS)?
|
|
cd->bracount - recno + 1 : recno + cd->bracount;
|
|
if (recno <= 0 || recno > cd->final_bracount)
|
|
{
|
|
*errorcodeptr = ERR15;
|
|
goto FAILED;
|
|
}
|
|
PUT2(code, 2+LINK_SIZE, recno);
|
|
break;
|
|
}
|
|
|
|
/* Otherwise look for the name. */
|
|
|
|
slot = cd->name_table;
|
|
for (i = 0; i < cd->names_found; i++)
|
|
{
|
|
if (STRNCMP_UC_UC(name, slot+IMM2_SIZE, namelen) == 0) break;
|
|
slot += cd->name_entry_size;
|
|
}
|
|
|
|
/* Found the named subpattern. If the name is duplicated, add one to
|
|
the opcode to change CREF/RREF into DNCREF/DNRREF and insert
|
|
appropriate data values. Otherwise, just insert the unique subpattern
|
|
number. */
|
|
|
|
if (i < cd->names_found)
|
|
{
|
|
int offset = i++;
|
|
int count = 1;
|
|
recno = GET2(slot, 0); /* Number from first found */
|
|
for (; i < cd->names_found; i++)
|
|
{
|
|
slot += cd->name_entry_size;
|
|
if (STRNCMP_UC_UC(name, slot+IMM2_SIZE, namelen) != 0) break;
|
|
count++;
|
|
}
|
|
if (count > 1)
|
|
{
|
|
PUT2(code, 2+LINK_SIZE, offset);
|
|
PUT2(code, 2+LINK_SIZE+IMM2_SIZE, count);
|
|
skipbytes += IMM2_SIZE;
|
|
code[1+LINK_SIZE]++;
|
|
}
|
|
else /* Not a duplicated name */
|
|
{
|
|
PUT2(code, 2+LINK_SIZE, recno);
|
|
}
|
|
}
|
|
|
|
/* If terminator == CHAR_NULL it means that the name followed directly
|
|
after the opening parenthesis [e.g. (?(abc)...] and in this case there
|
|
are some further alternatives to try. For the cases where terminator !=
|
|
CHAR_NULL [things like (?(<name>... or (?('name')... or (?(R&name)... ]
|
|
we have now checked all the possibilities, so give an error. */
|
|
|
|
else if (terminator != CHAR_NULL)
|
|
{
|
|
*errorcodeptr = ERR15;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* Check for (?(R) for recursion. Allow digits after R to specify a
|
|
specific group number. */
|
|
|
|
else if (*name == CHAR_R)
|
|
{
|
|
recno = 0;
|
|
for (i = 1; i < namelen; i++)
|
|
{
|
|
if (!IS_DIGIT(name[i]))
|
|
{
|
|
*errorcodeptr = ERR15;
|
|
goto FAILED;
|
|
}
|
|
recno = recno * 10 + name[i] - CHAR_0;
|
|
}
|
|
if (recno == 0) recno = RREF_ANY;
|
|
code[1+LINK_SIZE] = OP_RREF; /* Change test type */
|
|
PUT2(code, 2+LINK_SIZE, recno);
|
|
}
|
|
|
|
/* Similarly, check for the (?(DEFINE) "condition", which is always
|
|
false. */
|
|
|
|
else if (namelen == 6 && STRNCMP_UC_C8(name, STRING_DEFINE, 6) == 0)
|
|
{
|
|
code[1+LINK_SIZE] = OP_DEF;
|
|
skipbytes = 1;
|
|
}
|
|
|
|
/* Reference to an unidentified subpattern. */
|
|
|
|
else
|
|
{
|
|
*errorcodeptr = ERR15;
|
|
goto FAILED;
|
|
}
|
|
break;
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_EQUALS_SIGN: /* Positive lookahead */
|
|
bravalue = OP_ASSERT;
|
|
cd->assert_depth += 1;
|
|
ptr++;
|
|
break;
|
|
|
|
/* Optimize (?!) to (*FAIL) unless it is quantified - which is a weird
|
|
thing to do, but Perl allows all assertions to be quantified, and when
|
|
they contain capturing parentheses there may be a potential use for
|
|
this feature. Not that that applies to a quantified (?!) but we allow
|
|
it for uniformity. */
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_EXCLAMATION_MARK: /* Negative lookahead */
|
|
ptr++;
|
|
if (*ptr == CHAR_RIGHT_PARENTHESIS && ptr[1] != CHAR_ASTERISK &&
|
|
ptr[1] != CHAR_PLUS && ptr[1] != CHAR_QUESTION_MARK &&
|
|
(ptr[1] != CHAR_LEFT_CURLY_BRACKET || !is_counted_repeat(ptr+2)))
|
|
{
|
|
*code++ = OP_FAIL;
|
|
previous = NULL;
|
|
continue;
|
|
}
|
|
bravalue = OP_ASSERT_NOT;
|
|
cd->assert_depth += 1;
|
|
break;
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_LESS_THAN_SIGN: /* Lookbehind or named define */
|
|
switch (ptr[1])
|
|
{
|
|
case CHAR_EQUALS_SIGN: /* Positive lookbehind */
|
|
bravalue = OP_ASSERTBACK;
|
|
cd->assert_depth += 1;
|
|
ptr += 2;
|
|
break;
|
|
|
|
case CHAR_EXCLAMATION_MARK: /* Negative lookbehind */
|
|
bravalue = OP_ASSERTBACK_NOT;
|
|
cd->assert_depth += 1;
|
|
ptr += 2;
|
|
break;
|
|
|
|
default: /* Could be name define, else bad */
|
|
if (MAX_255(ptr[1]) && (cd->ctypes[ptr[1]] & ctype_word) != 0)
|
|
goto DEFINE_NAME;
|
|
ptr++; /* Correct offset for error */
|
|
*errorcodeptr = ERR24;
|
|
goto FAILED;
|
|
}
|
|
break;
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_GREATER_THAN_SIGN: /* One-time brackets */
|
|
bravalue = OP_ONCE;
|
|
ptr++;
|
|
break;
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_C: /* Callout - may be followed by digits; */
|
|
previous_callout = code; /* Save for later completion */
|
|
after_manual_callout = 1; /* Skip one item before completing */
|
|
*code++ = OP_CALLOUT;
|
|
{
|
|
int n = 0;
|
|
ptr++;
|
|
while(IS_DIGIT(*ptr))
|
|
n = n * 10 + *ptr++ - CHAR_0;
|
|
if (*ptr != CHAR_RIGHT_PARENTHESIS)
|
|
{
|
|
*errorcodeptr = ERR39;
|
|
goto FAILED;
|
|
}
|
|
if (n > 255)
|
|
{
|
|
*errorcodeptr = ERR38;
|
|
goto FAILED;
|
|
}
|
|
*code++ = n;
|
|
PUT(code, 0, (int)(ptr - cd->start_pattern + 1)); /* Pattern offset */
|
|
PUT(code, LINK_SIZE, 0); /* Default length */
|
|
code += 2 * LINK_SIZE;
|
|
}
|
|
previous = NULL;
|
|
continue;
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_P: /* Python-style named subpattern handling */
|
|
if (*(++ptr) == CHAR_EQUALS_SIGN ||
|
|
*ptr == CHAR_GREATER_THAN_SIGN) /* Reference or recursion */
|
|
{
|
|
is_recurse = *ptr == CHAR_GREATER_THAN_SIGN;
|
|
terminator = CHAR_RIGHT_PARENTHESIS;
|
|
goto NAMED_REF_OR_RECURSE;
|
|
}
|
|
else if (*ptr != CHAR_LESS_THAN_SIGN) /* Test for Python-style defn */
|
|
{
|
|
*errorcodeptr = ERR41;
|
|
goto FAILED;
|
|
}
|
|
/* Fall through to handle (?P< as (?< is handled */
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
DEFINE_NAME: /* Come here from (?< handling */
|
|
case CHAR_APOSTROPHE:
|
|
terminator = (*ptr == CHAR_LESS_THAN_SIGN)?
|
|
CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE;
|
|
name = ++ptr;
|
|
if (IS_DIGIT(*ptr))
|
|
{
|
|
*errorcodeptr = ERR84; /* Group name must start with non-digit */
|
|
goto FAILED;
|
|
}
|
|
while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
|
|
namelen = (int)(ptr - name);
|
|
|
|
/* In the pre-compile phase, do a syntax check, remember the longest
|
|
name, and then remember the group in a vector, expanding it if
|
|
necessary. Duplicates for the same number are skipped; other duplicates
|
|
are checked for validity. In the actual compile, there is nothing to
|
|
do. */
|
|
|
|
if (lengthptr != NULL)
|
|
{
|
|
named_group *ng;
|
|
pcre_uint32 number = cd->bracount + 1;
|
|
|
|
if (*ptr != (pcre_uchar)terminator)
|
|
{
|
|
*errorcodeptr = ERR42;
|
|
goto FAILED;
|
|
}
|
|
|
|
if (cd->names_found >= MAX_NAME_COUNT)
|
|
{
|
|
*errorcodeptr = ERR49;
|
|
goto FAILED;
|
|
}
|
|
|
|
if (namelen + IMM2_SIZE + 1 > cd->name_entry_size)
|
|
{
|
|
cd->name_entry_size = namelen + IMM2_SIZE + 1;
|
|
if (namelen > MAX_NAME_SIZE)
|
|
{
|
|
*errorcodeptr = ERR48;
|
|
goto FAILED;
|
|
}
|
|
}
|
|
|
|
/* Scan the list to check for duplicates. For duplicate names, if the
|
|
number is the same, break the loop, which causes the name to be
|
|
discarded; otherwise, if DUPNAMES is not set, give an error.
|
|
If it is set, allow the name with a different number, but continue
|
|
scanning in case this is a duplicate with the same number. For
|
|
non-duplicate names, give an error if the number is duplicated. */
|
|
|
|
ng = cd->named_groups;
|
|
for (i = 0; i < cd->names_found; i++, ng++)
|
|
{
|
|
if (namelen == ng->length &&
|
|
STRNCMP_UC_UC(name, ng->name, namelen) == 0)
|
|
{
|
|
if (ng->number == number) break;
|
|
if ((options & PCRE_DUPNAMES) == 0)
|
|
{
|
|
*errorcodeptr = ERR43;
|
|
goto FAILED;
|
|
}
|
|
cd->dupnames = TRUE; /* Duplicate names exist */
|
|
}
|
|
else if (ng->number == number)
|
|
{
|
|
*errorcodeptr = ERR65;
|
|
goto FAILED;
|
|
}
|
|
}
|
|
|
|
if (i >= cd->names_found) /* Not a duplicate with same number */
|
|
{
|
|
/* Increase the list size if necessary */
|
|
|
|
if (cd->names_found >= cd->named_group_list_size)
|
|
{
|
|
int newsize = cd->named_group_list_size * 2;
|
|
named_group *newspace = (PUBL(malloc))
|
|
(newsize * sizeof(named_group));
|
|
|
|
if (newspace == NULL)
|
|
{
|
|
*errorcodeptr = ERR21;
|
|
goto FAILED;
|
|
}
|
|
|
|
memcpy(newspace, cd->named_groups,
|
|
cd->named_group_list_size * sizeof(named_group));
|
|
if (cd->named_group_list_size > NAMED_GROUP_LIST_SIZE)
|
|
(PUBL(free))((void *)cd->named_groups);
|
|
cd->named_groups = newspace;
|
|
cd->named_group_list_size = newsize;
|
|
}
|
|
|
|
cd->named_groups[cd->names_found].name = name;
|
|
cd->named_groups[cd->names_found].length = namelen;
|
|
cd->named_groups[cd->names_found].number = number;
|
|
cd->names_found++;
|
|
}
|
|
}
|
|
|
|
ptr++; /* Move past > or ' in both passes. */
|
|
goto NUMBERED_GROUP;
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_AMPERSAND: /* Perl recursion/subroutine syntax */
|
|
terminator = CHAR_RIGHT_PARENTHESIS;
|
|
is_recurse = TRUE;
|
|
/* Fall through */
|
|
|
|
/* We come here from the Python syntax above that handles both
|
|
references (?P=name) and recursion (?P>name), as well as falling
|
|
through from the Perl recursion syntax (?&name). We also come here from
|
|
the Perl \k<name> or \k'name' back reference syntax and the \k{name}
|
|
.NET syntax, and the Oniguruma \g<...> and \g'...' subroutine syntax. */
|
|
|
|
NAMED_REF_OR_RECURSE:
|
|
name = ++ptr;
|
|
if (IS_DIGIT(*ptr))
|
|
{
|
|
*errorcodeptr = ERR84; /* Group name must start with non-digit */
|
|
goto FAILED;
|
|
}
|
|
while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
|
|
namelen = (int)(ptr - name);
|
|
|
|
/* In the pre-compile phase, do a syntax check. We used to just set
|
|
a dummy reference number, because it was not used in the first pass.
|
|
However, with the change of recursive back references to be atomic,
|
|
we have to look for the number so that this state can be identified, as
|
|
otherwise the incorrect length is computed. If it's not a backwards
|
|
reference, the dummy number will do. */
|
|
|
|
if (lengthptr != NULL)
|
|
{
|
|
named_group *ng;
|
|
|
|
if (namelen == 0)
|
|
{
|
|
*errorcodeptr = ERR62;
|
|
goto FAILED;
|
|
}
|
|
if (*ptr != (pcre_uchar)terminator)
|
|
{
|
|
*errorcodeptr = ERR42;
|
|
goto FAILED;
|
|
}
|
|
if (namelen > MAX_NAME_SIZE)
|
|
{
|
|
*errorcodeptr = ERR48;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* The name table does not exist in the first pass; instead we must
|
|
scan the list of names encountered so far in order to get the
|
|
number. If the name is not found, set the value to 0 for a forward
|
|
reference. */
|
|
|
|
ng = cd->named_groups;
|
|
for (i = 0; i < cd->names_found; i++, ng++)
|
|
{
|
|
if (namelen == ng->length &&
|
|
STRNCMP_UC_UC(name, ng->name, namelen) == 0)
|
|
break;
|
|
}
|
|
recno = (i < cd->names_found)? ng->number : 0;
|
|
|
|
/* Count named back references. */
|
|
|
|
if (!is_recurse) cd->namedrefcount++;
|
|
}
|
|
|
|
/* In the real compile, search the name table. We check the name
|
|
first, and then check that we have reached the end of the name in the
|
|
table. That way, if the name is longer than any in the table, the
|
|
comparison will fail without reading beyond the table entry. */
|
|
|
|
else
|
|
{
|
|
slot = cd->name_table;
|
|
for (i = 0; i < cd->names_found; i++)
|
|
{
|
|
if (STRNCMP_UC_UC(name, slot+IMM2_SIZE, namelen) == 0 &&
|
|
slot[IMM2_SIZE+namelen] == 0)
|
|
break;
|
|
slot += cd->name_entry_size;
|
|
}
|
|
|
|
if (i < cd->names_found)
|
|
{
|
|
recno = GET2(slot, 0);
|
|
}
|
|
else
|
|
{
|
|
*errorcodeptr = ERR15;
|
|
goto FAILED;
|
|
}
|
|
}
|
|
|
|
/* In both phases, for recursions, we can now go to the code than
|
|
handles numerical recursion. */
|
|
|
|
if (is_recurse) goto HANDLE_RECURSION;
|
|
|
|
/* In the second pass we must see if the name is duplicated. If so, we
|
|
generate a different opcode. */
|
|
|
|
if (lengthptr == NULL && cd->dupnames)
|
|
{
|
|
int count = 1;
|
|
unsigned int index = i;
|
|
pcre_uchar *cslot = slot + cd->name_entry_size;
|
|
|
|
for (i++; i < cd->names_found; i++)
|
|
{
|
|
if (STRCMP_UC_UC(slot + IMM2_SIZE, cslot + IMM2_SIZE) != 0) break;
|
|
count++;
|
|
cslot += cd->name_entry_size;
|
|
}
|
|
|
|
if (count > 1)
|
|
{
|
|
if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
|
|
previous = code;
|
|
*code++ = ((options & PCRE_CASELESS) != 0)? OP_DNREFI : OP_DNREF;
|
|
PUT2INC(code, 0, index);
|
|
PUT2INC(code, 0, count);
|
|
|
|
/* Process each potentially referenced group. */
|
|
|
|
for (; slot < cslot; slot += cd->name_entry_size)
|
|
{
|
|
open_capitem *oc;
|
|
recno = GET2(slot, 0);
|
|
cd->backref_map |= (recno < 32)? (1 << recno) : 1;
|
|
if (recno > cd->top_backref) cd->top_backref = recno;
|
|
|
|
/* Check to see if this back reference is recursive, that it, it
|
|
is inside the group that it references. A flag is set so that the
|
|
group can be made atomic. */
|
|
|
|
for (oc = cd->open_caps; oc != NULL; oc = oc->next)
|
|
{
|
|
if (oc->number == recno)
|
|
{
|
|
oc->flag = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
continue; /* End of back ref handling */
|
|
}
|
|
}
|
|
|
|
/* First pass, or a non-duplicated name. */
|
|
|
|
goto HANDLE_REFERENCE;
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_R: /* Recursion */
|
|
ptr++; /* Same as (?0) */
|
|
/* Fall through */
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_MINUS: case CHAR_PLUS: /* Recursion or subroutine */
|
|
case CHAR_0: case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4:
|
|
case CHAR_5: case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9:
|
|
{
|
|
const pcre_uchar *called;
|
|
terminator = CHAR_RIGHT_PARENTHESIS;
|
|
|
|
/* Come here from the \g<...> and \g'...' code (Oniguruma
|
|
compatibility). However, the syntax has been checked to ensure that
|
|
the ... are a (signed) number, so that neither ERR63 nor ERR29 will
|
|
be called on this path, nor with the jump to OTHER_CHAR_AFTER_QUERY
|
|
ever be taken. */
|
|
|
|
HANDLE_NUMERICAL_RECURSION:
|
|
|
|
if ((refsign = *ptr) == CHAR_PLUS)
|
|
{
|
|
ptr++;
|
|
if (!IS_DIGIT(*ptr))
|
|
{
|
|
*errorcodeptr = ERR63;
|
|
goto FAILED;
|
|
}
|
|
}
|
|
else if (refsign == CHAR_MINUS)
|
|
{
|
|
if (!IS_DIGIT(ptr[1]))
|
|
goto OTHER_CHAR_AFTER_QUERY;
|
|
ptr++;
|
|
}
|
|
|
|
recno = 0;
|
|
while(IS_DIGIT(*ptr))
|
|
recno = recno * 10 + *ptr++ - CHAR_0;
|
|
|
|
if (*ptr != (pcre_uchar)terminator)
|
|
{
|
|
*errorcodeptr = ERR29;
|
|
goto FAILED;
|
|
}
|
|
|
|
if (refsign == CHAR_MINUS)
|
|
{
|
|
if (recno == 0)
|
|
{
|
|
*errorcodeptr = ERR58;
|
|
goto FAILED;
|
|
}
|
|
recno = cd->bracount - recno + 1;
|
|
if (recno <= 0)
|
|
{
|
|
*errorcodeptr = ERR15;
|
|
goto FAILED;
|
|
}
|
|
}
|
|
else if (refsign == CHAR_PLUS)
|
|
{
|
|
if (recno == 0)
|
|
{
|
|
*errorcodeptr = ERR58;
|
|
goto FAILED;
|
|
}
|
|
recno += cd->bracount;
|
|
}
|
|
|
|
/* Come here from code above that handles a named recursion */
|
|
|
|
HANDLE_RECURSION:
|
|
|
|
previous = code;
|
|
called = cd->start_code;
|
|
|
|
/* When we are actually compiling, find the bracket that is being
|
|
referenced. Temporarily end the regex in case it doesn't exist before
|
|
this point. If we end up with a forward reference, first check that
|
|
the bracket does occur later so we can give the error (and position)
|
|
now. Then remember this forward reference in the workspace so it can
|
|
be filled in at the end. */
|
|
|
|
if (lengthptr == NULL)
|
|
{
|
|
*code = OP_END;
|
|
if (recno != 0)
|
|
called = PRIV(find_bracket)(cd->start_code, utf, recno);
|
|
|
|
/* Forward reference */
|
|
|
|
if (called == NULL)
|
|
{
|
|
if (recno > cd->final_bracount)
|
|
{
|
|
*errorcodeptr = ERR15;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* Fudge the value of "called" so that when it is inserted as an
|
|
offset below, what it actually inserted is the reference number
|
|
of the group. Then remember the forward reference. */
|
|
|
|
called = cd->start_code + recno;
|
|
if (cd->hwm >= cd->start_workspace + cd->workspace_size -
|
|
WORK_SIZE_SAFETY_MARGIN)
|
|
{
|
|
*errorcodeptr = expand_workspace(cd);
|
|
if (*errorcodeptr != 0) goto FAILED;
|
|
}
|
|
PUTINC(cd->hwm, 0, (int)(code + 1 - cd->start_code));
|
|
}
|
|
|
|
/* If not a forward reference, and the subpattern is still open,
|
|
this is a recursive call. We check to see if this is a left
|
|
recursion that could loop for ever, and diagnose that case. We
|
|
must not, however, do this check if we are in a conditional
|
|
subpattern because the condition might be testing for recursion in
|
|
a pattern such as /(?(R)a+|(?R)b)/, which is perfectly valid.
|
|
Forever loops are also detected at runtime, so those that occur in
|
|
conditional subpatterns will be picked up then. */
|
|
|
|
else if (GET(called, 1) == 0 && cond_depth <= 0 &&
|
|
could_be_empty(called, code, bcptr, utf, cd))
|
|
{
|
|
*errorcodeptr = ERR40;
|
|
goto FAILED;
|
|
}
|
|
}
|
|
|
|
/* Insert the recursion/subroutine item. It does not have a set first
|
|
character (relevant if it is repeated, because it will then be
|
|
wrapped with ONCE brackets). */
|
|
|
|
*code = OP_RECURSE;
|
|
PUT(code, 1, (int)(called - cd->start_code));
|
|
code += 1 + LINK_SIZE;
|
|
groupsetfirstchar = FALSE;
|
|
}
|
|
|
|
/* Can't determine a first byte now */
|
|
|
|
if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
|
|
continue;
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
default: /* Other characters: check option setting */
|
|
OTHER_CHAR_AFTER_QUERY:
|
|
set = unset = 0;
|
|
optset = &set;
|
|
|
|
while (*ptr != CHAR_RIGHT_PARENTHESIS && *ptr != CHAR_COLON)
|
|
{
|
|
switch (*ptr++)
|
|
{
|
|
case CHAR_MINUS: optset = &unset; break;
|
|
|
|
case CHAR_J: /* Record that it changed in the external options */
|
|
*optset |= PCRE_DUPNAMES;
|
|
cd->external_flags |= PCRE_JCHANGED;
|
|
break;
|
|
|
|
case CHAR_i: *optset |= PCRE_CASELESS; break;
|
|
case CHAR_m: *optset |= PCRE_MULTILINE; break;
|
|
case CHAR_s: *optset |= PCRE_DOTALL; break;
|
|
case CHAR_x: *optset |= PCRE_EXTENDED; break;
|
|
case CHAR_U: *optset |= PCRE_UNGREEDY; break;
|
|
case CHAR_X: *optset |= PCRE_EXTRA; break;
|
|
|
|
default: *errorcodeptr = ERR12;
|
|
ptr--; /* Correct the offset */
|
|
goto FAILED;
|
|
}
|
|
}
|
|
|
|
/* Set up the changed option bits, but don't change anything yet. */
|
|
|
|
newoptions = (options | set) & (~unset);
|
|
|
|
/* If the options ended with ')' this is not the start of a nested
|
|
group with option changes, so the options change at this level. If this
|
|
item is right at the start of the pattern, the options can be
|
|
abstracted and made external in the pre-compile phase, and ignored in
|
|
the compile phase. This can be helpful when matching -- for instance in
|
|
caseless checking of required bytes.
|
|
|
|
If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are
|
|
definitely *not* at the start of the pattern because something has been
|
|
compiled. In the pre-compile phase, however, the code pointer can have
|
|
that value after the start, because it gets reset as code is discarded
|
|
during the pre-compile. However, this can happen only at top level - if
|
|
we are within parentheses, the starting BRA will still be present. At
|
|
any parenthesis level, the length value can be used to test if anything
|
|
has been compiled at that level. Thus, a test for both these conditions
|
|
is necessary to ensure we correctly detect the start of the pattern in
|
|
both phases.
|
|
|
|
If we are not at the pattern start, reset the greedy defaults and the
|
|
case value for firstchar and reqchar. */
|
|
|
|
if (*ptr == CHAR_RIGHT_PARENTHESIS)
|
|
{
|
|
if (code == cd->start_code + 1 + LINK_SIZE &&
|
|
(lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE))
|
|
{
|
|
cd->external_options = newoptions;
|
|
}
|
|
else
|
|
{
|
|
greedy_default = ((newoptions & PCRE_UNGREEDY) != 0);
|
|
greedy_non_default = greedy_default ^ 1;
|
|
req_caseopt = ((newoptions & PCRE_CASELESS) != 0)? REQ_CASELESS:0;
|
|
}
|
|
|
|
/* Change options at this level, and pass them back for use
|
|
in subsequent branches. */
|
|
|
|
*optionsptr = options = newoptions;
|
|
previous = NULL; /* This item can't be repeated */
|
|
continue; /* It is complete */
|
|
}
|
|
|
|
/* If the options ended with ':' we are heading into a nested group
|
|
with possible change of options. Such groups are non-capturing and are
|
|
not assertions of any kind. All we need to do is skip over the ':';
|
|
the newoptions value is handled below. */
|
|
|
|
bravalue = OP_BRA;
|
|
ptr++;
|
|
} /* End of switch for character following (? */
|
|
} /* End of (? handling */
|
|
|
|
/* Opening parenthesis not followed by '*' or '?'. If PCRE_NO_AUTO_CAPTURE
|
|
is set, all unadorned brackets become non-capturing and behave like (?:...)
|
|
brackets. */
|
|
|
|
else if ((options & PCRE_NO_AUTO_CAPTURE) != 0)
|
|
{
|
|
bravalue = OP_BRA;
|
|
}
|
|
|
|
/* Else we have a capturing group. */
|
|
|
|
else
|
|
{
|
|
NUMBERED_GROUP:
|
|
cd->bracount += 1;
|
|
PUT2(code, 1+LINK_SIZE, cd->bracount);
|
|
skipbytes = IMM2_SIZE;
|
|
}
|
|
|
|
/* Process nested bracketed regex. First check for parentheses nested too
|
|
deeply. */
|
|
|
|
if ((cd->parens_depth += 1) > PARENS_NEST_LIMIT)
|
|
{
|
|
*errorcodeptr = ERR82;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* Assertions used not to be repeatable, but this was changed for Perl
|
|
compatibility, so all kinds can now be repeated. We copy code into a
|
|
non-register variable (tempcode) in order to be able to pass its address
|
|
because some compilers complain otherwise. */
|
|
|
|
previous = code; /* For handling repetition */
|
|
*code = bravalue;
|
|
tempcode = code;
|
|
tempreqvary = cd->req_varyopt; /* Save value before bracket */
|
|
tempbracount = cd->bracount; /* Save value before bracket */
|
|
length_prevgroup = 0; /* Initialize for pre-compile phase */
|
|
|
|
if (!compile_regex(
|
|
newoptions, /* The complete new option state */
|
|
&tempcode, /* Where to put code (updated) */
|
|
&ptr, /* Input pointer (updated) */
|
|
errorcodeptr, /* Where to put an error message */
|
|
(bravalue == OP_ASSERTBACK ||
|
|
bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */
|
|
reset_bracount, /* True if (?| group */
|
|
skipbytes, /* Skip over bracket number */
|
|
cond_depth +
|
|
((bravalue == OP_COND)?1:0), /* Depth of condition subpatterns */
|
|
&subfirstchar, /* For possible first char */
|
|
&subfirstcharflags,
|
|
&subreqchar, /* For possible last char */
|
|
&subreqcharflags,
|
|
bcptr, /* Current branch chain */
|
|
cd, /* Tables block */
|
|
(lengthptr == NULL)? NULL : /* Actual compile phase */
|
|
&length_prevgroup /* Pre-compile phase */
|
|
))
|
|
goto FAILED;
|
|
|
|
cd->parens_depth -= 1;
|
|
|
|
/* If this was an atomic group and there are no capturing groups within it,
|
|
generate OP_ONCE_NC instead of OP_ONCE. */
|
|
|
|
if (bravalue == OP_ONCE && cd->bracount <= tempbracount)
|
|
*code = OP_ONCE_NC;
|
|
|
|
if (bravalue >= OP_ASSERT && bravalue <= OP_ASSERTBACK_NOT)
|
|
cd->assert_depth -= 1;
|
|
|
|
/* At the end of compiling, code is still pointing to the start of the
|
|
group, while tempcode has been updated to point past the end of the group.
|
|
The pattern pointer (ptr) is on the bracket.
|
|
|
|
If this is a conditional bracket, check that there are no more than
|
|
two branches in the group, or just one if it's a DEFINE group. We do this
|
|
in the real compile phase, not in the pre-pass, where the whole group may
|
|
not be available. */
|
|
|
|
if (bravalue == OP_COND && lengthptr == NULL)
|
|
{
|
|
pcre_uchar *tc = code;
|
|
int condcount = 0;
|
|
|
|
do {
|
|
condcount++;
|
|
tc += GET(tc,1);
|
|
}
|
|
while (*tc != OP_KET);
|
|
|
|
/* A DEFINE group is never obeyed inline (the "condition" is always
|
|
false). It must have only one branch. */
|
|
|
|
if (code[LINK_SIZE+1] == OP_DEF)
|
|
{
|
|
if (condcount > 1)
|
|
{
|
|
*errorcodeptr = ERR54;
|
|
goto FAILED;
|
|
}
|
|
bravalue = OP_DEF; /* Just a flag to suppress char handling below */
|
|
}
|
|
|
|
/* A "normal" conditional group. If there is just one branch, we must not
|
|
make use of its firstchar or reqchar, because this is equivalent to an
|
|
empty second branch. */
|
|
|
|
else
|
|
{
|
|
if (condcount > 2)
|
|
{
|
|
*errorcodeptr = ERR27;
|
|
goto FAILED;
|
|
}
|
|
if (condcount == 1) subfirstcharflags = subreqcharflags = REQ_NONE;
|
|
}
|
|
}
|
|
|
|
/* Error if hit end of pattern */
|
|
|
|
if (*ptr != CHAR_RIGHT_PARENTHESIS)
|
|
{
|
|
*errorcodeptr = ERR14;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* In the pre-compile phase, update the length by the length of the group,
|
|
less the brackets at either end. Then reduce the compiled code to just a
|
|
set of non-capturing brackets so that it doesn't use much memory if it is
|
|
duplicated by a quantifier.*/
|
|
|
|
if (lengthptr != NULL)
|
|
{
|
|
if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE)
|
|
{
|
|
*errorcodeptr = ERR20;
|
|
goto FAILED;
|
|
}
|
|
*lengthptr += length_prevgroup - 2 - 2*LINK_SIZE;
|
|
code++; /* This already contains bravalue */
|
|
PUTINC(code, 0, 1 + LINK_SIZE);
|
|
*code++ = OP_KET;
|
|
PUTINC(code, 0, 1 + LINK_SIZE);
|
|
break; /* No need to waste time with special character handling */
|
|
}
|
|
|
|
/* Otherwise update the main code pointer to the end of the group. */
|
|
|
|
code = tempcode;
|
|
|
|
/* For a DEFINE group, required and first character settings are not
|
|
relevant. */
|
|
|
|
if (bravalue == OP_DEF) break;
|
|
|
|
/* Handle updating of the required and first characters for other types of
|
|
group. Update for normal brackets of all kinds, and conditions with two
|
|
branches (see code above). If the bracket is followed by a quantifier with
|
|
zero repeat, we have to back off. Hence the definition of zeroreqchar and
|
|
zerofirstchar outside the main loop so that they can be accessed for the
|
|
back off. */
|
|
|
|
zeroreqchar = reqchar;
|
|
zeroreqcharflags = reqcharflags;
|
|
zerofirstchar = firstchar;
|
|
zerofirstcharflags = firstcharflags;
|
|
groupsetfirstchar = FALSE;
|
|
|
|
if (bravalue >= OP_ONCE)
|
|
{
|
|
/* If we have not yet set a firstchar in this branch, take it from the
|
|
subpattern, remembering that it was set here so that a repeat of more
|
|
than one can replicate it as reqchar if necessary. If the subpattern has
|
|
no firstchar, set "none" for the whole branch. In both cases, a zero
|
|
repeat forces firstchar to "none". */
|
|
|
|
if (firstcharflags == REQ_UNSET)
|
|
{
|
|
if (subfirstcharflags >= 0)
|
|
{
|
|
firstchar = subfirstchar;
|
|
firstcharflags = subfirstcharflags;
|
|
groupsetfirstchar = TRUE;
|
|
}
|
|
else firstcharflags = REQ_NONE;
|
|
zerofirstcharflags = REQ_NONE;
|
|
}
|
|
|
|
/* If firstchar was previously set, convert the subpattern's firstchar
|
|
into reqchar if there wasn't one, using the vary flag that was in
|
|
existence beforehand. */
|
|
|
|
else if (subfirstcharflags >= 0 && subreqcharflags < 0)
|
|
{
|
|
subreqchar = subfirstchar;
|
|
subreqcharflags = subfirstcharflags | tempreqvary;
|
|
}
|
|
|
|
/* If the subpattern set a required byte (or set a first byte that isn't
|
|
really the first byte - see above), set it. */
|
|
|
|
if (subreqcharflags >= 0)
|
|
{
|
|
reqchar = subreqchar;
|
|
reqcharflags = subreqcharflags;
|
|
}
|
|
}
|
|
|
|
/* For a forward assertion, we take the reqchar, if set. This can be
|
|
helpful if the pattern that follows the assertion doesn't set a different
|
|
char. For example, it's useful for /(?=abcde).+/. We can't set firstchar
|
|
for an assertion, however because it leads to incorrect effect for patterns
|
|
such as /(?=a)a.+/ when the "real" "a" would then become a reqchar instead
|
|
of a firstchar. This is overcome by a scan at the end if there's no
|
|
firstchar, looking for an asserted first char. */
|
|
|
|
else if (bravalue == OP_ASSERT && subreqcharflags >= 0)
|
|
{
|
|
reqchar = subreqchar;
|
|
reqcharflags = subreqcharflags;
|
|
}
|
|
break; /* End of processing '(' */
|
|
|
|
|
|
/* ===================================================================*/
|
|
/* Handle metasequences introduced by \. For ones like \d, the ESC_ values
|
|
are arranged to be the negation of the corresponding OP_values in the
|
|
default case when PCRE_UCP is not set. For the back references, the values
|
|
are negative the reference number. Only back references and those types
|
|
that consume a character may be repeated. We can test for values between
|
|
ESC_b and ESC_Z for the latter; this may have to change if any new ones are
|
|
ever created. */
|
|
|
|
case CHAR_BACKSLASH:
|
|
tempptr = ptr;
|
|
escape = check_escape(&ptr, &ec, errorcodeptr, cd->bracount, options, FALSE);
|
|
if (*errorcodeptr != 0) goto FAILED;
|
|
|
|
if (escape == 0) /* The escape coded a single character */
|
|
c = ec;
|
|
else
|
|
{
|
|
if (escape == ESC_Q) /* Handle start of quoted string */
|
|
{
|
|
if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
|
|
ptr += 2; /* avoid empty string */
|
|
else inescq = TRUE;
|
|
continue;
|
|
}
|
|
|
|
if (escape == ESC_E) continue; /* Perl ignores an orphan \E */
|
|
|
|
/* For metasequences that actually match a character, we disable the
|
|
setting of a first character if it hasn't already been set. */
|
|
|
|
if (firstcharflags == REQ_UNSET && escape > ESC_b && escape < ESC_Z)
|
|
firstcharflags = REQ_NONE;
|
|
|
|
/* Set values to reset to if this is followed by a zero repeat. */
|
|
|
|
zerofirstchar = firstchar;
|
|
zerofirstcharflags = firstcharflags;
|
|
zeroreqchar = reqchar;
|
|
zeroreqcharflags = reqcharflags;
|
|
|
|
/* \g<name> or \g'name' is a subroutine call by name and \g<n> or \g'n'
|
|
is a subroutine call by number (Oniguruma syntax). In fact, the value
|
|
ESC_g is returned only for these cases. So we don't need to check for <
|
|
or ' if the value is ESC_g. For the Perl syntax \g{n} the value is
|
|
-n, and for the Perl syntax \g{name} the result is ESC_k (as
|
|
that is a synonym for a named back reference). */
|
|
|
|
if (escape == ESC_g)
|
|
{
|
|
const pcre_uchar *p;
|
|
pcre_uint32 cf;
|
|
|
|
save_hwm = cd->hwm; /* Normally this is set when '(' is read */
|
|
terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)?
|
|
CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE;
|
|
|
|
/* These two statements stop the compiler for warning about possibly
|
|
unset variables caused by the jump to HANDLE_NUMERICAL_RECURSION. In
|
|
fact, because we do the check for a number below, the paths that
|
|
would actually be in error are never taken. */
|
|
|
|
skipbytes = 0;
|
|
reset_bracount = FALSE;
|
|
|
|
/* If it's not a signed or unsigned number, treat it as a name. */
|
|
|
|
cf = ptr[1];
|
|
if (cf != CHAR_PLUS && cf != CHAR_MINUS && !IS_DIGIT(cf))
|
|
{
|
|
is_recurse = TRUE;
|
|
goto NAMED_REF_OR_RECURSE;
|
|
}
|
|
|
|
/* Signed or unsigned number (cf = ptr[1]) is known to be plus or minus
|
|
or a digit. */
|
|
|
|
p = ptr + 2;
|
|
while (IS_DIGIT(*p)) p++;
|
|
if (*p != (pcre_uchar)terminator)
|
|
{
|
|
*errorcodeptr = ERR57;
|
|
break;
|
|
}
|
|
ptr++;
|
|
goto HANDLE_NUMERICAL_RECURSION;
|
|
}
|
|
|
|
/* \k<name> or \k'name' is a back reference by name (Perl syntax).
|
|
We also support \k{name} (.NET syntax). */
|
|
|
|
if (escape == ESC_k)
|
|
{
|
|
if ((ptr[1] != CHAR_LESS_THAN_SIGN &&
|
|
ptr[1] != CHAR_APOSTROPHE && ptr[1] != CHAR_LEFT_CURLY_BRACKET))
|
|
{
|
|
*errorcodeptr = ERR69;
|
|
break;
|
|
}
|
|
is_recurse = FALSE;
|
|
terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)?
|
|
CHAR_GREATER_THAN_SIGN : (*ptr == CHAR_APOSTROPHE)?
|
|
CHAR_APOSTROPHE : CHAR_RIGHT_CURLY_BRACKET;
|
|
goto NAMED_REF_OR_RECURSE;
|
|
}
|
|
|
|
/* Back references are handled specially; must disable firstchar if
|
|
not set to cope with cases like (?=(\w+))\1: which would otherwise set
|
|
':' later. */
|
|
|
|
if (escape < 0)
|
|
{
|
|
open_capitem *oc;
|
|
recno = -escape;
|
|
|
|
/* Come here from named backref handling when the reference is to a
|
|
single group (i.e. not to a duplicated name. */
|
|
|
|
HANDLE_REFERENCE:
|
|
if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
|
|
previous = code;
|
|
*code++ = ((options & PCRE_CASELESS) != 0)? OP_REFI : OP_REF;
|
|
PUT2INC(code, 0, recno);
|
|
cd->backref_map |= (recno < 32)? (1 << recno) : 1;
|
|
if (recno > cd->top_backref) cd->top_backref = recno;
|
|
|
|
/* Check to see if this back reference is recursive, that it, it
|
|
is inside the group that it references. A flag is set so that the
|
|
group can be made atomic. */
|
|
|
|
for (oc = cd->open_caps; oc != NULL; oc = oc->next)
|
|
{
|
|
if (oc->number == recno)
|
|
{
|
|
oc->flag = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* So are Unicode property matches, if supported. */
|
|
|
|
#ifdef SUPPORT_UCP
|
|
else if (escape == ESC_P || escape == ESC_p)
|
|
{
|
|
BOOL negated;
|
|
unsigned int ptype = 0, pdata = 0;
|
|
if (!get_ucp(&ptr, &negated, &ptype, &pdata, errorcodeptr))
|
|
goto FAILED;
|
|
previous = code;
|
|
*code++ = ((escape == ESC_p) != negated)? OP_PROP : OP_NOTPROP;
|
|
*code++ = ptype;
|
|
*code++ = pdata;
|
|
}
|
|
#else
|
|
|
|
/* If Unicode properties are not supported, \X, \P, and \p are not
|
|
allowed. */
|
|
|
|
else if (escape == ESC_X || escape == ESC_P || escape == ESC_p)
|
|
{
|
|
*errorcodeptr = ERR45;
|
|
goto FAILED;
|
|
}
|
|
#endif
|
|
|
|
/* For the rest (including \X when Unicode properties are supported), we
|
|
can obtain the OP value by negating the escape value in the default
|
|
situation when PCRE_UCP is not set. When it *is* set, we substitute
|
|
Unicode property tests. Note that \b and \B do a one-character
|
|
lookbehind, and \A also behaves as if it does. */
|
|
|
|
else
|
|
{
|
|
if ((escape == ESC_b || escape == ESC_B || escape == ESC_A) &&
|
|
cd->max_lookbehind == 0)
|
|
cd->max_lookbehind = 1;
|
|
#ifdef SUPPORT_UCP
|
|
if (escape >= ESC_DU && escape <= ESC_wu)
|
|
{
|
|
nestptr = ptr + 1; /* Where to resume */
|
|
ptr = substitutes[escape - ESC_DU] - 1; /* Just before substitute */
|
|
}
|
|
else
|
|
#endif
|
|
/* In non-UTF-8 mode, we turn \C into OP_ALLANY instead of OP_ANYBYTE
|
|
so that it works in DFA mode and in lookbehinds. */
|
|
|
|
{
|
|
previous = (escape > ESC_b && escape < ESC_Z)? code : NULL;
|
|
*code++ = (!utf && escape == ESC_C)? OP_ALLANY : escape;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* We have a data character whose value is in c. In UTF-8 mode it may have
|
|
a value > 127. We set its representation in the length/buffer, and then
|
|
handle it as a data character. */
|
|
|
|
#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
|
|
if (utf && c > MAX_VALUE_FOR_SINGLE_CHAR)
|
|
mclength = PRIV(ord2utf)(c, mcbuffer);
|
|
else
|
|
#endif
|
|
|
|
{
|
|
mcbuffer[0] = c;
|
|
mclength = 1;
|
|
}
|
|
goto ONE_CHAR;
|
|
|
|
|
|
/* ===================================================================*/
|
|
/* Handle a literal character. It is guaranteed not to be whitespace or #
|
|
when the extended flag is set. If we are in a UTF mode, it may be a
|
|
multi-unit literal character. */
|
|
|
|
default:
|
|
NORMAL_CHAR:
|
|
mclength = 1;
|
|
mcbuffer[0] = c;
|
|
|
|
#ifdef SUPPORT_UTF
|
|
if (utf && HAS_EXTRALEN(c))
|
|
ACROSSCHAR(TRUE, ptr[1], mcbuffer[mclength++] = *(++ptr));
|
|
#endif
|
|
|
|
/* At this point we have the character's bytes in mcbuffer, and the length
|
|
in mclength. When not in UTF-8 mode, the length is always 1. */
|
|
|
|
ONE_CHAR:
|
|
previous = code;
|
|
|
|
/* For caseless UTF-8 mode when UCP support is available, check whether
|
|
this character has more than one other case. If so, generate a special
|
|
OP_PROP item instead of OP_CHARI. */
|
|
|
|
#ifdef SUPPORT_UCP
|
|
if (utf && (options & PCRE_CASELESS) != 0)
|
|
{
|
|
GETCHAR(c, mcbuffer);
|
|
if ((c = UCD_CASESET(c)) != 0)
|
|
{
|
|
*code++ = OP_PROP;
|
|
*code++ = PT_CLIST;
|
|
*code++ = c;
|
|
if (firstcharflags == REQ_UNSET)
|
|
firstcharflags = zerofirstcharflags = REQ_NONE;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Caseful matches, or not one of the multicase characters. */
|
|
|
|
*code++ = ((options & PCRE_CASELESS) != 0)? OP_CHARI : OP_CHAR;
|
|
for (c = 0; c < mclength; c++) *code++ = mcbuffer[c];
|
|
|
|
/* Remember if \r or \n were seen */
|
|
|
|
if (mcbuffer[0] == CHAR_CR || mcbuffer[0] == CHAR_NL)
|
|
cd->external_flags |= PCRE_HASCRORLF;
|
|
|
|
/* Set the first and required bytes appropriately. If no previous first
|
|
byte, set it from this character, but revert to none on a zero repeat.
|
|
Otherwise, leave the firstchar value alone, and don't change it on a zero
|
|
repeat. */
|
|
|
|
if (firstcharflags == REQ_UNSET)
|
|
{
|
|
zerofirstcharflags = REQ_NONE;
|
|
zeroreqchar = reqchar;
|
|
zeroreqcharflags = reqcharflags;
|
|
|
|
/* If the character is more than one byte long, we can set firstchar
|
|
only if it is not to be matched caselessly. */
|
|
|
|
if (mclength == 1 || req_caseopt == 0)
|
|
{
|
|
firstchar = mcbuffer[0] | req_caseopt;
|
|
firstchar = mcbuffer[0];
|
|
firstcharflags = req_caseopt;
|
|
|
|
if (mclength != 1)
|
|
{
|
|
reqchar = code[-1];
|
|
reqcharflags = cd->req_varyopt;
|
|
}
|
|
}
|
|
else firstcharflags = reqcharflags = REQ_NONE;
|
|
}
|
|
|
|
/* firstchar was previously set; we can set reqchar only if the length is
|
|
1 or the matching is caseful. */
|
|
|
|
else
|
|
{
|
|
zerofirstchar = firstchar;
|
|
zerofirstcharflags = firstcharflags;
|
|
zeroreqchar = reqchar;
|
|
zeroreqcharflags = reqcharflags;
|
|
if (mclength == 1 || req_caseopt == 0)
|
|
{
|
|
reqchar = code[-1];
|
|
reqcharflags = req_caseopt | cd->req_varyopt;
|
|
}
|
|
}
|
|
|
|
break; /* End of literal character handling */
|
|
}
|
|
} /* end of big loop */
|
|
|
|
|
|
/* Control never reaches here by falling through, only by a goto for all the
|
|
error states. Pass back the position in the pattern so that it can be displayed
|
|
to the user for diagnosing the error. */
|
|
|
|
FAILED:
|
|
*ptrptr = ptr;
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Compile sequence of alternatives *
|
|
*************************************************/
|
|
|
|
/* On entry, ptr is pointing past the bracket character, but on return it
|
|
points to the closing bracket, or vertical bar, or end of string. The code
|
|
variable is pointing at the byte into which the BRA operator has been stored.
|
|
This function is used during the pre-compile phase when we are trying to find
|
|
out the amount of memory needed, as well as during the real compile phase. The
|
|
value of lengthptr distinguishes the two phases.
|
|
|
|
Arguments:
|
|
options option bits, including any changes for this subpattern
|
|
codeptr -> the address of the current code pointer
|
|
ptrptr -> the address of the current pattern pointer
|
|
errorcodeptr -> pointer to error code variable
|
|
lookbehind TRUE if this is a lookbehind assertion
|
|
reset_bracount TRUE to reset the count for each branch
|
|
skipbytes skip this many bytes at start (for brackets and OP_COND)
|
|
cond_depth depth of nesting for conditional subpatterns
|
|
firstcharptr place to put the first required character
|
|
firstcharflagsptr place to put the first character flags, or a negative number
|
|
reqcharptr place to put the last required character
|
|
reqcharflagsptr place to put the last required character flags, or a negative number
|
|
bcptr pointer to the chain of currently open branches
|
|
cd points to the data block with tables pointers etc.
|
|
lengthptr NULL during the real compile phase
|
|
points to length accumulator during pre-compile phase
|
|
|
|
Returns: TRUE on success
|
|
*/
|
|
|
|
static BOOL
|
|
compile_regex(int options, pcre_uchar **codeptr, const pcre_uchar **ptrptr,
|
|
int *errorcodeptr, BOOL lookbehind, BOOL reset_bracount, int skipbytes,
|
|
int cond_depth,
|
|
pcre_uint32 *firstcharptr, pcre_int32 *firstcharflagsptr,
|
|
pcre_uint32 *reqcharptr, pcre_int32 *reqcharflagsptr,
|
|
branch_chain *bcptr, compile_data *cd, int *lengthptr)
|
|
{
|
|
const pcre_uchar *ptr = *ptrptr;
|
|
pcre_uchar *code = *codeptr;
|
|
pcre_uchar *last_branch = code;
|
|
pcre_uchar *start_bracket = code;
|
|
pcre_uchar *reverse_count = NULL;
|
|
open_capitem capitem;
|
|
int capnumber = 0;
|
|
pcre_uint32 firstchar, reqchar;
|
|
pcre_int32 firstcharflags, reqcharflags;
|
|
pcre_uint32 branchfirstchar, branchreqchar;
|
|
pcre_int32 branchfirstcharflags, branchreqcharflags;
|
|
int length;
|
|
unsigned int orig_bracount;
|
|
unsigned int max_bracount;
|
|
branch_chain bc;
|
|
|
|
/* If set, call the external function that checks for stack availability. */
|
|
|
|
if (PUBL(stack_guard) != NULL && PUBL(stack_guard)())
|
|
{
|
|
*errorcodeptr= ERR85;
|
|
return FALSE;
|
|
}
|
|
|
|
/* Miscellaneous initialization */
|
|
|
|
bc.outer = bcptr;
|
|
bc.current_branch = code;
|
|
|
|
firstchar = reqchar = 0;
|
|
firstcharflags = reqcharflags = REQ_UNSET;
|
|
|
|
/* Accumulate the length for use in the pre-compile phase. Start with the
|
|
length of the BRA and KET and any extra bytes that are required at the
|
|
beginning. We accumulate in a local variable to save frequent testing of
|
|
lenthptr for NULL. We cannot do this by looking at the value of code at the
|
|
start and end of each alternative, because compiled items are discarded during
|
|
the pre-compile phase so that the work space is not exceeded. */
|
|
|
|
length = 2 + 2*LINK_SIZE + skipbytes;
|
|
|
|
/* WARNING: If the above line is changed for any reason, you must also change
|
|
the code that abstracts option settings at the start of the pattern and makes
|
|
them global. It tests the value of length for (2 + 2*LINK_SIZE) in the
|
|
pre-compile phase to find out whether anything has yet been compiled or not. */
|
|
|
|
/* If this is a capturing subpattern, add to the chain of open capturing items
|
|
so that we can detect them if (*ACCEPT) is encountered. This is also used to
|
|
detect groups that contain recursive back references to themselves. Note that
|
|
only OP_CBRA need be tested here; changing this opcode to one of its variants,
|
|
e.g. OP_SCBRAPOS, happens later, after the group has been compiled. */
|
|
|
|
if (*code == OP_CBRA)
|
|
{
|
|
capnumber = GET2(code, 1 + LINK_SIZE);
|
|
capitem.number = capnumber;
|
|
capitem.next = cd->open_caps;
|
|
capitem.flag = FALSE;
|
|
cd->open_caps = &capitem;
|
|
}
|
|
|
|
/* Offset is set zero to mark that this bracket is still open */
|
|
|
|
PUT(code, 1, 0);
|
|
code += 1 + LINK_SIZE + skipbytes;
|
|
|
|
/* Loop for each alternative branch */
|
|
|
|
orig_bracount = max_bracount = cd->bracount;
|
|
for (;;)
|
|
{
|
|
/* For a (?| group, reset the capturing bracket count so that each branch
|
|
uses the same numbers. */
|
|
|
|
if (reset_bracount) cd->bracount = orig_bracount;
|
|
|
|
/* Set up dummy OP_REVERSE if lookbehind assertion */
|
|
|
|
if (lookbehind)
|
|
{
|
|
*code++ = OP_REVERSE;
|
|
reverse_count = code;
|
|
PUTINC(code, 0, 0);
|
|
length += 1 + LINK_SIZE;
|
|
}
|
|
|
|
/* Now compile the branch; in the pre-compile phase its length gets added
|
|
into the length. */
|
|
|
|
if (!compile_branch(&options, &code, &ptr, errorcodeptr, &branchfirstchar,
|
|
&branchfirstcharflags, &branchreqchar, &branchreqcharflags, &bc,
|
|
cond_depth, cd, (lengthptr == NULL)? NULL : &length))
|
|
{
|
|
*ptrptr = ptr;
|
|
return FALSE;
|
|
}
|
|
|
|
/* Keep the highest bracket count in case (?| was used and some branch
|
|
has fewer than the rest. */
|
|
|
|
if (cd->bracount > max_bracount) max_bracount = cd->bracount;
|
|
|
|
/* In the real compile phase, there is some post-processing to be done. */
|
|
|
|
if (lengthptr == NULL)
|
|
{
|
|
/* If this is the first branch, the firstchar and reqchar values for the
|
|
branch become the values for the regex. */
|
|
|
|
if (*last_branch != OP_ALT)
|
|
{
|
|
firstchar = branchfirstchar;
|
|
firstcharflags = branchfirstcharflags;
|
|
reqchar = branchreqchar;
|
|
reqcharflags = branchreqcharflags;
|
|
}
|
|
|
|
/* If this is not the first branch, the first char and reqchar have to
|
|
match the values from all the previous branches, except that if the
|
|
previous value for reqchar didn't have REQ_VARY set, it can still match,
|
|
and we set REQ_VARY for the regex. */
|
|
|
|
else
|
|
{
|
|
/* If we previously had a firstchar, but it doesn't match the new branch,
|
|
we have to abandon the firstchar for the regex, but if there was
|
|
previously no reqchar, it takes on the value of the old firstchar. */
|
|
|
|
if (firstcharflags >= 0 &&
|
|
(firstcharflags != branchfirstcharflags || firstchar != branchfirstchar))
|
|
{
|
|
if (reqcharflags < 0)
|
|
{
|
|
reqchar = firstchar;
|
|
reqcharflags = firstcharflags;
|
|
}
|
|
firstcharflags = REQ_NONE;
|
|
}
|
|
|
|
/* If we (now or from before) have no firstchar, a firstchar from the
|
|
branch becomes a reqchar if there isn't a branch reqchar. */
|
|
|
|
if (firstcharflags < 0 && branchfirstcharflags >= 0 && branchreqcharflags < 0)
|
|
{
|
|
branchreqchar = branchfirstchar;
|
|
branchreqcharflags = branchfirstcharflags;
|
|
}
|
|
|
|
/* Now ensure that the reqchars match */
|
|
|
|
if (((reqcharflags & ~REQ_VARY) != (branchreqcharflags & ~REQ_VARY)) ||
|
|
reqchar != branchreqchar)
|
|
reqcharflags = REQ_NONE;
|
|
else
|
|
{
|
|
reqchar = branchreqchar;
|
|
reqcharflags |= branchreqcharflags; /* To "or" REQ_VARY */
|
|
}
|
|
}
|
|
|
|
/* If lookbehind, check that this branch matches a fixed-length string, and
|
|
put the length into the OP_REVERSE item. Temporarily mark the end of the
|
|
branch with OP_END. If the branch contains OP_RECURSE, the result is -3
|
|
because there may be forward references that we can't check here. Set a
|
|
flag to cause another lookbehind check at the end. Why not do it all at the
|
|
end? Because common, erroneous checks are picked up here and the offset of
|
|
the problem can be shown. */
|
|
|
|
if (lookbehind)
|
|
{
|
|
int fixed_length;
|
|
*code = OP_END;
|
|
fixed_length = find_fixedlength(last_branch, (options & PCRE_UTF8) != 0,
|
|
FALSE, cd);
|
|
DPRINTF(("fixed length = %d\n", fixed_length));
|
|
if (fixed_length == -3)
|
|
{
|
|
cd->check_lookbehind = TRUE;
|
|
}
|
|
else if (fixed_length < 0)
|
|
{
|
|
*errorcodeptr = (fixed_length == -2)? ERR36 :
|
|
(fixed_length == -4)? ERR70: ERR25;
|
|
*ptrptr = ptr;
|
|
return FALSE;
|
|
}
|
|
else
|
|
{
|
|
if (fixed_length > cd->max_lookbehind)
|
|
cd->max_lookbehind = fixed_length;
|
|
PUT(reverse_count, 0, fixed_length);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Reached end of expression, either ')' or end of pattern. In the real
|
|
compile phase, go back through the alternative branches and reverse the chain
|
|
of offsets, with the field in the BRA item now becoming an offset to the
|
|
first alternative. If there are no alternatives, it points to the end of the
|
|
group. The length in the terminating ket is always the length of the whole
|
|
bracketed item. Return leaving the pointer at the terminating char. */
|
|
|
|
if (*ptr != CHAR_VERTICAL_LINE)
|
|
{
|
|
if (lengthptr == NULL)
|
|
{
|
|
int branch_length = (int)(code - last_branch);
|
|
do
|
|
{
|
|
int prev_length = GET(last_branch, 1);
|
|
PUT(last_branch, 1, branch_length);
|
|
branch_length = prev_length;
|
|
last_branch -= branch_length;
|
|
}
|
|
while (branch_length > 0);
|
|
}
|
|
|
|
/* Fill in the ket */
|
|
|
|
*code = OP_KET;
|
|
PUT(code, 1, (int)(code - start_bracket));
|
|
code += 1 + LINK_SIZE;
|
|
|
|
/* If it was a capturing subpattern, check to see if it contained any
|
|
recursive back references. If so, we must wrap it in atomic brackets.
|
|
In any event, remove the block from the chain. */
|
|
|
|
if (capnumber > 0)
|
|
{
|
|
if (cd->open_caps->flag)
|
|
{
|
|
memmove(start_bracket + 1 + LINK_SIZE, start_bracket,
|
|
IN_UCHARS(code - start_bracket));
|
|
*start_bracket = OP_ONCE;
|
|
code += 1 + LINK_SIZE;
|
|
PUT(start_bracket, 1, (int)(code - start_bracket));
|
|
*code = OP_KET;
|
|
PUT(code, 1, (int)(code - start_bracket));
|
|
code += 1 + LINK_SIZE;
|
|
length += 2 + 2*LINK_SIZE;
|
|
}
|
|
cd->open_caps = cd->open_caps->next;
|
|
}
|
|
|
|
/* Retain the highest bracket number, in case resetting was used. */
|
|
|
|
cd->bracount = max_bracount;
|
|
|
|
/* Set values to pass back */
|
|
|
|
*codeptr = code;
|
|
*ptrptr = ptr;
|
|
*firstcharptr = firstchar;
|
|
*firstcharflagsptr = firstcharflags;
|
|
*reqcharptr = reqchar;
|
|
*reqcharflagsptr = reqcharflags;
|
|
if (lengthptr != NULL)
|
|
{
|
|
if (OFLOW_MAX - *lengthptr < length)
|
|
{
|
|
*errorcodeptr = ERR20;
|
|
return FALSE;
|
|
}
|
|
*lengthptr += length;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/* Another branch follows. In the pre-compile phase, we can move the code
|
|
pointer back to where it was for the start of the first branch. (That is,
|
|
pretend that each branch is the only one.)
|
|
|
|
In the real compile phase, insert an ALT node. Its length field points back
|
|
to the previous branch while the bracket remains open. At the end the chain
|
|
is reversed. It's done like this so that the start of the bracket has a
|
|
zero offset until it is closed, making it possible to detect recursion. */
|
|
|
|
if (lengthptr != NULL)
|
|
{
|
|
code = *codeptr + 1 + LINK_SIZE + skipbytes;
|
|
length += 1 + LINK_SIZE;
|
|
}
|
|
else
|
|
{
|
|
*code = OP_ALT;
|
|
PUT(code, 1, (int)(code - last_branch));
|
|
bc.current_branch = last_branch = code;
|
|
code += 1 + LINK_SIZE;
|
|
}
|
|
|
|
ptr++;
|
|
}
|
|
/* Control never reaches here */
|
|
}
|
|
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Check for anchored expression *
|
|
*************************************************/
|
|
|
|
/* Try to find out if this is an anchored regular expression. Consider each
|
|
alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket
|
|
all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then
|
|
it's anchored. However, if this is a multiline pattern, then only OP_SOD will
|
|
be found, because ^ generates OP_CIRCM in that mode.
|
|
|
|
We can also consider a regex to be anchored if OP_SOM starts all its branches.
|
|
This is the code for \G, which means "match at start of match position, taking
|
|
into account the match offset".
|
|
|
|
A branch is also implicitly anchored if it starts with .* and DOTALL is set,
|
|
because that will try the rest of the pattern at all possible matching points,
|
|
so there is no point trying again.... er ....
|
|
|
|
.... except when the .* appears inside capturing parentheses, and there is a
|
|
subsequent back reference to those parentheses. We haven't enough information
|
|
to catch that case precisely.
|
|
|
|
At first, the best we could do was to detect when .* was in capturing brackets
|
|
and the highest back reference was greater than or equal to that level.
|
|
However, by keeping a bitmap of the first 31 back references, we can catch some
|
|
of the more common cases more precisely.
|
|
|
|
... A second exception is when the .* appears inside an atomic group, because
|
|
this prevents the number of characters it matches from being adjusted.
|
|
|
|
Arguments:
|
|
code points to start of expression (the bracket)
|
|
bracket_map a bitmap of which brackets we are inside while testing; this
|
|
handles up to substring 31; after that we just have to take
|
|
the less precise approach
|
|
cd points to the compile data block
|
|
atomcount atomic group level
|
|
|
|
Returns: TRUE or FALSE
|
|
*/
|
|
|
|
static BOOL
|
|
is_anchored(register const pcre_uchar *code, unsigned int bracket_map,
|
|
compile_data *cd, int atomcount)
|
|
{
|
|
do {
|
|
const pcre_uchar *scode = first_significant_code(
|
|
code + PRIV(OP_lengths)[*code], FALSE);
|
|
register int op = *scode;
|
|
|
|
/* Non-capturing brackets */
|
|
|
|
if (op == OP_BRA || op == OP_BRAPOS ||
|
|
op == OP_SBRA || op == OP_SBRAPOS)
|
|
{
|
|
if (!is_anchored(scode, bracket_map, cd, atomcount)) return FALSE;
|
|
}
|
|
|
|
/* Capturing brackets */
|
|
|
|
else if (op == OP_CBRA || op == OP_CBRAPOS ||
|
|
op == OP_SCBRA || op == OP_SCBRAPOS)
|
|
{
|
|
int n = GET2(scode, 1+LINK_SIZE);
|
|
int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
|
|
if (!is_anchored(scode, new_map, cd, atomcount)) return FALSE;
|
|
}
|
|
|
|
/* Positive forward assertions and conditions */
|
|
|
|
else if (op == OP_ASSERT || op == OP_COND)
|
|
{
|
|
if (!is_anchored(scode, bracket_map, cd, atomcount)) return FALSE;
|
|
}
|
|
|
|
/* Atomic groups */
|
|
|
|
else if (op == OP_ONCE || op == OP_ONCE_NC)
|
|
{
|
|
if (!is_anchored(scode, bracket_map, cd, atomcount + 1))
|
|
return FALSE;
|
|
}
|
|
|
|
/* .* is not anchored unless DOTALL is set (which generates OP_ALLANY) and
|
|
it isn't in brackets that are or may be referenced or inside an atomic
|
|
group. */
|
|
|
|
else if ((op == OP_TYPESTAR || op == OP_TYPEMINSTAR ||
|
|
op == OP_TYPEPOSSTAR))
|
|
{
|
|
if (scode[1] != OP_ALLANY || (bracket_map & cd->backref_map) != 0 ||
|
|
atomcount > 0 || cd->had_pruneorskip)
|
|
return FALSE;
|
|
}
|
|
|
|
/* Check for explicit anchoring */
|
|
|
|
else if (op != OP_SOD && op != OP_SOM && op != OP_CIRC) return FALSE;
|
|
|
|
code += GET(code, 1);
|
|
}
|
|
while (*code == OP_ALT); /* Loop for each alternative */
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Check for starting with ^ or .* *
|
|
*************************************************/
|
|
|
|
/* This is called to find out if every branch starts with ^ or .* so that
|
|
"first char" processing can be done to speed things up in multiline
|
|
matching and for non-DOTALL patterns that start with .* (which must start at
|
|
the beginning or after \n). As in the case of is_anchored() (see above), we
|
|
have to take account of back references to capturing brackets that contain .*
|
|
because in that case we can't make the assumption. Also, the appearance of .*
|
|
inside atomic brackets or in a pattern that contains *PRUNE or *SKIP does not
|
|
count, because once again the assumption no longer holds.
|
|
|
|
Arguments:
|
|
code points to start of expression (the bracket)
|
|
bracket_map a bitmap of which brackets we are inside while testing; this
|
|
handles up to substring 31; after that we just have to take
|
|
the less precise approach
|
|
cd points to the compile data
|
|
atomcount atomic group level
|
|
|
|
Returns: TRUE or FALSE
|
|
*/
|
|
|
|
static BOOL
|
|
is_startline(const pcre_uchar *code, unsigned int bracket_map,
|
|
compile_data *cd, int atomcount)
|
|
{
|
|
do {
|
|
const pcre_uchar *scode = first_significant_code(
|
|
code + PRIV(OP_lengths)[*code], FALSE);
|
|
register int op = *scode;
|
|
|
|
/* If we are at the start of a conditional assertion group, *both* the
|
|
conditional assertion *and* what follows the condition must satisfy the test
|
|
for start of line. Other kinds of condition fail. Note that there may be an
|
|
auto-callout at the start of a condition. */
|
|
|
|
if (op == OP_COND)
|
|
{
|
|
scode += 1 + LINK_SIZE;
|
|
if (*scode == OP_CALLOUT) scode += PRIV(OP_lengths)[OP_CALLOUT];
|
|
switch (*scode)
|
|
{
|
|
case OP_CREF:
|
|
case OP_DNCREF:
|
|
case OP_RREF:
|
|
case OP_DNRREF:
|
|
case OP_DEF:
|
|
return FALSE;
|
|
|
|
default: /* Assertion */
|
|
if (!is_startline(scode, bracket_map, cd, atomcount)) return FALSE;
|
|
do scode += GET(scode, 1); while (*scode == OP_ALT);
|
|
scode += 1 + LINK_SIZE;
|
|
break;
|
|
}
|
|
scode = first_significant_code(scode, FALSE);
|
|
op = *scode;
|
|
}
|
|
|
|
/* Non-capturing brackets */
|
|
|
|
if (op == OP_BRA || op == OP_BRAPOS ||
|
|
op == OP_SBRA || op == OP_SBRAPOS)
|
|
{
|
|
if (!is_startline(scode, bracket_map, cd, atomcount)) return FALSE;
|
|
}
|
|
|
|
/* Capturing brackets */
|
|
|
|
else if (op == OP_CBRA || op == OP_CBRAPOS ||
|
|
op == OP_SCBRA || op == OP_SCBRAPOS)
|
|
{
|
|
int n = GET2(scode, 1+LINK_SIZE);
|
|
int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
|
|
if (!is_startline(scode, new_map, cd, atomcount)) return FALSE;
|
|
}
|
|
|
|
/* Positive forward assertions */
|
|
|
|
else if (op == OP_ASSERT)
|
|
{
|
|
if (!is_startline(scode, bracket_map, cd, atomcount)) return FALSE;
|
|
}
|
|
|
|
/* Atomic brackets */
|
|
|
|
else if (op == OP_ONCE || op == OP_ONCE_NC)
|
|
{
|
|
if (!is_startline(scode, bracket_map, cd, atomcount + 1)) return FALSE;
|
|
}
|
|
|
|
/* .* means "start at start or after \n" if it isn't in atomic brackets or
|
|
brackets that may be referenced, as long as the pattern does not contain
|
|
*PRUNE or *SKIP, because these break the feature. Consider, for example,
|
|
/.*?a(*PRUNE)b/ with the subject "aab", which matches "ab", i.e. not at the
|
|
start of a line. */
|
|
|
|
else if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR || op == OP_TYPEPOSSTAR)
|
|
{
|
|
if (scode[1] != OP_ANY || (bracket_map & cd->backref_map) != 0 ||
|
|
atomcount > 0 || cd->had_pruneorskip)
|
|
return FALSE;
|
|
}
|
|
|
|
/* Check for explicit circumflex; anything else gives a FALSE result. Note
|
|
in particular that this includes atomic brackets OP_ONCE and OP_ONCE_NC
|
|
because the number of characters matched by .* cannot be adjusted inside
|
|
them. */
|
|
|
|
else if (op != OP_CIRC && op != OP_CIRCM) return FALSE;
|
|
|
|
/* Move on to the next alternative */
|
|
|
|
code += GET(code, 1);
|
|
}
|
|
while (*code == OP_ALT); /* Loop for each alternative */
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Check for asserted fixed first char *
|
|
*************************************************/
|
|
|
|
/* During compilation, the "first char" settings from forward assertions are
|
|
discarded, because they can cause conflicts with actual literals that follow.
|
|
However, if we end up without a first char setting for an unanchored pattern,
|
|
it is worth scanning the regex to see if there is an initial asserted first
|
|
char. If all branches start with the same asserted char, or with a
|
|
non-conditional bracket all of whose alternatives start with the same asserted
|
|
char (recurse ad lib), then we return that char, with the flags set to zero or
|
|
REQ_CASELESS; otherwise return zero with REQ_NONE in the flags.
|
|
|
|
Arguments:
|
|
code points to start of expression (the bracket)
|
|
flags points to the first char flags, or to REQ_NONE
|
|
inassert TRUE if in an assertion
|
|
|
|
Returns: the fixed first char, or 0 with REQ_NONE in flags
|
|
*/
|
|
|
|
static pcre_uint32
|
|
find_firstassertedchar(const pcre_uchar *code, pcre_int32 *flags,
|
|
BOOL inassert)
|
|
{
|
|
register pcre_uint32 c = 0;
|
|
int cflags = REQ_NONE;
|
|
|
|
*flags = REQ_NONE;
|
|
do {
|
|
pcre_uint32 d;
|
|
int dflags;
|
|
int xl = (*code == OP_CBRA || *code == OP_SCBRA ||
|
|
*code == OP_CBRAPOS || *code == OP_SCBRAPOS)? IMM2_SIZE:0;
|
|
const pcre_uchar *scode = first_significant_code(code + 1+LINK_SIZE + xl,
|
|
TRUE);
|
|
register pcre_uchar op = *scode;
|
|
|
|
switch(op)
|
|
{
|
|
default:
|
|
return 0;
|
|
|
|
case OP_BRA:
|
|
case OP_BRAPOS:
|
|
case OP_CBRA:
|
|
case OP_SCBRA:
|
|
case OP_CBRAPOS:
|
|
case OP_SCBRAPOS:
|
|
case OP_ASSERT:
|
|
case OP_ONCE:
|
|
case OP_ONCE_NC:
|
|
d = find_firstassertedchar(scode, &dflags, op == OP_ASSERT);
|
|
if (dflags < 0)
|
|
return 0;
|
|
if (cflags < 0) { c = d; cflags = dflags; } else if (c != d || cflags != dflags) return 0;
|
|
break;
|
|
|
|
case OP_EXACT:
|
|
scode += IMM2_SIZE;
|
|
/* Fall through */
|
|
|
|
case OP_CHAR:
|
|
case OP_PLUS:
|
|
case OP_MINPLUS:
|
|
case OP_POSPLUS:
|
|
if (!inassert) return 0;
|
|
if (cflags < 0) { c = scode[1]; cflags = 0; }
|
|
else if (c != scode[1]) return 0;
|
|
break;
|
|
|
|
case OP_EXACTI:
|
|
scode += IMM2_SIZE;
|
|
/* Fall through */
|
|
|
|
case OP_CHARI:
|
|
case OP_PLUSI:
|
|
case OP_MINPLUSI:
|
|
case OP_POSPLUSI:
|
|
if (!inassert) return 0;
|
|
if (cflags < 0) { c = scode[1]; cflags = REQ_CASELESS; }
|
|
else if (c != scode[1]) return 0;
|
|
break;
|
|
}
|
|
|
|
code += GET(code, 1);
|
|
}
|
|
while (*code == OP_ALT);
|
|
|
|
*flags = cflags;
|
|
return c;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Add an entry to the name/number table *
|
|
*************************************************/
|
|
|
|
/* This function is called between compiling passes to add an entry to the
|
|
name/number table, maintaining alphabetical order. Checking for permitted
|
|
and forbidden duplicates has already been done.
|
|
|
|
Arguments:
|
|
cd the compile data block
|
|
name the name to add
|
|
length the length of the name
|
|
groupno the group number
|
|
|
|
Returns: nothing
|
|
*/
|
|
|
|
static void
|
|
add_name(compile_data *cd, const pcre_uchar *name, int length,
|
|
unsigned int groupno)
|
|
{
|
|
int i;
|
|
pcre_uchar *slot = cd->name_table;
|
|
|
|
for (i = 0; i < cd->names_found; i++)
|
|
{
|
|
int crc = memcmp(name, slot+IMM2_SIZE, IN_UCHARS(length));
|
|
if (crc == 0 && slot[IMM2_SIZE+length] != 0)
|
|
crc = -1; /* Current name is a substring */
|
|
|
|
/* Make space in the table and break the loop for an earlier name. For a
|
|
duplicate or later name, carry on. We do this for duplicates so that in the
|
|
simple case (when ?(| is not used) they are in order of their numbers. In all
|
|
cases they are in the order in which they appear in the pattern. */
|
|
|
|
if (crc < 0)
|
|
{
|
|
memmove(slot + cd->name_entry_size, slot,
|
|
IN_UCHARS((cd->names_found - i) * cd->name_entry_size));
|
|
break;
|
|
}
|
|
|
|
/* Continue the loop for a later or duplicate name */
|
|
|
|
slot += cd->name_entry_size;
|
|
}
|
|
|
|
PUT2(slot, 0, groupno);
|
|
memcpy(slot + IMM2_SIZE, name, IN_UCHARS(length));
|
|
slot[IMM2_SIZE + length] = 0;
|
|
cd->names_found++;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Compile a Regular Expression *
|
|
*************************************************/
|
|
|
|
/* This function takes a string and returns a pointer to a block of store
|
|
holding a compiled version of the expression. The original API for this
|
|
function had no error code return variable; it is retained for backwards
|
|
compatibility. The new function is given a new name.
|
|
|
|
Arguments:
|
|
pattern the regular expression
|
|
options various option bits
|
|
errorcodeptr pointer to error code variable (pcre_compile2() only)
|
|
can be NULL if you don't want a code value
|
|
errorptr pointer to pointer to error text
|
|
erroroffset ptr offset in pattern where error was detected
|
|
tables pointer to character tables or NULL
|
|
|
|
Returns: pointer to compiled data block, or NULL on error,
|
|
with errorptr and erroroffset set
|
|
*/
|
|
|
|
#if defined COMPILE_PCRE8
|
|
PCRE_EXP_DEFN pcre * PCRE_CALL_CONVENTION
|
|
pcre_compile(const char *pattern, int options, const char **errorptr,
|
|
int *erroroffset, const unsigned char *tables)
|
|
#elif defined COMPILE_PCRE16
|
|
PCRE_EXP_DEFN pcre16 * PCRE_CALL_CONVENTION
|
|
pcre16_compile(PCRE_SPTR16 pattern, int options, const char **errorptr,
|
|
int *erroroffset, const unsigned char *tables)
|
|
#elif defined COMPILE_PCRE32
|
|
PCRE_EXP_DEFN pcre32 * PCRE_CALL_CONVENTION
|
|
pcre32_compile(PCRE_SPTR32 pattern, int options, const char **errorptr,
|
|
int *erroroffset, const unsigned char *tables)
|
|
#endif
|
|
{
|
|
#if defined COMPILE_PCRE8
|
|
return pcre_compile2(pattern, options, NULL, errorptr, erroroffset, tables);
|
|
#elif defined COMPILE_PCRE16
|
|
return pcre16_compile2(pattern, options, NULL, errorptr, erroroffset, tables);
|
|
#elif defined COMPILE_PCRE32
|
|
return pcre32_compile2(pattern, options, NULL, errorptr, erroroffset, tables);
|
|
#endif
|
|
}
|
|
|
|
|
|
#if defined COMPILE_PCRE8
|
|
PCRE_EXP_DEFN pcre * PCRE_CALL_CONVENTION
|
|
pcre_compile2(const char *pattern, int options, int *errorcodeptr,
|
|
const char **errorptr, int *erroroffset, const unsigned char *tables)
|
|
#elif defined COMPILE_PCRE16
|
|
PCRE_EXP_DEFN pcre16 * PCRE_CALL_CONVENTION
|
|
pcre16_compile2(PCRE_SPTR16 pattern, int options, int *errorcodeptr,
|
|
const char **errorptr, int *erroroffset, const unsigned char *tables)
|
|
#elif defined COMPILE_PCRE32
|
|
PCRE_EXP_DEFN pcre32 * PCRE_CALL_CONVENTION
|
|
pcre32_compile2(PCRE_SPTR32 pattern, int options, int *errorcodeptr,
|
|
const char **errorptr, int *erroroffset, const unsigned char *tables)
|
|
#endif
|
|
{
|
|
REAL_PCRE *re;
|
|
int length = 1; /* For final END opcode */
|
|
pcre_int32 firstcharflags, reqcharflags;
|
|
pcre_uint32 firstchar, reqchar;
|
|
pcre_uint32 limit_match = PCRE_UINT32_MAX;
|
|
pcre_uint32 limit_recursion = PCRE_UINT32_MAX;
|
|
int newline;
|
|
int errorcode = 0;
|
|
int skipatstart = 0;
|
|
BOOL utf;
|
|
BOOL never_utf = FALSE;
|
|
size_t size;
|
|
pcre_uchar *code;
|
|
const pcre_uchar *codestart;
|
|
const pcre_uchar *ptr;
|
|
compile_data compile_block;
|
|
compile_data *cd = &compile_block;
|
|
|
|
/* This space is used for "compiling" into during the first phase, when we are
|
|
computing the amount of memory that is needed. Compiled items are thrown away
|
|
as soon as possible, so that a fairly large buffer should be sufficient for
|
|
this purpose. The same space is used in the second phase for remembering where
|
|
to fill in forward references to subpatterns. That may overflow, in which case
|
|
new memory is obtained from malloc(). */
|
|
|
|
pcre_uchar cworkspace[COMPILE_WORK_SIZE];
|
|
|
|
/* This vector is used for remembering name groups during the pre-compile. In a
|
|
similar way to cworkspace, it can be expanded using malloc() if necessary. */
|
|
|
|
named_group named_groups[NAMED_GROUP_LIST_SIZE];
|
|
|
|
/* Set this early so that early errors get offset 0. */
|
|
|
|
ptr = (const pcre_uchar *)pattern;
|
|
|
|
/* We can't pass back an error message if errorptr is NULL; I guess the best we
|
|
can do is just return NULL, but we can set a code value if there is a code
|
|
pointer. */
|
|
|
|
if (errorptr == NULL)
|
|
{
|
|
if (errorcodeptr != NULL) *errorcodeptr = 99;
|
|
return NULL;
|
|
}
|
|
|
|
*errorptr = NULL;
|
|
if (errorcodeptr != NULL) *errorcodeptr = ERR0;
|
|
|
|
/* However, we can give a message for this error */
|
|
|
|
if (erroroffset == NULL)
|
|
{
|
|
errorcode = ERR16;
|
|
goto PCRE_EARLY_ERROR_RETURN2;
|
|
}
|
|
|
|
*erroroffset = 0;
|
|
|
|
/* Set up pointers to the individual character tables */
|
|
|
|
if (tables == NULL) tables = PRIV(default_tables);
|
|
cd->lcc = tables + lcc_offset;
|
|
cd->fcc = tables + fcc_offset;
|
|
cd->cbits = tables + cbits_offset;
|
|
cd->ctypes = tables + ctypes_offset;
|
|
|
|
/* Check that all undefined public option bits are zero */
|
|
|
|
if ((options & ~PUBLIC_COMPILE_OPTIONS) != 0)
|
|
{
|
|
errorcode = ERR17;
|
|
goto PCRE_EARLY_ERROR_RETURN;
|
|
}
|
|
|
|
/* If PCRE_NEVER_UTF is set, remember it. */
|
|
|
|
if ((options & PCRE_NEVER_UTF) != 0) never_utf = TRUE;
|
|
|
|
/* Check for global one-time settings at the start of the pattern, and remember
|
|
the offset for later. */
|
|
|
|
cd->external_flags = 0; /* Initialize here for LIMIT_MATCH/RECURSION */
|
|
|
|
while (ptr[skipatstart] == CHAR_LEFT_PARENTHESIS &&
|
|
ptr[skipatstart+1] == CHAR_ASTERISK)
|
|
{
|
|
int newnl = 0;
|
|
int newbsr = 0;
|
|
|
|
/* For completeness and backward compatibility, (*UTFn) is supported in the
|
|
relevant libraries, but (*UTF) is generic and always supported. Note that
|
|
PCRE_UTF8 == PCRE_UTF16 == PCRE_UTF32. */
|
|
|
|
#ifdef COMPILE_PCRE8
|
|
if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_UTF8_RIGHTPAR, 5) == 0)
|
|
{ skipatstart += 7; options |= PCRE_UTF8; continue; }
|
|
#endif
|
|
#ifdef COMPILE_PCRE16
|
|
if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_UTF16_RIGHTPAR, 6) == 0)
|
|
{ skipatstart += 8; options |= PCRE_UTF16; continue; }
|
|
#endif
|
|
#ifdef COMPILE_PCRE32
|
|
if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_UTF32_RIGHTPAR, 6) == 0)
|
|
{ skipatstart += 8; options |= PCRE_UTF32; continue; }
|
|
#endif
|
|
|
|
else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_UTF_RIGHTPAR, 4) == 0)
|
|
{ skipatstart += 6; options |= PCRE_UTF8; continue; }
|
|
else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_UCP_RIGHTPAR, 4) == 0)
|
|
{ skipatstart += 6; options |= PCRE_UCP; continue; }
|
|
else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_NO_AUTO_POSSESS_RIGHTPAR, 16) == 0)
|
|
{ skipatstart += 18; options |= PCRE_NO_AUTO_POSSESS; continue; }
|
|
else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_NO_START_OPT_RIGHTPAR, 13) == 0)
|
|
{ skipatstart += 15; options |= PCRE_NO_START_OPTIMIZE; continue; }
|
|
|
|
else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_LIMIT_MATCH_EQ, 12) == 0)
|
|
{
|
|
pcre_uint32 c = 0;
|
|
int p = skipatstart + 14;
|
|
while (isdigit(ptr[p]))
|
|
{
|
|
if (c > PCRE_UINT32_MAX / 10 - 1) break; /* Integer overflow */
|
|
c = c*10 + ptr[p++] - CHAR_0;
|
|
}
|
|
if (ptr[p++] != CHAR_RIGHT_PARENTHESIS) break;
|
|
if (c < limit_match)
|
|
{
|
|
limit_match = c;
|
|
cd->external_flags |= PCRE_MLSET;
|
|
}
|
|
skipatstart = p;
|
|
continue;
|
|
}
|
|
|
|
else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_LIMIT_RECURSION_EQ, 16) == 0)
|
|
{
|
|
pcre_uint32 c = 0;
|
|
int p = skipatstart + 18;
|
|
while (isdigit(ptr[p]))
|
|
{
|
|
if (c > PCRE_UINT32_MAX / 10 - 1) break; /* Integer overflow check */
|
|
c = c*10 + ptr[p++] - CHAR_0;
|
|
}
|
|
if (ptr[p++] != CHAR_RIGHT_PARENTHESIS) break;
|
|
if (c < limit_recursion)
|
|
{
|
|
limit_recursion = c;
|
|
cd->external_flags |= PCRE_RLSET;
|
|
}
|
|
skipatstart = p;
|
|
continue;
|
|
}
|
|
|
|
if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_CR_RIGHTPAR, 3) == 0)
|
|
{ skipatstart += 5; newnl = PCRE_NEWLINE_CR; }
|
|
else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_LF_RIGHTPAR, 3) == 0)
|
|
{ skipatstart += 5; newnl = PCRE_NEWLINE_LF; }
|
|
else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_CRLF_RIGHTPAR, 5) == 0)
|
|
{ skipatstart += 7; newnl = PCRE_NEWLINE_CR + PCRE_NEWLINE_LF; }
|
|
else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_ANY_RIGHTPAR, 4) == 0)
|
|
{ skipatstart += 6; newnl = PCRE_NEWLINE_ANY; }
|
|
else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_ANYCRLF_RIGHTPAR, 8) == 0)
|
|
{ skipatstart += 10; newnl = PCRE_NEWLINE_ANYCRLF; }
|
|
|
|
else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_BSR_ANYCRLF_RIGHTPAR, 12) == 0)
|
|
{ skipatstart += 14; newbsr = PCRE_BSR_ANYCRLF; }
|
|
else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_BSR_UNICODE_RIGHTPAR, 12) == 0)
|
|
{ skipatstart += 14; newbsr = PCRE_BSR_UNICODE; }
|
|
|
|
if (newnl != 0)
|
|
options = (options & ~PCRE_NEWLINE_BITS) | newnl;
|
|
else if (newbsr != 0)
|
|
options = (options & ~(PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE)) | newbsr;
|
|
else break;
|
|
}
|
|
|
|
/* PCRE_UTF(16|32) have the same value as PCRE_UTF8. */
|
|
utf = (options & PCRE_UTF8) != 0;
|
|
if (utf && never_utf)
|
|
{
|
|
errorcode = ERR78;
|
|
goto PCRE_EARLY_ERROR_RETURN2;
|
|
}
|
|
|
|
/* Can't support UTF unless PCRE has been compiled to include the code. The
|
|
return of an error code from PRIV(valid_utf)() is a new feature, introduced in
|
|
release 8.13. It is passed back from pcre_[dfa_]exec(), but at the moment is
|
|
not used here. */
|
|
|
|
#ifdef SUPPORT_UTF
|
|
if (utf && (options & PCRE_NO_UTF8_CHECK) == 0 &&
|
|
(errorcode = PRIV(valid_utf)((PCRE_PUCHAR)pattern, -1, erroroffset)) != 0)
|
|
{
|
|
#if defined COMPILE_PCRE8
|
|
errorcode = ERR44;
|
|
#elif defined COMPILE_PCRE16
|
|
errorcode = ERR74;
|
|
#elif defined COMPILE_PCRE32
|
|
errorcode = ERR77;
|
|
#endif
|
|
goto PCRE_EARLY_ERROR_RETURN2;
|
|
}
|
|
#else
|
|
if (utf)
|
|
{
|
|
errorcode = ERR32;
|
|
goto PCRE_EARLY_ERROR_RETURN;
|
|
}
|
|
#endif
|
|
|
|
/* Can't support UCP unless PCRE has been compiled to include the code. */
|
|
|
|
#ifndef SUPPORT_UCP
|
|
if ((options & PCRE_UCP) != 0)
|
|
{
|
|
errorcode = ERR67;
|
|
goto PCRE_EARLY_ERROR_RETURN;
|
|
}
|
|
#endif
|
|
|
|
/* Check validity of \R options. */
|
|
|
|
if ((options & (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE)) ==
|
|
(PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE))
|
|
{
|
|
errorcode = ERR56;
|
|
goto PCRE_EARLY_ERROR_RETURN;
|
|
}
|
|
|
|
/* Handle different types of newline. The three bits give seven cases. The
|
|
current code allows for fixed one- or two-byte sequences, plus "any" and
|
|
"anycrlf". */
|
|
|
|
switch (options & PCRE_NEWLINE_BITS)
|
|
{
|
|
case 0: newline = NEWLINE; break; /* Build-time default */
|
|
case PCRE_NEWLINE_CR: newline = CHAR_CR; break;
|
|
case PCRE_NEWLINE_LF: newline = CHAR_NL; break;
|
|
case PCRE_NEWLINE_CR+
|
|
PCRE_NEWLINE_LF: newline = (CHAR_CR << 8) | CHAR_NL; break;
|
|
case PCRE_NEWLINE_ANY: newline = -1; break;
|
|
case PCRE_NEWLINE_ANYCRLF: newline = -2; break;
|
|
default: errorcode = ERR56; goto PCRE_EARLY_ERROR_RETURN;
|
|
}
|
|
|
|
if (newline == -2)
|
|
{
|
|
cd->nltype = NLTYPE_ANYCRLF;
|
|
}
|
|
else if (newline < 0)
|
|
{
|
|
cd->nltype = NLTYPE_ANY;
|
|
}
|
|
else
|
|
{
|
|
cd->nltype = NLTYPE_FIXED;
|
|
if (newline > 255)
|
|
{
|
|
cd->nllen = 2;
|
|
cd->nl[0] = (newline >> 8) & 255;
|
|
cd->nl[1] = newline & 255;
|
|
}
|
|
else
|
|
{
|
|
cd->nllen = 1;
|
|
cd->nl[0] = newline;
|
|
}
|
|
}
|
|
|
|
/* Maximum back reference and backref bitmap. The bitmap records up to 31 back
|
|
references to help in deciding whether (.*) can be treated as anchored or not.
|
|
*/
|
|
|
|
cd->top_backref = 0;
|
|
cd->backref_map = 0;
|
|
|
|
/* Reflect pattern for debugging output */
|
|
|
|
DPRINTF(("------------------------------------------------------------------\n"));
|
|
#ifdef PCRE_DEBUG
|
|
print_puchar(stdout, (PCRE_PUCHAR)pattern);
|
|
#endif
|
|
DPRINTF(("\n"));
|
|
|
|
/* Pretend to compile the pattern while actually just accumulating the length
|
|
of memory required. This behaviour is triggered by passing a non-NULL final
|
|
argument to compile_regex(). We pass a block of workspace (cworkspace) for it
|
|
to compile parts of the pattern into; the compiled code is discarded when it is
|
|
no longer needed, so hopefully this workspace will never overflow, though there
|
|
is a test for its doing so. */
|
|
|
|
cd->bracount = cd->final_bracount = 0;
|
|
cd->names_found = 0;
|
|
cd->name_entry_size = 0;
|
|
cd->name_table = NULL;
|
|
cd->dupnames = FALSE;
|
|
cd->namedrefcount = 0;
|
|
cd->start_code = cworkspace;
|
|
cd->hwm = cworkspace;
|
|
cd->start_workspace = cworkspace;
|
|
cd->workspace_size = COMPILE_WORK_SIZE;
|
|
cd->named_groups = named_groups;
|
|
cd->named_group_list_size = NAMED_GROUP_LIST_SIZE;
|
|
cd->start_pattern = (const pcre_uchar *)pattern;
|
|
cd->end_pattern = (const pcre_uchar *)(pattern + STRLEN_UC((const pcre_uchar *)pattern));
|
|
cd->req_varyopt = 0;
|
|
cd->parens_depth = 0;
|
|
cd->assert_depth = 0;
|
|
cd->max_lookbehind = 0;
|
|
cd->external_options = options;
|
|
cd->open_caps = NULL;
|
|
|
|
/* Now do the pre-compile. On error, errorcode will be set non-zero, so we
|
|
don't need to look at the result of the function here. The initial options have
|
|
been put into the cd block so that they can be changed if an option setting is
|
|
found within the regex right at the beginning. Bringing initial option settings
|
|
outside can help speed up starting point checks. */
|
|
|
|
ptr += skipatstart;
|
|
code = cworkspace;
|
|
*code = OP_BRA;
|
|
|
|
(void)compile_regex(cd->external_options, &code, &ptr, &errorcode, FALSE,
|
|
FALSE, 0, 0, &firstchar, &firstcharflags, &reqchar, &reqcharflags, NULL,
|
|
cd, &length);
|
|
if (errorcode != 0) goto PCRE_EARLY_ERROR_RETURN;
|
|
|
|
DPRINTF(("end pre-compile: length=%d workspace=%d\n", length,
|
|
(int)(cd->hwm - cworkspace)));
|
|
|
|
if (length > MAX_PATTERN_SIZE)
|
|
{
|
|
errorcode = ERR20;
|
|
goto PCRE_EARLY_ERROR_RETURN;
|
|
}
|
|
|
|
/* If there are groups with duplicate names and there are also references by
|
|
name, we must allow for the possibility of named references to duplicated
|
|
groups. These require an extra data item each. */
|
|
|
|
if (cd->dupnames && cd->namedrefcount > 0)
|
|
length += cd->namedrefcount * IMM2_SIZE * sizeof(pcre_uchar);
|
|
|
|
/* Compute the size of the data block for storing the compiled pattern. Integer
|
|
overflow should no longer be possible because nowadays we limit the maximum
|
|
value of cd->names_found and cd->name_entry_size. */
|
|
|
|
size = sizeof(REAL_PCRE) +
|
|
(length + cd->names_found * cd->name_entry_size) * sizeof(pcre_uchar);
|
|
|
|
/* Get the memory. */
|
|
|
|
re = (REAL_PCRE *)(PUBL(malloc))(size);
|
|
if (re == NULL)
|
|
{
|
|
errorcode = ERR21;
|
|
goto PCRE_EARLY_ERROR_RETURN;
|
|
}
|
|
|
|
/* Put in the magic number, and save the sizes, initial options, internal
|
|
flags, and character table pointer. NULL is used for the default character
|
|
tables. The nullpad field is at the end; it's there to help in the case when a
|
|
regex compiled on a system with 4-byte pointers is run on another with 8-byte
|
|
pointers. */
|
|
|
|
re->magic_number = MAGIC_NUMBER;
|
|
re->size = (int)size;
|
|
re->options = cd->external_options;
|
|
re->flags = cd->external_flags;
|
|
re->limit_match = limit_match;
|
|
re->limit_recursion = limit_recursion;
|
|
re->first_char = 0;
|
|
re->req_char = 0;
|
|
re->name_table_offset = sizeof(REAL_PCRE) / sizeof(pcre_uchar);
|
|
re->name_entry_size = cd->name_entry_size;
|
|
re->name_count = cd->names_found;
|
|
re->ref_count = 0;
|
|
re->tables = (tables == PRIV(default_tables))? NULL : tables;
|
|
re->nullpad = NULL;
|
|
#ifdef COMPILE_PCRE32
|
|
re->dummy = 0;
|
|
#else
|
|
re->dummy1 = re->dummy2 = re->dummy3 = 0;
|
|
#endif
|
|
|
|
/* The starting points of the name/number translation table and of the code are
|
|
passed around in the compile data block. The start/end pattern and initial
|
|
options are already set from the pre-compile phase, as is the name_entry_size
|
|
field. Reset the bracket count and the names_found field. Also reset the hwm
|
|
field; this time it's used for remembering forward references to subpatterns.
|
|
*/
|
|
|
|
cd->final_bracount = cd->bracount; /* Save for checking forward references */
|
|
cd->parens_depth = 0;
|
|
cd->assert_depth = 0;
|
|
cd->bracount = 0;
|
|
cd->max_lookbehind = 0;
|
|
cd->name_table = (pcre_uchar *)re + re->name_table_offset;
|
|
codestart = cd->name_table + re->name_entry_size * re->name_count;
|
|
cd->start_code = codestart;
|
|
cd->hwm = (pcre_uchar *)(cd->start_workspace);
|
|
cd->req_varyopt = 0;
|
|
cd->had_accept = FALSE;
|
|
cd->had_pruneorskip = FALSE;
|
|
cd->check_lookbehind = FALSE;
|
|
cd->open_caps = NULL;
|
|
|
|
/* If any named groups were found, create the name/number table from the list
|
|
created in the first pass. */
|
|
|
|
if (cd->names_found > 0)
|
|
{
|
|
int i = cd->names_found;
|
|
named_group *ng = cd->named_groups;
|
|
cd->names_found = 0;
|
|
for (; i > 0; i--, ng++)
|
|
add_name(cd, ng->name, ng->length, ng->number);
|
|
if (cd->named_group_list_size > NAMED_GROUP_LIST_SIZE)
|
|
(PUBL(free))((void *)cd->named_groups);
|
|
}
|
|
|
|
/* Set up a starting, non-extracting bracket, then compile the expression. On
|
|
error, errorcode will be set non-zero, so we don't need to look at the result
|
|
of the function here. */
|
|
|
|
ptr = (const pcre_uchar *)pattern + skipatstart;
|
|
code = (pcre_uchar *)codestart;
|
|
*code = OP_BRA;
|
|
(void)compile_regex(re->options, &code, &ptr, &errorcode, FALSE, FALSE, 0, 0,
|
|
&firstchar, &firstcharflags, &reqchar, &reqcharflags, NULL, cd, NULL);
|
|
re->top_bracket = cd->bracount;
|
|
re->top_backref = cd->top_backref;
|
|
re->max_lookbehind = cd->max_lookbehind;
|
|
re->flags = cd->external_flags | PCRE_MODE;
|
|
|
|
if (cd->had_accept)
|
|
{
|
|
reqchar = 0; /* Must disable after (*ACCEPT) */
|
|
reqcharflags = REQ_NONE;
|
|
}
|
|
|
|
/* If not reached end of pattern on success, there's an excess bracket. */
|
|
|
|
if (errorcode == 0 && *ptr != CHAR_NULL) errorcode = ERR22;
|
|
|
|
/* Fill in the terminating state and check for disastrous overflow, but
|
|
if debugging, leave the test till after things are printed out. */
|
|
|
|
*code++ = OP_END;
|
|
|
|
#ifndef PCRE_DEBUG
|
|
if (code - codestart > length) errorcode = ERR23;
|
|
#endif
|
|
|
|
#ifdef SUPPORT_VALGRIND
|
|
/* If the estimated length exceeds the really used length, mark the extra
|
|
allocated memory as unaddressable, so that any out-of-bound reads can be
|
|
detected. */
|
|
VALGRIND_MAKE_MEM_NOACCESS(code, (length - (code - codestart)) * sizeof(pcre_uchar));
|
|
#endif
|
|
|
|
/* Fill in any forward references that are required. There may be repeated
|
|
references; optimize for them, as searching a large regex takes time. */
|
|
|
|
if (cd->hwm > cd->start_workspace)
|
|
{
|
|
int prev_recno = -1;
|
|
const pcre_uchar *groupptr = NULL;
|
|
while (errorcode == 0 && cd->hwm > cd->start_workspace)
|
|
{
|
|
int offset, recno;
|
|
cd->hwm -= LINK_SIZE;
|
|
offset = GET(cd->hwm, 0);
|
|
recno = GET(codestart, offset);
|
|
if (recno != prev_recno)
|
|
{
|
|
groupptr = PRIV(find_bracket)(codestart, utf, recno);
|
|
prev_recno = recno;
|
|
}
|
|
if (groupptr == NULL) errorcode = ERR53;
|
|
else PUT(((pcre_uchar *)codestart), offset, (int)(groupptr - codestart));
|
|
}
|
|
}
|
|
|
|
/* If the workspace had to be expanded, free the new memory. Set the pointer to
|
|
NULL to indicate that forward references have been filled in. */
|
|
|
|
if (cd->workspace_size > COMPILE_WORK_SIZE)
|
|
(PUBL(free))((void *)cd->start_workspace);
|
|
cd->start_workspace = NULL;
|
|
|
|
/* Give an error if there's back reference to a non-existent capturing
|
|
subpattern. */
|
|
|
|
if (errorcode == 0 && re->top_backref > re->top_bracket) errorcode = ERR15;
|
|
|
|
/* Unless disabled, check whether single character iterators can be
|
|
auto-possessified. The function overwrites the appropriate opcode values. */
|
|
|
|
if ((options & PCRE_NO_AUTO_POSSESS) == 0)
|
|
auto_possessify((pcre_uchar *)codestart, utf, cd);
|
|
|
|
/* If there were any lookbehind assertions that contained OP_RECURSE
|
|
(recursions or subroutine calls), a flag is set for them to be checked here,
|
|
because they may contain forward references. Actual recursions cannot be fixed
|
|
length, but subroutine calls can. It is done like this so that those without
|
|
OP_RECURSE that are not fixed length get a diagnosic with a useful offset. The
|
|
exceptional ones forgo this. We scan the pattern to check that they are fixed
|
|
length, and set their lengths. */
|
|
|
|
if (cd->check_lookbehind)
|
|
{
|
|
pcre_uchar *cc = (pcre_uchar *)codestart;
|
|
|
|
/* Loop, searching for OP_REVERSE items, and process those that do not have
|
|
their length set. (Actually, it will also re-process any that have a length
|
|
of zero, but that is a pathological case, and it does no harm.) When we find
|
|
one, we temporarily terminate the branch it is in while we scan it. */
|
|
|
|
for (cc = (pcre_uchar *)PRIV(find_bracket)(codestart, utf, -1);
|
|
cc != NULL;
|
|
cc = (pcre_uchar *)PRIV(find_bracket)(cc, utf, -1))
|
|
{
|
|
if (GET(cc, 1) == 0)
|
|
{
|
|
int fixed_length;
|
|
pcre_uchar *be = cc - 1 - LINK_SIZE + GET(cc, -LINK_SIZE);
|
|
int end_op = *be;
|
|
*be = OP_END;
|
|
fixed_length = find_fixedlength(cc, (re->options & PCRE_UTF8) != 0, TRUE,
|
|
cd);
|
|
*be = end_op;
|
|
DPRINTF(("fixed length = %d\n", fixed_length));
|
|
if (fixed_length < 0)
|
|
{
|
|
errorcode = (fixed_length == -2)? ERR36 :
|
|
(fixed_length == -4)? ERR70 : ERR25;
|
|
break;
|
|
}
|
|
if (fixed_length > cd->max_lookbehind) cd->max_lookbehind = fixed_length;
|
|
PUT(cc, 1, fixed_length);
|
|
}
|
|
cc += 1 + LINK_SIZE;
|
|
}
|
|
}
|
|
|
|
/* Failed to compile, or error while post-processing */
|
|
|
|
if (errorcode != 0)
|
|
{
|
|
(PUBL(free))(re);
|
|
PCRE_EARLY_ERROR_RETURN:
|
|
*erroroffset = (int)(ptr - (const pcre_uchar *)pattern);
|
|
PCRE_EARLY_ERROR_RETURN2:
|
|
*errorptr = find_error_text(errorcode);
|
|
if (errorcodeptr != NULL) *errorcodeptr = errorcode;
|
|
return NULL;
|
|
}
|
|
|
|
/* If the anchored option was not passed, set the flag if we can determine that
|
|
the pattern is anchored by virtue of ^ characters or \A or anything else, such
|
|
as starting with non-atomic .* when DOTALL is set and there are no occurrences
|
|
of *PRUNE or *SKIP.
|
|
|
|
Otherwise, if we know what the first byte has to be, save it, because that
|
|
speeds up unanchored matches no end. If not, see if we can set the
|
|
PCRE_STARTLINE flag. This is helpful for multiline matches when all branches
|
|
start with ^. and also when all branches start with non-atomic .* for
|
|
non-DOTALL matches when *PRUNE and SKIP are not present. */
|
|
|
|
if ((re->options & PCRE_ANCHORED) == 0)
|
|
{
|
|
if (is_anchored(codestart, 0, cd, 0)) re->options |= PCRE_ANCHORED;
|
|
else
|
|
{
|
|
if (firstcharflags < 0)
|
|
firstchar = find_firstassertedchar(codestart, &firstcharflags, FALSE);
|
|
if (firstcharflags >= 0) /* Remove caseless flag for non-caseable chars */
|
|
{
|
|
#if defined COMPILE_PCRE8
|
|
re->first_char = firstchar & 0xff;
|
|
#elif defined COMPILE_PCRE16
|
|
re->first_char = firstchar & 0xffff;
|
|
#elif defined COMPILE_PCRE32
|
|
re->first_char = firstchar;
|
|
#endif
|
|
if ((firstcharflags & REQ_CASELESS) != 0)
|
|
{
|
|
#if defined SUPPORT_UCP && !(defined COMPILE_PCRE8)
|
|
/* We ignore non-ASCII first chars in 8 bit mode. */
|
|
if (utf)
|
|
{
|
|
if (re->first_char < 128)
|
|
{
|
|
if (cd->fcc[re->first_char] != re->first_char)
|
|
re->flags |= PCRE_FCH_CASELESS;
|
|
}
|
|
else if (UCD_OTHERCASE(re->first_char) != re->first_char)
|
|
re->flags |= PCRE_FCH_CASELESS;
|
|
}
|
|
else
|
|
#endif
|
|
if (MAX_255(re->first_char)
|
|
&& cd->fcc[re->first_char] != re->first_char)
|
|
re->flags |= PCRE_FCH_CASELESS;
|
|
}
|
|
|
|
re->flags |= PCRE_FIRSTSET;
|
|
}
|
|
|
|
else if (is_startline(codestart, 0, cd, 0)) re->flags |= PCRE_STARTLINE;
|
|
}
|
|
}
|
|
|
|
/* For an anchored pattern, we use the "required byte" only if it follows a
|
|
variable length item in the regex. Remove the caseless flag for non-caseable
|
|
bytes. */
|
|
|
|
if (reqcharflags >= 0 &&
|
|
((re->options & PCRE_ANCHORED) == 0 || (reqcharflags & REQ_VARY) != 0))
|
|
{
|
|
#if defined COMPILE_PCRE8
|
|
re->req_char = reqchar & 0xff;
|
|
#elif defined COMPILE_PCRE16
|
|
re->req_char = reqchar & 0xffff;
|
|
#elif defined COMPILE_PCRE32
|
|
re->req_char = reqchar;
|
|
#endif
|
|
if ((reqcharflags & REQ_CASELESS) != 0)
|
|
{
|
|
#if defined SUPPORT_UCP && !(defined COMPILE_PCRE8)
|
|
/* We ignore non-ASCII first chars in 8 bit mode. */
|
|
if (utf)
|
|
{
|
|
if (re->req_char < 128)
|
|
{
|
|
if (cd->fcc[re->req_char] != re->req_char)
|
|
re->flags |= PCRE_RCH_CASELESS;
|
|
}
|
|
else if (UCD_OTHERCASE(re->req_char) != re->req_char)
|
|
re->flags |= PCRE_RCH_CASELESS;
|
|
}
|
|
else
|
|
#endif
|
|
if (MAX_255(re->req_char) && cd->fcc[re->req_char] != re->req_char)
|
|
re->flags |= PCRE_RCH_CASELESS;
|
|
}
|
|
|
|
re->flags |= PCRE_REQCHSET;
|
|
}
|
|
|
|
/* Print out the compiled data if debugging is enabled. This is never the
|
|
case when building a production library. */
|
|
|
|
#ifdef PCRE_DEBUG
|
|
printf("Length = %d top_bracket = %d top_backref = %d\n",
|
|
length, re->top_bracket, re->top_backref);
|
|
|
|
printf("Options=%08x\n", re->options);
|
|
|
|
if ((re->flags & PCRE_FIRSTSET) != 0)
|
|
{
|
|
pcre_uchar ch = re->first_char;
|
|
const char *caseless =
|
|
((re->flags & PCRE_FCH_CASELESS) == 0)? "" : " (caseless)";
|
|
if (PRINTABLE(ch)) printf("First char = %c%s\n", ch, caseless);
|
|
else printf("First char = \\x%02x%s\n", ch, caseless);
|
|
}
|
|
|
|
if ((re->flags & PCRE_REQCHSET) != 0)
|
|
{
|
|
pcre_uchar ch = re->req_char;
|
|
const char *caseless =
|
|
((re->flags & PCRE_RCH_CASELESS) == 0)? "" : " (caseless)";
|
|
if (PRINTABLE(ch)) printf("Req char = %c%s\n", ch, caseless);
|
|
else printf("Req char = \\x%02x%s\n", ch, caseless);
|
|
}
|
|
|
|
#if defined COMPILE_PCRE8
|
|
pcre_printint((pcre *)re, stdout, TRUE);
|
|
#elif defined COMPILE_PCRE16
|
|
pcre16_printint((pcre *)re, stdout, TRUE);
|
|
#elif defined COMPILE_PCRE32
|
|
pcre32_printint((pcre *)re, stdout, TRUE);
|
|
#endif
|
|
|
|
/* This check is done here in the debugging case so that the code that
|
|
was compiled can be seen. */
|
|
|
|
if (code - codestart > length)
|
|
{
|
|
(PUBL(free))(re);
|
|
*errorptr = find_error_text(ERR23);
|
|
*erroroffset = ptr - (pcre_uchar *)pattern;
|
|
if (errorcodeptr != NULL) *errorcodeptr = ERR23;
|
|
return NULL;
|
|
}
|
|
#endif /* PCRE_DEBUG */
|
|
|
|
/* Check for a pattern than can match an empty string, so that this information
|
|
can be provided to applications. */
|
|
|
|
do
|
|
{
|
|
if (could_be_empty_branch(codestart, code, utf, cd, NULL))
|
|
{
|
|
re->flags |= PCRE_MATCH_EMPTY;
|
|
break;
|
|
}
|
|
codestart += GET(codestart, 1);
|
|
}
|
|
while (*codestart == OP_ALT);
|
|
|
|
#if defined COMPILE_PCRE8
|
|
return (pcre *)re;
|
|
#elif defined COMPILE_PCRE16
|
|
return (pcre16 *)re;
|
|
#elif defined COMPILE_PCRE32
|
|
return (pcre32 *)re;
|
|
#endif
|
|
}
|
|
|
|
/* End of pcre_compile.c */
|
|
|