mirror of
https://github.com/alliedmodders/amxmodx.git
synced 2025-01-15 16:28:05 +03:00
376 lines
11 KiB
C++
376 lines
11 KiB
C++
// //////////////////////////////////////////////////////////
|
|
// md5.cpp
|
|
// Copyright (c) 2014,2015 Stephan Brumme. All rights reserved.
|
|
// see http://create.stephan-brumme.com/disclaimer.html
|
|
//
|
|
|
|
#include "md5.h"
|
|
|
|
/// same as reset()
|
|
MD5::MD5()
|
|
{
|
|
reset();
|
|
}
|
|
|
|
|
|
/// restart
|
|
void MD5::reset()
|
|
{
|
|
m_numBytes = 0;
|
|
m_bufferSize = 0;
|
|
|
|
// according to RFC 1321
|
|
m_hash[0] = 0x67452301;
|
|
m_hash[1] = 0xefcdab89;
|
|
m_hash[2] = 0x98badcfe;
|
|
m_hash[3] = 0x10325476;
|
|
}
|
|
|
|
|
|
namespace
|
|
{
|
|
// mix functions for processBlock()
|
|
inline uint32_t f1(uint32_t b, uint32_t c, uint32_t d)
|
|
{
|
|
return d ^ (b & (c ^ d)); // original: f = (b & c) | ((~b) & d);
|
|
}
|
|
|
|
inline uint32_t f2(uint32_t b, uint32_t c, uint32_t d)
|
|
{
|
|
return c ^ (d & (b ^ c)); // original: f = (b & d) | (c & (~d));
|
|
}
|
|
|
|
inline uint32_t f3(uint32_t b, uint32_t c, uint32_t d)
|
|
{
|
|
return b ^ c ^ d;
|
|
}
|
|
|
|
inline uint32_t f4(uint32_t b, uint32_t c, uint32_t d)
|
|
{
|
|
return c ^ (b | ~d);
|
|
}
|
|
|
|
inline uint32_t rotate(uint32_t a, uint32_t c)
|
|
{
|
|
return (a << c) | (a >> (32 - c));
|
|
}
|
|
|
|
#if defined(__BYTE_ORDER) && (__BYTE_ORDER != 0) && (__BYTE_ORDER == __BIG_ENDIAN)
|
|
inline uint32_t swap(uint32_t x)
|
|
{
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
return __builtin_bswap32(x);
|
|
#endif
|
|
#ifdef _MSC_VER
|
|
return _byteswap_ulong(x);
|
|
#endif
|
|
|
|
return (x >> 24) |
|
|
((x >> 8) & 0x0000FF00) |
|
|
((x << 8) & 0x00FF0000) |
|
|
(x << 24);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
/// process 64 bytes
|
|
void MD5::processBlock(const void* data)
|
|
{
|
|
// get last hash
|
|
uint32_t a = m_hash[0];
|
|
uint32_t b = m_hash[1];
|
|
uint32_t c = m_hash[2];
|
|
uint32_t d = m_hash[3];
|
|
|
|
// data represented as 16x 32-bit words
|
|
const uint32_t* words = (uint32_t*) data;
|
|
|
|
// computations are little endian, swap data if necessary
|
|
#if defined(__BYTE_ORDER) && (__BYTE_ORDER != 0) && (__BYTE_ORDER == __BIG_ENDIAN)
|
|
#define LITTLEENDIAN(x) swap(x)
|
|
#else
|
|
#define LITTLEENDIAN(x) (x)
|
|
#endif
|
|
|
|
// first round
|
|
uint32_t word0 = LITTLEENDIAN(words[ 0]);
|
|
a = rotate(a + f1(b,c,d) + word0 + 0xd76aa478, 7) + b;
|
|
uint32_t word1 = LITTLEENDIAN(words[ 1]);
|
|
d = rotate(d + f1(a,b,c) + word1 + 0xe8c7b756, 12) + a;
|
|
uint32_t word2 = LITTLEENDIAN(words[ 2]);
|
|
c = rotate(c + f1(d,a,b) + word2 + 0x242070db, 17) + d;
|
|
uint32_t word3 = LITTLEENDIAN(words[ 3]);
|
|
b = rotate(b + f1(c,d,a) + word3 + 0xc1bdceee, 22) + c;
|
|
|
|
uint32_t word4 = LITTLEENDIAN(words[ 4]);
|
|
a = rotate(a + f1(b,c,d) + word4 + 0xf57c0faf, 7) + b;
|
|
uint32_t word5 = LITTLEENDIAN(words[ 5]);
|
|
d = rotate(d + f1(a,b,c) + word5 + 0x4787c62a, 12) + a;
|
|
uint32_t word6 = LITTLEENDIAN(words[ 6]);
|
|
c = rotate(c + f1(d,a,b) + word6 + 0xa8304613, 17) + d;
|
|
uint32_t word7 = LITTLEENDIAN(words[ 7]);
|
|
b = rotate(b + f1(c,d,a) + word7 + 0xfd469501, 22) + c;
|
|
|
|
uint32_t word8 = LITTLEENDIAN(words[ 8]);
|
|
a = rotate(a + f1(b,c,d) + word8 + 0x698098d8, 7) + b;
|
|
uint32_t word9 = LITTLEENDIAN(words[ 9]);
|
|
d = rotate(d + f1(a,b,c) + word9 + 0x8b44f7af, 12) + a;
|
|
uint32_t word10 = LITTLEENDIAN(words[10]);
|
|
c = rotate(c + f1(d,a,b) + word10 + 0xffff5bb1, 17) + d;
|
|
uint32_t word11 = LITTLEENDIAN(words[11]);
|
|
b = rotate(b + f1(c,d,a) + word11 + 0x895cd7be, 22) + c;
|
|
|
|
uint32_t word12 = LITTLEENDIAN(words[12]);
|
|
a = rotate(a + f1(b,c,d) + word12 + 0x6b901122, 7) + b;
|
|
uint32_t word13 = LITTLEENDIAN(words[13]);
|
|
d = rotate(d + f1(a,b,c) + word13 + 0xfd987193, 12) + a;
|
|
uint32_t word14 = LITTLEENDIAN(words[14]);
|
|
c = rotate(c + f1(d,a,b) + word14 + 0xa679438e, 17) + d;
|
|
uint32_t word15 = LITTLEENDIAN(words[15]);
|
|
b = rotate(b + f1(c,d,a) + word15 + 0x49b40821, 22) + c;
|
|
|
|
// second round
|
|
a = rotate(a + f2(b,c,d) + word1 + 0xf61e2562, 5) + b;
|
|
d = rotate(d + f2(a,b,c) + word6 + 0xc040b340, 9) + a;
|
|
c = rotate(c + f2(d,a,b) + word11 + 0x265e5a51, 14) + d;
|
|
b = rotate(b + f2(c,d,a) + word0 + 0xe9b6c7aa, 20) + c;
|
|
|
|
a = rotate(a + f2(b,c,d) + word5 + 0xd62f105d, 5) + b;
|
|
d = rotate(d + f2(a,b,c) + word10 + 0x02441453, 9) + a;
|
|
c = rotate(c + f2(d,a,b) + word15 + 0xd8a1e681, 14) + d;
|
|
b = rotate(b + f2(c,d,a) + word4 + 0xe7d3fbc8, 20) + c;
|
|
|
|
a = rotate(a + f2(b,c,d) + word9 + 0x21e1cde6, 5) + b;
|
|
d = rotate(d + f2(a,b,c) + word14 + 0xc33707d6, 9) + a;
|
|
c = rotate(c + f2(d,a,b) + word3 + 0xf4d50d87, 14) + d;
|
|
b = rotate(b + f2(c,d,a) + word8 + 0x455a14ed, 20) + c;
|
|
|
|
a = rotate(a + f2(b,c,d) + word13 + 0xa9e3e905, 5) + b;
|
|
d = rotate(d + f2(a,b,c) + word2 + 0xfcefa3f8, 9) + a;
|
|
c = rotate(c + f2(d,a,b) + word7 + 0x676f02d9, 14) + d;
|
|
b = rotate(b + f2(c,d,a) + word12 + 0x8d2a4c8a, 20) + c;
|
|
|
|
// third round
|
|
a = rotate(a + f3(b,c,d) + word5 + 0xfffa3942, 4) + b;
|
|
d = rotate(d + f3(a,b,c) + word8 + 0x8771f681, 11) + a;
|
|
c = rotate(c + f3(d,a,b) + word11 + 0x6d9d6122, 16) + d;
|
|
b = rotate(b + f3(c,d,a) + word14 + 0xfde5380c, 23) + c;
|
|
|
|
a = rotate(a + f3(b,c,d) + word1 + 0xa4beea44, 4) + b;
|
|
d = rotate(d + f3(a,b,c) + word4 + 0x4bdecfa9, 11) + a;
|
|
c = rotate(c + f3(d,a,b) + word7 + 0xf6bb4b60, 16) + d;
|
|
b = rotate(b + f3(c,d,a) + word10 + 0xbebfbc70, 23) + c;
|
|
|
|
a = rotate(a + f3(b,c,d) + word13 + 0x289b7ec6, 4) + b;
|
|
d = rotate(d + f3(a,b,c) + word0 + 0xeaa127fa, 11) + a;
|
|
c = rotate(c + f3(d,a,b) + word3 + 0xd4ef3085, 16) + d;
|
|
b = rotate(b + f3(c,d,a) + word6 + 0x04881d05, 23) + c;
|
|
|
|
a = rotate(a + f3(b,c,d) + word9 + 0xd9d4d039, 4) + b;
|
|
d = rotate(d + f3(a,b,c) + word12 + 0xe6db99e5, 11) + a;
|
|
c = rotate(c + f3(d,a,b) + word15 + 0x1fa27cf8, 16) + d;
|
|
b = rotate(b + f3(c,d,a) + word2 + 0xc4ac5665, 23) + c;
|
|
|
|
// fourth round
|
|
a = rotate(a + f4(b,c,d) + word0 + 0xf4292244, 6) + b;
|
|
d = rotate(d + f4(a,b,c) + word7 + 0x432aff97, 10) + a;
|
|
c = rotate(c + f4(d,a,b) + word14 + 0xab9423a7, 15) + d;
|
|
b = rotate(b + f4(c,d,a) + word5 + 0xfc93a039, 21) + c;
|
|
|
|
a = rotate(a + f4(b,c,d) + word12 + 0x655b59c3, 6) + b;
|
|
d = rotate(d + f4(a,b,c) + word3 + 0x8f0ccc92, 10) + a;
|
|
c = rotate(c + f4(d,a,b) + word10 + 0xffeff47d, 15) + d;
|
|
b = rotate(b + f4(c,d,a) + word1 + 0x85845dd1, 21) + c;
|
|
|
|
a = rotate(a + f4(b,c,d) + word8 + 0x6fa87e4f, 6) + b;
|
|
d = rotate(d + f4(a,b,c) + word15 + 0xfe2ce6e0, 10) + a;
|
|
c = rotate(c + f4(d,a,b) + word6 + 0xa3014314, 15) + d;
|
|
b = rotate(b + f4(c,d,a) + word13 + 0x4e0811a1, 21) + c;
|
|
|
|
a = rotate(a + f4(b,c,d) + word4 + 0xf7537e82, 6) + b;
|
|
d = rotate(d + f4(a,b,c) + word11 + 0xbd3af235, 10) + a;
|
|
c = rotate(c + f4(d,a,b) + word2 + 0x2ad7d2bb, 15) + d;
|
|
b = rotate(b + f4(c,d,a) + word9 + 0xeb86d391, 21) + c;
|
|
|
|
// update hash
|
|
m_hash[0] += a;
|
|
m_hash[1] += b;
|
|
m_hash[2] += c;
|
|
m_hash[3] += d;
|
|
}
|
|
|
|
|
|
/// add arbitrary number of bytes
|
|
void MD5::add(const void* data, size_t numBytes)
|
|
{
|
|
const uint8_t* current = (const uint8_t*) data;
|
|
|
|
if (m_bufferSize > 0)
|
|
{
|
|
while (numBytes > 0 && m_bufferSize < BlockSize)
|
|
{
|
|
m_buffer[m_bufferSize++] = *current++;
|
|
numBytes--;
|
|
}
|
|
}
|
|
|
|
// full buffer
|
|
if (m_bufferSize == BlockSize)
|
|
{
|
|
processBlock(m_buffer);
|
|
m_numBytes += BlockSize;
|
|
m_bufferSize = 0;
|
|
}
|
|
|
|
// no more data ?
|
|
if (numBytes == 0)
|
|
return;
|
|
|
|
// process full blocks
|
|
while (numBytes >= BlockSize)
|
|
{
|
|
processBlock(current);
|
|
current += BlockSize;
|
|
m_numBytes += BlockSize;
|
|
numBytes -= BlockSize;
|
|
}
|
|
|
|
// keep remaining bytes in buffer
|
|
while (numBytes > 0)
|
|
{
|
|
m_buffer[m_bufferSize++] = *current++;
|
|
numBytes--;
|
|
}
|
|
}
|
|
|
|
|
|
/// process final block, less than 64 bytes
|
|
void MD5::processBuffer()
|
|
{
|
|
// the input bytes are considered as bits strings, where the first bit is the most significant bit of the byte
|
|
|
|
// - append "1" bit to message
|
|
// - append "0" bits until message length in bit mod 512 is 448
|
|
// - append length as 64 bit integer
|
|
|
|
// number of bits
|
|
size_t paddedLength = m_bufferSize * 8;
|
|
|
|
// plus one bit set to 1 (always appended)
|
|
paddedLength++;
|
|
|
|
// number of bits must be (numBits % 512) = 448
|
|
size_t lower11Bits = paddedLength & 511;
|
|
if (lower11Bits <= 448)
|
|
paddedLength += 448 - lower11Bits;
|
|
else
|
|
paddedLength += 512 + 448 - lower11Bits;
|
|
// convert from bits to bytes
|
|
paddedLength /= 8;
|
|
|
|
// only needed if additional data flows over into a second block
|
|
unsigned char extra[BlockSize];
|
|
|
|
// append a "1" bit, 128 => binary 10000000
|
|
if (m_bufferSize < BlockSize)
|
|
m_buffer[m_bufferSize] = 128;
|
|
else
|
|
extra[0] = 128;
|
|
|
|
size_t i;
|
|
for (i = m_bufferSize + 1; i < BlockSize; i++)
|
|
m_buffer[i] = 0;
|
|
for (; i < paddedLength; i++)
|
|
extra[i - BlockSize] = 0;
|
|
|
|
// add message length in bits as 64 bit number
|
|
uint64_t msgBits = 8 * (m_numBytes + m_bufferSize);
|
|
// find right position
|
|
unsigned char* addLength;
|
|
if (paddedLength < BlockSize)
|
|
addLength = m_buffer + paddedLength;
|
|
else
|
|
addLength = extra + paddedLength - BlockSize;
|
|
|
|
// must be little endian
|
|
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
|
|
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
|
|
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
|
|
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
|
|
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
|
|
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
|
|
*addLength++ = msgBits & 0xFF; msgBits >>= 8;
|
|
*addLength++ = msgBits & 0xFF;
|
|
|
|
// process blocks
|
|
processBlock(m_buffer);
|
|
// flowed over into a second block ?
|
|
if (paddedLength > BlockSize)
|
|
processBlock(extra);
|
|
}
|
|
|
|
|
|
/// return latest hash as 32 hex characters
|
|
const char* MD5::getHash()
|
|
{
|
|
// compute hash (as raw bytes)
|
|
unsigned char rawHash[HashBytes];
|
|
getHash(rawHash);
|
|
|
|
// convert to hex string
|
|
static char result[32+1];
|
|
size_t written = 0;
|
|
for (int i = 0; i < HashBytes; i++)
|
|
{
|
|
static const char dec2hex[16+1] = "0123456789abcdef";
|
|
result[written++] = dec2hex[(rawHash[i] >> 4) & 15];
|
|
result[written++] = dec2hex[ rawHash[i] & 15];
|
|
}
|
|
result[written] = 0;
|
|
return const_cast<const char *>(result);
|
|
}
|
|
|
|
|
|
/// return latest hash as bytes
|
|
void MD5::getHash(unsigned char buffer[MD5::HashBytes])
|
|
{
|
|
// save old hash if buffer is partially filled
|
|
uint32_t oldHash[HashValues];
|
|
for (int i = 0; i < HashValues; i++)
|
|
oldHash[i] = m_hash[i];
|
|
|
|
// process remaining bytes
|
|
processBuffer();
|
|
|
|
unsigned char* current = buffer;
|
|
for (int i = 0; i < HashValues; i++)
|
|
{
|
|
*current++ = m_hash[i] & 0xFF;
|
|
*current++ = (m_hash[i] >> 8) & 0xFF;
|
|
*current++ = (m_hash[i] >> 16) & 0xFF;
|
|
*current++ = (m_hash[i] >> 24) & 0xFF;
|
|
|
|
// restore old hash
|
|
m_hash[i] = oldHash[i];
|
|
}
|
|
}
|
|
|
|
|
|
/// compute MD5 of a memory block
|
|
const char* MD5::operator()(const void* data, size_t numBytes)
|
|
{
|
|
reset();
|
|
add(data, numBytes);
|
|
return getHash();
|
|
}
|
|
|
|
|
|
/// compute MD5 of a string, excluding final zero
|
|
const char* MD5::operator()(const char* text, size_t size)
|
|
{
|
|
reset();
|
|
add(text, size);
|
|
return getHash();
|
|
}
|