mirror of
https://github.com/alliedmodders/amxmodx.git
synced 2025-01-23 20:28:03 +03:00
1485 lines
42 KiB
C
1485 lines
42 KiB
C
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** Utility functions used throughout sqlite.
|
|
**
|
|
** This file contains functions for allocating memory, comparing
|
|
** strings, and stuff like that.
|
|
**
|
|
** $Id$
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#include "os.h"
|
|
#include <stdarg.h>
|
|
#include <ctype.h>
|
|
|
|
/*
|
|
** MALLOC WRAPPER ARCHITECTURE
|
|
**
|
|
** The sqlite code accesses dynamic memory allocation/deallocation by invoking
|
|
** the following six APIs (which may be implemented as macros).
|
|
**
|
|
** sqlite3Malloc()
|
|
** sqlite3MallocRaw()
|
|
** sqlite3Realloc()
|
|
** sqlite3ReallocOrFree()
|
|
** sqlite3Free()
|
|
** sqlite3AllocSize()
|
|
**
|
|
** The function sqlite3FreeX performs the same task as sqlite3Free and is
|
|
** guaranteed to be a real function. The same holds for sqlite3MallocX
|
|
**
|
|
** The above APIs are implemented in terms of the functions provided in the
|
|
** operating-system interface. The OS interface is never accessed directly
|
|
** by code outside of this file.
|
|
**
|
|
** sqlite3OsMalloc()
|
|
** sqlite3OsRealloc()
|
|
** sqlite3OsFree()
|
|
** sqlite3OsAllocationSize()
|
|
**
|
|
** Functions sqlite3MallocRaw() and sqlite3Realloc() may invoke
|
|
** sqlite3_release_memory() if a call to sqlite3OsMalloc() or
|
|
** sqlite3OsRealloc() fails (or if the soft-heap-limit for the thread is
|
|
** exceeded). Function sqlite3Malloc() usually invokes
|
|
** sqlite3MallocRaw().
|
|
**
|
|
** MALLOC TEST WRAPPER ARCHITECTURE
|
|
**
|
|
** The test wrapper provides extra test facilities to ensure the library
|
|
** does not leak memory and handles the failure of the underlying OS level
|
|
** allocation system correctly. It is only present if the library is
|
|
** compiled with the SQLITE_MEMDEBUG macro set.
|
|
**
|
|
** * Guardposts to detect overwrites.
|
|
** * Ability to cause a specific Malloc() or Realloc() to fail.
|
|
** * Audit outstanding memory allocations (i.e check for leaks).
|
|
*/
|
|
|
|
#define MAX(x,y) ((x)>(y)?(x):(y))
|
|
|
|
#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) && !defined(SQLITE_OMIT_DISKIO)
|
|
/*
|
|
** Set the soft heap-size limit for the current thread. Passing a negative
|
|
** value indicates no limit.
|
|
*/
|
|
void sqlite3_soft_heap_limit(int n){
|
|
ThreadData *pTd = sqlite3ThreadData();
|
|
if( pTd ){
|
|
pTd->nSoftHeapLimit = n;
|
|
}
|
|
sqlite3ReleaseThreadData();
|
|
}
|
|
|
|
/*
|
|
** Release memory held by SQLite instances created by the current thread.
|
|
*/
|
|
int sqlite3_release_memory(int n){
|
|
return sqlite3pager_release_memory(n);
|
|
}
|
|
#else
|
|
/* If SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined, then define a version
|
|
** of sqlite3_release_memory() to be used by other code in this file.
|
|
** This is done for no better reason than to reduce the number of
|
|
** pre-processor #ifndef statements.
|
|
*/
|
|
#define sqlite3_release_memory(x) 0 /* 0 == no memory freed */
|
|
#endif
|
|
|
|
#ifdef SQLITE_MEMDEBUG
|
|
/*--------------------------------------------------------------------------
|
|
** Begin code for memory allocation system test layer.
|
|
**
|
|
** Memory debugging is turned on by defining the SQLITE_MEMDEBUG macro.
|
|
**
|
|
** SQLITE_MEMDEBUG==1 -> Fence-posting only (thread safe)
|
|
** SQLITE_MEMDEBUG==2 -> Fence-posting + linked list of allocations (not ts)
|
|
** SQLITE_MEMDEBUG==3 -> Above + backtraces (not thread safe, req. glibc)
|
|
*/
|
|
|
|
/* Figure out whether or not to store backtrace() information for each malloc.
|
|
** The backtrace() function is only used if SQLITE_MEMDEBUG is set to 2 or
|
|
** greater and glibc is in use. If we don't want to use backtrace(), then just
|
|
** define it as an empty macro and set the amount of space reserved to 0.
|
|
*/
|
|
#if defined(__GLIBC__) && SQLITE_MEMDEBUG>2
|
|
extern int backtrace(void **, int);
|
|
#define TESTALLOC_STACKSIZE 128
|
|
#define TESTALLOC_STACKFRAMES ((TESTALLOC_STACKSIZE-8)/sizeof(void*))
|
|
#else
|
|
#define backtrace(x, y)
|
|
#define TESTALLOC_STACKSIZE 0
|
|
#define TESTALLOC_STACKFRAMES 0
|
|
#endif
|
|
|
|
/*
|
|
** Number of 32-bit guard words. This should probably be a multiple of
|
|
** 2 since on 64-bit machines we want the value returned by sqliteMalloc()
|
|
** to be 8-byte aligned.
|
|
*/
|
|
#ifndef TESTALLOC_NGUARD
|
|
# define TESTALLOC_NGUARD 2
|
|
#endif
|
|
|
|
/*
|
|
** Size reserved for storing file-name along with each malloc()ed blob.
|
|
*/
|
|
#define TESTALLOC_FILESIZE 64
|
|
|
|
/*
|
|
** Size reserved for storing the user string. Each time a Malloc() or Realloc()
|
|
** call succeeds, up to TESTALLOC_USERSIZE bytes of the string pointed to by
|
|
** sqlite3_malloc_id are stored along with the other test system metadata.
|
|
*/
|
|
#define TESTALLOC_USERSIZE 64
|
|
const char *sqlite3_malloc_id = 0;
|
|
|
|
/*
|
|
** Blocks used by the test layer have the following format:
|
|
**
|
|
** <sizeof(void *) pNext pointer>
|
|
** <sizeof(void *) pPrev pointer>
|
|
** <TESTALLOC_NGUARD 32-bit guard words>
|
|
** <The application level allocation>
|
|
** <TESTALLOC_NGUARD 32-bit guard words>
|
|
** <32-bit line number>
|
|
** <TESTALLOC_FILESIZE bytes containing null-terminated file name>
|
|
** <TESTALLOC_STACKSIZE bytes of backtrace() output>
|
|
*/
|
|
|
|
#define TESTALLOC_OFFSET_GUARD1(p) (sizeof(void *) * 2)
|
|
#define TESTALLOC_OFFSET_DATA(p) ( \
|
|
TESTALLOC_OFFSET_GUARD1(p) + sizeof(u32) * TESTALLOC_NGUARD \
|
|
)
|
|
#define TESTALLOC_OFFSET_GUARD2(p) ( \
|
|
TESTALLOC_OFFSET_DATA(p) + sqlite3OsAllocationSize(p) - TESTALLOC_OVERHEAD \
|
|
)
|
|
#define TESTALLOC_OFFSET_LINENUMBER(p) ( \
|
|
TESTALLOC_OFFSET_GUARD2(p) + sizeof(u32) * TESTALLOC_NGUARD \
|
|
)
|
|
#define TESTALLOC_OFFSET_FILENAME(p) ( \
|
|
TESTALLOC_OFFSET_LINENUMBER(p) + sizeof(u32) \
|
|
)
|
|
#define TESTALLOC_OFFSET_USER(p) ( \
|
|
TESTALLOC_OFFSET_FILENAME(p) + TESTALLOC_FILESIZE \
|
|
)
|
|
#define TESTALLOC_OFFSET_STACK(p) ( \
|
|
TESTALLOC_OFFSET_USER(p) + TESTALLOC_USERSIZE + 8 - \
|
|
(TESTALLOC_OFFSET_USER(p) % 8) \
|
|
)
|
|
|
|
#define TESTALLOC_OVERHEAD ( \
|
|
sizeof(void *)*2 + /* pPrev and pNext pointers */ \
|
|
TESTALLOC_NGUARD*sizeof(u32)*2 + /* Guard words */ \
|
|
sizeof(u32) + TESTALLOC_FILESIZE + /* File and line number */ \
|
|
TESTALLOC_USERSIZE + /* User string */ \
|
|
TESTALLOC_STACKSIZE /* backtrace() stack */ \
|
|
)
|
|
|
|
|
|
/*
|
|
** For keeping track of the number of mallocs and frees. This
|
|
** is used to check for memory leaks. The iMallocFail and iMallocReset
|
|
** values are used to simulate malloc() failures during testing in
|
|
** order to verify that the library correctly handles an out-of-memory
|
|
** condition.
|
|
*/
|
|
int sqlite3_nMalloc; /* Number of sqliteMalloc() calls */
|
|
int sqlite3_nFree; /* Number of sqliteFree() calls */
|
|
int sqlite3_memUsed; /* TODO Total memory obtained from malloc */
|
|
int sqlite3_memMax; /* TODO Mem usage high-water mark */
|
|
int sqlite3_iMallocFail; /* Fail sqliteMalloc() after this many calls */
|
|
int sqlite3_iMallocReset = -1; /* When iMallocFail reaches 0, set to this */
|
|
|
|
void *sqlite3_pFirst = 0; /* Pointer to linked list of allocations */
|
|
int sqlite3_nMaxAlloc = 0; /* High water mark of ThreadData.nAlloc */
|
|
int sqlite3_mallocDisallowed = 0; /* assert() in sqlite3Malloc() if set */
|
|
int sqlite3_isFail = 0; /* True if all malloc calls should fail */
|
|
const char *sqlite3_zFile = 0; /* Filename to associate debug info with */
|
|
int sqlite3_iLine = 0; /* Line number for debug info */
|
|
|
|
/*
|
|
** Check for a simulated memory allocation failure. Return true if
|
|
** the failure should be simulated. Return false to proceed as normal.
|
|
*/
|
|
int sqlite3TestMallocFail(){
|
|
if( sqlite3_isFail ){
|
|
return 1;
|
|
}
|
|
if( sqlite3_iMallocFail>=0 ){
|
|
sqlite3_iMallocFail--;
|
|
if( sqlite3_iMallocFail==0 ){
|
|
sqlite3_iMallocFail = sqlite3_iMallocReset;
|
|
sqlite3_isFail = 1;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** The argument is a pointer returned by sqlite3OsMalloc() or xRealloc().
|
|
** assert() that the first and last (TESTALLOC_NGUARD*4) bytes are set to the
|
|
** values set by the applyGuards() function.
|
|
*/
|
|
static void checkGuards(u32 *p)
|
|
{
|
|
int i;
|
|
char *zAlloc = (char *)p;
|
|
char *z;
|
|
|
|
/* First set of guard words */
|
|
z = &zAlloc[TESTALLOC_OFFSET_GUARD1(p)];
|
|
for(i=0; i<TESTALLOC_NGUARD; i++){
|
|
assert(((u32 *)z)[i]==0xdead1122);
|
|
}
|
|
|
|
/* Second set of guard words */
|
|
z = &zAlloc[TESTALLOC_OFFSET_GUARD2(p)];
|
|
for(i=0; i<TESTALLOC_NGUARD; i++){
|
|
u32 guard = 0;
|
|
memcpy(&guard, &z[i*sizeof(u32)], sizeof(u32));
|
|
assert(guard==0xdead3344);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The argument is a pointer returned by sqlite3OsMalloc() or Realloc(). The
|
|
** first and last (TESTALLOC_NGUARD*4) bytes are set to known values for use as
|
|
** guard-posts.
|
|
*/
|
|
static void applyGuards(u32 *p)
|
|
{
|
|
int i;
|
|
char *z;
|
|
char *zAlloc = (char *)p;
|
|
|
|
/* First set of guard words */
|
|
z = &zAlloc[TESTALLOC_OFFSET_GUARD1(p)];
|
|
for(i=0; i<TESTALLOC_NGUARD; i++){
|
|
((u32 *)z)[i] = 0xdead1122;
|
|
}
|
|
|
|
/* Second set of guard words */
|
|
z = &zAlloc[TESTALLOC_OFFSET_GUARD2(p)];
|
|
for(i=0; i<TESTALLOC_NGUARD; i++){
|
|
static const int guard = 0xdead3344;
|
|
memcpy(&z[i*sizeof(u32)], &guard, sizeof(u32));
|
|
}
|
|
|
|
/* Line number */
|
|
z = &((char *)z)[TESTALLOC_NGUARD*sizeof(u32)]; /* Guard words */
|
|
z = &zAlloc[TESTALLOC_OFFSET_LINENUMBER(p)];
|
|
memcpy(z, &sqlite3_iLine, sizeof(u32));
|
|
|
|
/* File name */
|
|
z = &zAlloc[TESTALLOC_OFFSET_FILENAME(p)];
|
|
strncpy(z, sqlite3_zFile, TESTALLOC_FILESIZE);
|
|
z[TESTALLOC_FILESIZE - 1] = '\0';
|
|
|
|
/* User string */
|
|
z = &zAlloc[TESTALLOC_OFFSET_USER(p)];
|
|
z[0] = 0;
|
|
if( sqlite3_malloc_id ){
|
|
strncpy(z, sqlite3_malloc_id, TESTALLOC_USERSIZE);
|
|
z[TESTALLOC_USERSIZE-1] = 0;
|
|
}
|
|
|
|
/* backtrace() stack */
|
|
z = &zAlloc[TESTALLOC_OFFSET_STACK(p)];
|
|
backtrace((void **)z, TESTALLOC_STACKFRAMES);
|
|
|
|
/* Sanity check to make sure checkGuards() is working */
|
|
checkGuards(p);
|
|
}
|
|
|
|
/*
|
|
** The argument is a malloc()ed pointer as returned by the test-wrapper.
|
|
** Return a pointer to the Os level allocation.
|
|
*/
|
|
static void *getOsPointer(void *p)
|
|
{
|
|
char *z = (char *)p;
|
|
return (void *)(&z[-1 * TESTALLOC_OFFSET_DATA(p)]);
|
|
}
|
|
|
|
|
|
#if SQLITE_MEMDEBUG>1
|
|
/*
|
|
** The argument points to an Os level allocation. Link it into the threads list
|
|
** of allocations.
|
|
*/
|
|
static void linkAlloc(void *p){
|
|
void **pp = (void **)p;
|
|
pp[0] = 0;
|
|
pp[1] = sqlite3_pFirst;
|
|
if( sqlite3_pFirst ){
|
|
((void **)sqlite3_pFirst)[0] = p;
|
|
}
|
|
sqlite3_pFirst = p;
|
|
}
|
|
|
|
/*
|
|
** The argument points to an Os level allocation. Unlinke it from the threads
|
|
** list of allocations.
|
|
*/
|
|
static void unlinkAlloc(void *p)
|
|
{
|
|
void **pp = (void **)p;
|
|
if( p==sqlite3_pFirst ){
|
|
assert(!pp[0]);
|
|
assert(!pp[1] || ((void **)(pp[1]))[0]==p);
|
|
sqlite3_pFirst = pp[1];
|
|
if( sqlite3_pFirst ){
|
|
((void **)sqlite3_pFirst)[0] = 0;
|
|
}
|
|
}else{
|
|
void **pprev = pp[0];
|
|
void **pnext = pp[1];
|
|
assert(pprev);
|
|
assert(pprev[1]==p);
|
|
pprev[1] = (void *)pnext;
|
|
if( pnext ){
|
|
assert(pnext[0]==p);
|
|
pnext[0] = (void *)pprev;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Pointer p is a pointer to an OS level allocation that has just been
|
|
** realloc()ed. Set the list pointers that point to this entry to it's new
|
|
** location.
|
|
*/
|
|
static void relinkAlloc(void *p)
|
|
{
|
|
void **pp = (void **)p;
|
|
if( pp[0] ){
|
|
((void **)(pp[0]))[1] = p;
|
|
}else{
|
|
sqlite3_pFirst = p;
|
|
}
|
|
if( pp[1] ){
|
|
((void **)(pp[1]))[0] = p;
|
|
}
|
|
}
|
|
#else
|
|
#define linkAlloc(x)
|
|
#define relinkAlloc(x)
|
|
#define unlinkAlloc(x)
|
|
#endif
|
|
|
|
/*
|
|
** This function sets the result of the Tcl interpreter passed as an argument
|
|
** to a list containing an entry for each currently outstanding call made to
|
|
** sqliteMalloc and friends by the current thread. Each list entry is itself a
|
|
** list, consisting of the following (in order):
|
|
**
|
|
** * The number of bytes allocated
|
|
** * The __FILE__ macro at the time of the sqliteMalloc() call.
|
|
** * The __LINE__ macro ...
|
|
** * The value of the sqlite3_malloc_id variable ...
|
|
** * The output of backtrace() (if available) ...
|
|
**
|
|
** Todo: We could have a version of this function that outputs to stdout,
|
|
** to debug memory leaks when Tcl is not available.
|
|
*/
|
|
#if defined(TCLSH) && defined(SQLITE_DEBUG) && SQLITE_MEMDEBUG>1
|
|
#include <tcl.h>
|
|
int sqlite3OutstandingMallocs(Tcl_Interp *interp){
|
|
void *p;
|
|
Tcl_Obj *pRes = Tcl_NewObj();
|
|
Tcl_IncrRefCount(pRes);
|
|
|
|
|
|
for(p=sqlite3_pFirst; p; p=((void **)p)[1]){
|
|
Tcl_Obj *pEntry = Tcl_NewObj();
|
|
Tcl_Obj *pStack = Tcl_NewObj();
|
|
char *z;
|
|
u32 iLine;
|
|
int nBytes = sqlite3OsAllocationSize(p) - TESTALLOC_OVERHEAD;
|
|
char *zAlloc = (char *)p;
|
|
int i;
|
|
|
|
Tcl_ListObjAppendElement(0, pEntry, Tcl_NewIntObj(nBytes));
|
|
|
|
z = &zAlloc[TESTALLOC_OFFSET_FILENAME(p)];
|
|
Tcl_ListObjAppendElement(0, pEntry, Tcl_NewStringObj(z, -1));
|
|
|
|
z = &zAlloc[TESTALLOC_OFFSET_LINENUMBER(p)];
|
|
memcpy(&iLine, z, sizeof(u32));
|
|
Tcl_ListObjAppendElement(0, pEntry, Tcl_NewIntObj(iLine));
|
|
|
|
z = &zAlloc[TESTALLOC_OFFSET_USER(p)];
|
|
Tcl_ListObjAppendElement(0, pEntry, Tcl_NewStringObj(z, -1));
|
|
|
|
z = &zAlloc[TESTALLOC_OFFSET_STACK(p)];
|
|
for(i=0; i<TESTALLOC_STACKFRAMES; i++){
|
|
char zHex[128];
|
|
sprintf(zHex, "%p", ((void **)z)[i]);
|
|
Tcl_ListObjAppendElement(0, pStack, Tcl_NewStringObj(zHex, -1));
|
|
}
|
|
|
|
Tcl_ListObjAppendElement(0, pEntry, pStack);
|
|
Tcl_ListObjAppendElement(0, pRes, pEntry);
|
|
}
|
|
|
|
Tcl_ResetResult(interp);
|
|
Tcl_SetObjResult(interp, pRes);
|
|
Tcl_DecrRefCount(pRes);
|
|
return TCL_OK;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** This is the test layer's wrapper around sqlite3OsMalloc().
|
|
*/
|
|
static void * OSMALLOC(int n){
|
|
sqlite3OsEnterMutex();
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
sqlite3_nMaxAlloc =
|
|
MAX(sqlite3_nMaxAlloc, sqlite3ThreadDataReadOnly()->nAlloc);
|
|
#endif
|
|
assert( !sqlite3_mallocDisallowed );
|
|
if( !sqlite3TestMallocFail() ){
|
|
u32 *p;
|
|
p = (u32 *)sqlite3OsMalloc(n + TESTALLOC_OVERHEAD);
|
|
assert(p);
|
|
sqlite3_nMalloc++;
|
|
applyGuards(p);
|
|
linkAlloc(p);
|
|
sqlite3OsLeaveMutex();
|
|
return (void *)(&p[TESTALLOC_NGUARD + 2*sizeof(void *)/sizeof(u32)]);
|
|
}
|
|
sqlite3OsLeaveMutex();
|
|
return 0;
|
|
}
|
|
|
|
static int OSSIZEOF(void *p){
|
|
if( p ){
|
|
u32 *pOs = (u32 *)getOsPointer(p);
|
|
return sqlite3OsAllocationSize(pOs) - TESTALLOC_OVERHEAD;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** This is the test layer's wrapper around sqlite3OsFree(). The argument is a
|
|
** pointer to the space allocated for the application to use.
|
|
*/
|
|
static void OSFREE(void *pFree){
|
|
sqlite3OsEnterMutex();
|
|
u32 *p = (u32 *)getOsPointer(pFree); /* p points to Os level allocation */
|
|
checkGuards(p);
|
|
unlinkAlloc(p);
|
|
memset(pFree, 0x55, OSSIZEOF(pFree));
|
|
sqlite3OsFree(p);
|
|
sqlite3_nFree++;
|
|
sqlite3OsLeaveMutex();
|
|
}
|
|
|
|
/*
|
|
** This is the test layer's wrapper around sqlite3OsRealloc().
|
|
*/
|
|
static void * OSREALLOC(void *pRealloc, int n){
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
sqlite3_nMaxAlloc =
|
|
MAX(sqlite3_nMaxAlloc, sqlite3ThreadDataReadOnly()->nAlloc);
|
|
#endif
|
|
assert( !sqlite3_mallocDisallowed );
|
|
if( !sqlite3TestMallocFail() ){
|
|
u32 *p = (u32 *)getOsPointer(pRealloc);
|
|
checkGuards(p);
|
|
p = sqlite3OsRealloc(p, n + TESTALLOC_OVERHEAD);
|
|
applyGuards(p);
|
|
relinkAlloc(p);
|
|
return (void *)(&p[TESTALLOC_NGUARD + 2*sizeof(void *)/sizeof(u32)]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void OSMALLOC_FAILED(){
|
|
sqlite3_isFail = 0;
|
|
}
|
|
|
|
#else
|
|
/* Define macros to call the sqlite3OsXXX interface directly if
|
|
** the SQLITE_MEMDEBUG macro is not defined.
|
|
*/
|
|
#define OSMALLOC(x) sqlite3OsMalloc(x)
|
|
#define OSREALLOC(x,y) sqlite3OsRealloc(x,y)
|
|
#define OSFREE(x) sqlite3OsFree(x)
|
|
#define OSSIZEOF(x) sqlite3OsAllocationSize(x)
|
|
#define OSMALLOC_FAILED()
|
|
|
|
#endif /* SQLITE_MEMDEBUG */
|
|
/*
|
|
** End code for memory allocation system test layer.
|
|
**--------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
** This routine is called when we are about to allocate n additional bytes
|
|
** of memory. If the new allocation will put is over the soft allocation
|
|
** limit, then invoke sqlite3_release_memory() to try to release some
|
|
** memory before continuing with the allocation.
|
|
**
|
|
** This routine also makes sure that the thread-specific-data (TSD) has
|
|
** be allocated. If it has not and can not be allocated, then return
|
|
** false. The updateMemoryUsedCount() routine below will deallocate
|
|
** the TSD if it ought to be.
|
|
**
|
|
** If SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined, this routine is
|
|
** a no-op
|
|
*/
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
static int enforceSoftLimit(int n){
|
|
ThreadData *pTsd = sqlite3ThreadData();
|
|
if( pTsd==0 ){
|
|
return 0;
|
|
}
|
|
assert( pTsd->nAlloc>=0 );
|
|
if( n>0 && pTsd->nSoftHeapLimit>0 ){
|
|
while( pTsd->nAlloc+n>pTsd->nSoftHeapLimit && sqlite3_release_memory(n) ){}
|
|
}
|
|
return 1;
|
|
}
|
|
#else
|
|
# define enforceSoftLimit(X) 1
|
|
#endif
|
|
|
|
/*
|
|
** Update the count of total outstanding memory that is held in
|
|
** thread-specific-data (TSD). If after this update the TSD is
|
|
** no longer being used, then deallocate it.
|
|
**
|
|
** If SQLITE_ENABLE_MEMORY_MANAGEMENT is not defined, this routine is
|
|
** a no-op
|
|
*/
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
static void updateMemoryUsedCount(int n){
|
|
ThreadData *pTsd = sqlite3ThreadData();
|
|
if( pTsd ){
|
|
pTsd->nAlloc += n;
|
|
assert( pTsd->nAlloc>=0 );
|
|
if( pTsd->nAlloc==0 && pTsd->nSoftHeapLimit==0 ){
|
|
sqlite3ReleaseThreadData();
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
#define updateMemoryUsedCount(x) /* no-op */
|
|
#endif
|
|
|
|
/*
|
|
** Allocate and return N bytes of uninitialised memory by calling
|
|
** sqlite3OsMalloc(). If the Malloc() call fails, attempt to free memory
|
|
** by calling sqlite3_release_memory().
|
|
*/
|
|
void *sqlite3MallocRaw(int n, int doMemManage){
|
|
void *p = 0;
|
|
if( n>0 && !sqlite3MallocFailed() && (!doMemManage || enforceSoftLimit(n)) ){
|
|
while( (p = OSMALLOC(n))==0 && sqlite3_release_memory(n) ){}
|
|
if( !p ){
|
|
sqlite3FailedMalloc();
|
|
OSMALLOC_FAILED();
|
|
}else if( doMemManage ){
|
|
updateMemoryUsedCount(OSSIZEOF(p));
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Resize the allocation at p to n bytes by calling sqlite3OsRealloc(). The
|
|
** pointer to the new allocation is returned. If the Realloc() call fails,
|
|
** attempt to free memory by calling sqlite3_release_memory().
|
|
*/
|
|
void *sqlite3Realloc(void *p, int n){
|
|
if( sqlite3MallocFailed() ){
|
|
return 0;
|
|
}
|
|
|
|
if( !p ){
|
|
return sqlite3Malloc(n, 1);
|
|
}else{
|
|
void *np = 0;
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
int origSize = OSSIZEOF(p);
|
|
#endif
|
|
if( enforceSoftLimit(n - origSize) ){
|
|
while( (np = OSREALLOC(p, n))==0 && sqlite3_release_memory(n) ){}
|
|
if( !np ){
|
|
sqlite3FailedMalloc();
|
|
OSMALLOC_FAILED();
|
|
}else{
|
|
updateMemoryUsedCount(OSSIZEOF(np) - origSize);
|
|
}
|
|
}
|
|
return np;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Free the memory pointed to by p. p must be either a NULL pointer or a
|
|
** value returned by a previous call to sqlite3Malloc() or sqlite3Realloc().
|
|
*/
|
|
void sqlite3FreeX(void *p){
|
|
if( p ){
|
|
updateMemoryUsedCount(0 - OSSIZEOF(p));
|
|
OSFREE(p);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** A version of sqliteMalloc() that is always a function, not a macro.
|
|
** Currently, this is used only to alloc to allocate the parser engine.
|
|
*/
|
|
void *sqlite3MallocX(int n){
|
|
return sqliteMalloc(n);
|
|
}
|
|
|
|
/*
|
|
** sqlite3Malloc
|
|
** sqlite3ReallocOrFree
|
|
**
|
|
** These two are implemented as wrappers around sqlite3MallocRaw(),
|
|
** sqlite3Realloc() and sqlite3Free().
|
|
*/
|
|
void *sqlite3Malloc(int n, int doMemManage){
|
|
void *p = sqlite3MallocRaw(n, doMemManage);
|
|
if( p ){
|
|
memset(p, 0, n);
|
|
}
|
|
return p;
|
|
}
|
|
void sqlite3ReallocOrFree(void **pp, int n){
|
|
void *p = sqlite3Realloc(*pp, n);
|
|
if( !p ){
|
|
sqlite3FreeX(*pp);
|
|
}
|
|
*pp = p;
|
|
}
|
|
|
|
/*
|
|
** sqlite3ThreadSafeMalloc() and sqlite3ThreadSafeFree() are used in those
|
|
** rare scenarios where sqlite may allocate memory in one thread and free
|
|
** it in another. They are exactly the same as sqlite3Malloc() and
|
|
** sqlite3Free() except that:
|
|
**
|
|
** * The allocated memory is not included in any calculations with
|
|
** respect to the soft-heap-limit, and
|
|
**
|
|
** * sqlite3ThreadSafeMalloc() must be matched with ThreadSafeFree(),
|
|
** not sqlite3Free(). Calling sqlite3Free() on memory obtained from
|
|
** ThreadSafeMalloc() will cause an error somewhere down the line.
|
|
*/
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
void *sqlite3ThreadSafeMalloc(int n){
|
|
ENTER_MALLOC;
|
|
return sqlite3Malloc(n, 0);
|
|
}
|
|
void sqlite3ThreadSafeFree(void *p){
|
|
ENTER_MALLOC;
|
|
if( p ){
|
|
OSFREE(p);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Return the number of bytes allocated at location p. p must be either
|
|
** a NULL pointer (in which case 0 is returned) or a pointer returned by
|
|
** sqlite3Malloc(), sqlite3Realloc() or sqlite3ReallocOrFree().
|
|
**
|
|
** The number of bytes allocated does not include any overhead inserted by
|
|
** any malloc() wrapper functions that may be called. So the value returned
|
|
** is the number of bytes that were available to SQLite using pointer p,
|
|
** regardless of how much memory was actually allocated.
|
|
*/
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
int sqlite3AllocSize(void *p){
|
|
return OSSIZEOF(p);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Make a copy of a string in memory obtained from sqliteMalloc(). These
|
|
** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
|
|
** is because when memory debugging is turned on, these two functions are
|
|
** called via macros that record the current file and line number in the
|
|
** ThreadData structure.
|
|
*/
|
|
char *sqlite3StrDup(const char *z){
|
|
char *zNew;
|
|
if( z==0 ) return 0;
|
|
zNew = sqlite3MallocRaw(strlen(z)+1, 1);
|
|
if( zNew ) strcpy(zNew, z);
|
|
return zNew;
|
|
}
|
|
char *sqlite3StrNDup(const char *z, int n){
|
|
char *zNew;
|
|
if( z==0 ) return 0;
|
|
zNew = sqlite3MallocRaw(n+1, 1);
|
|
if( zNew ){
|
|
memcpy(zNew, z, n);
|
|
zNew[n] = 0;
|
|
}
|
|
return zNew;
|
|
}
|
|
|
|
/*
|
|
** Create a string from the 2nd and subsequent arguments (up to the
|
|
** first NULL argument), store the string in memory obtained from
|
|
** sqliteMalloc() and make the pointer indicated by the 1st argument
|
|
** point to that string. The 1st argument must either be NULL or
|
|
** point to memory obtained from sqliteMalloc().
|
|
*/
|
|
void sqlite3SetString(char **pz, ...){
|
|
va_list ap;
|
|
int nByte;
|
|
const char *z;
|
|
char *zResult;
|
|
|
|
if( pz==0 ) return;
|
|
nByte = 1;
|
|
va_start(ap, pz);
|
|
while( (z = va_arg(ap, const char*))!=0 ){
|
|
nByte += strlen(z);
|
|
}
|
|
va_end(ap);
|
|
sqliteFree(*pz);
|
|
*pz = zResult = sqliteMallocRaw( nByte );
|
|
if( zResult==0 ){
|
|
return;
|
|
}
|
|
*zResult = 0;
|
|
va_start(ap, pz);
|
|
while( (z = va_arg(ap, const char*))!=0 ){
|
|
strcpy(zResult, z);
|
|
zResult += strlen(zResult);
|
|
}
|
|
va_end(ap);
|
|
}
|
|
|
|
/*
|
|
** Set the most recent error code and error string for the sqlite
|
|
** handle "db". The error code is set to "err_code".
|
|
**
|
|
** If it is not NULL, string zFormat specifies the format of the
|
|
** error string in the style of the printf functions: The following
|
|
** format characters are allowed:
|
|
**
|
|
** %s Insert a string
|
|
** %z A string that should be freed after use
|
|
** %d Insert an integer
|
|
** %T Insert a token
|
|
** %S Insert the first element of a SrcList
|
|
**
|
|
** zFormat and any string tokens that follow it are assumed to be
|
|
** encoded in UTF-8.
|
|
**
|
|
** To clear the most recent error for sqlite handle "db", sqlite3Error
|
|
** should be called with err_code set to SQLITE_OK and zFormat set
|
|
** to NULL.
|
|
*/
|
|
void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
|
|
if( db && (db->pErr || (db->pErr = sqlite3ValueNew())!=0) ){
|
|
db->errCode = err_code;
|
|
if( zFormat ){
|
|
char *z;
|
|
va_list ap;
|
|
va_start(ap, zFormat);
|
|
z = sqlite3VMPrintf(zFormat, ap);
|
|
va_end(ap);
|
|
sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, sqlite3FreeX);
|
|
}else{
|
|
sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Add an error message to pParse->zErrMsg and increment pParse->nErr.
|
|
** The following formatting characters are allowed:
|
|
**
|
|
** %s Insert a string
|
|
** %z A string that should be freed after use
|
|
** %d Insert an integer
|
|
** %T Insert a token
|
|
** %S Insert the first element of a SrcList
|
|
**
|
|
** This function should be used to report any error that occurs whilst
|
|
** compiling an SQL statement (i.e. within sqlite3_prepare()). The
|
|
** last thing the sqlite3_prepare() function does is copy the error
|
|
** stored by this function into the database handle using sqlite3Error().
|
|
** Function sqlite3Error() should be used during statement execution
|
|
** (sqlite3_step() etc.).
|
|
*/
|
|
void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
|
|
va_list ap;
|
|
pParse->nErr++;
|
|
sqliteFree(pParse->zErrMsg);
|
|
va_start(ap, zFormat);
|
|
pParse->zErrMsg = sqlite3VMPrintf(zFormat, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
/*
|
|
** Clear the error message in pParse, if any
|
|
*/
|
|
void sqlite3ErrorClear(Parse *pParse){
|
|
sqliteFree(pParse->zErrMsg);
|
|
pParse->zErrMsg = 0;
|
|
pParse->nErr = 0;
|
|
}
|
|
|
|
/*
|
|
** Convert an SQL-style quoted string into a normal string by removing
|
|
** the quote characters. The conversion is done in-place. If the
|
|
** input does not begin with a quote character, then this routine
|
|
** is a no-op.
|
|
**
|
|
** 2002-Feb-14: This routine is extended to remove MS-Access style
|
|
** brackets from around identifers. For example: "[a-b-c]" becomes
|
|
** "a-b-c".
|
|
*/
|
|
void sqlite3Dequote(char *z){
|
|
int quote;
|
|
int i, j;
|
|
if( z==0 ) return;
|
|
quote = z[0];
|
|
switch( quote ){
|
|
case '\'': break;
|
|
case '"': break;
|
|
case '`': break; /* For MySQL compatibility */
|
|
case '[': quote = ']'; break; /* For MS SqlServer compatibility */
|
|
default: return;
|
|
}
|
|
for(i=1, j=0; z[i]; i++){
|
|
if( z[i]==quote ){
|
|
if( z[i+1]==quote ){
|
|
z[j++] = quote;
|
|
i++;
|
|
}else{
|
|
z[j++] = 0;
|
|
break;
|
|
}
|
|
}else{
|
|
z[j++] = z[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* An array to map all upper-case characters into their corresponding
|
|
** lower-case character.
|
|
*/
|
|
const unsigned char sqlite3UpperToLower[] = {
|
|
#ifdef SQLITE_ASCII
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
|
|
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
|
|
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
|
|
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
|
|
104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
|
|
122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
|
|
108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
|
|
126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
|
|
144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
|
|
162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
|
|
180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
|
|
198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
|
|
216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
|
|
234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
|
|
252,253,254,255
|
|
#endif
|
|
#ifdef SQLITE_EBCDIC
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */
|
|
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */
|
|
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */
|
|
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */
|
|
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */
|
|
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */
|
|
96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */
|
|
112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */
|
|
128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */
|
|
144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */
|
|
160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */
|
|
176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */
|
|
192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */
|
|
208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */
|
|
224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */
|
|
239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */
|
|
#endif
|
|
};
|
|
#define UpperToLower sqlite3UpperToLower
|
|
|
|
/*
|
|
** Some systems have stricmp(). Others have strcasecmp(). Because
|
|
** there is no consistency, we will define our own.
|
|
*/
|
|
int sqlite3StrICmp(const char *zLeft, const char *zRight){
|
|
register unsigned char *a, *b;
|
|
a = (unsigned char *)zLeft;
|
|
b = (unsigned char *)zRight;
|
|
while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
|
return UpperToLower[*a] - UpperToLower[*b];
|
|
}
|
|
int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){
|
|
register unsigned char *a, *b;
|
|
a = (unsigned char *)zLeft;
|
|
b = (unsigned char *)zRight;
|
|
while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
|
return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if z is a pure numeric string. Return FALSE if the
|
|
** string contains any character which is not part of a number. If
|
|
** the string is numeric and contains the '.' character, set *realnum
|
|
** to TRUE (otherwise FALSE).
|
|
**
|
|
** An empty string is considered non-numeric.
|
|
*/
|
|
int sqlite3IsNumber(const char *z, int *realnum, u8 enc){
|
|
int incr = (enc==SQLITE_UTF8?1:2);
|
|
if( enc==SQLITE_UTF16BE ) z++;
|
|
if( *z=='-' || *z=='+' ) z += incr;
|
|
if( !isdigit(*(u8*)z) ){
|
|
return 0;
|
|
}
|
|
z += incr;
|
|
if( realnum ) *realnum = 0;
|
|
while( isdigit(*(u8*)z) ){ z += incr; }
|
|
if( *z=='.' ){
|
|
z += incr;
|
|
if( !isdigit(*(u8*)z) ) return 0;
|
|
while( isdigit(*(u8*)z) ){ z += incr; }
|
|
if( realnum ) *realnum = 1;
|
|
}
|
|
if( *z=='e' || *z=='E' ){
|
|
z += incr;
|
|
if( *z=='+' || *z=='-' ) z += incr;
|
|
if( !isdigit(*(u8*)z) ) return 0;
|
|
while( isdigit(*(u8*)z) ){ z += incr; }
|
|
if( realnum ) *realnum = 1;
|
|
}
|
|
return *z==0;
|
|
}
|
|
|
|
/*
|
|
** The string z[] is an ascii representation of a real number.
|
|
** Convert this string to a double.
|
|
**
|
|
** This routine assumes that z[] really is a valid number. If it
|
|
** is not, the result is undefined.
|
|
**
|
|
** This routine is used instead of the library atof() function because
|
|
** the library atof() might want to use "," as the decimal point instead
|
|
** of "." depending on how locale is set. But that would cause problems
|
|
** for SQL. So this routine always uses "." regardless of locale.
|
|
*/
|
|
int sqlite3AtoF(const char *z, double *pResult){
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
int sign = 1;
|
|
const char *zBegin = z;
|
|
LONGDOUBLE_TYPE v1 = 0.0;
|
|
while( isspace(*z) ) z++;
|
|
if( *z=='-' ){
|
|
sign = -1;
|
|
z++;
|
|
}else if( *z=='+' ){
|
|
z++;
|
|
}
|
|
while( isdigit(*(u8*)z) ){
|
|
v1 = v1*10.0 + (*z - '0');
|
|
z++;
|
|
}
|
|
if( *z=='.' ){
|
|
LONGDOUBLE_TYPE divisor = 1.0;
|
|
z++;
|
|
while( isdigit(*(u8*)z) ){
|
|
v1 = v1*10.0 + (*z - '0');
|
|
divisor *= 10.0;
|
|
z++;
|
|
}
|
|
v1 /= divisor;
|
|
}
|
|
if( *z=='e' || *z=='E' ){
|
|
int esign = 1;
|
|
int eval = 0;
|
|
LONGDOUBLE_TYPE scale = 1.0;
|
|
z++;
|
|
if( *z=='-' ){
|
|
esign = -1;
|
|
z++;
|
|
}else if( *z=='+' ){
|
|
z++;
|
|
}
|
|
while( isdigit(*(u8*)z) ){
|
|
eval = eval*10 + *z - '0';
|
|
z++;
|
|
}
|
|
while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; }
|
|
while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; }
|
|
while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; }
|
|
while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; }
|
|
if( esign<0 ){
|
|
v1 /= scale;
|
|
}else{
|
|
v1 *= scale;
|
|
}
|
|
}
|
|
*pResult = sign<0 ? -v1 : v1;
|
|
return z - zBegin;
|
|
#else
|
|
return sqlite3atoi64(z, pResult);
|
|
#endif /* SQLITE_OMIT_FLOATING_POINT */
|
|
}
|
|
|
|
/*
|
|
** Return TRUE if zNum is a 64-bit signed integer and write
|
|
** the value of the integer into *pNum. If zNum is not an integer
|
|
** or is an integer that is too large to be expressed with 64 bits,
|
|
** then return false. If n>0 and the integer is string is not
|
|
** exactly n bytes long, return false.
|
|
**
|
|
** When this routine was originally written it dealt with only
|
|
** 32-bit numbers. At that time, it was much faster than the
|
|
** atoi() library routine in RedHat 7.2.
|
|
*/
|
|
int sqlite3atoi64(const char *zNum, i64 *pNum){
|
|
i64 v = 0;
|
|
int neg;
|
|
int i, c;
|
|
while( isspace(*zNum) ) zNum++;
|
|
if( *zNum=='-' ){
|
|
neg = 1;
|
|
zNum++;
|
|
}else if( *zNum=='+' ){
|
|
neg = 0;
|
|
zNum++;
|
|
}else{
|
|
neg = 0;
|
|
}
|
|
for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
|
|
v = v*10 + c - '0';
|
|
}
|
|
*pNum = neg ? -v : v;
|
|
return c==0 && i>0 &&
|
|
(i<19 || (i==19 && memcmp(zNum,"9223372036854775807",19)<=0));
|
|
}
|
|
|
|
/*
|
|
** The string zNum represents an integer. There might be some other
|
|
** information following the integer too, but that part is ignored.
|
|
** If the integer that the prefix of zNum represents will fit in a
|
|
** 32-bit signed integer, return TRUE. Otherwise return FALSE.
|
|
**
|
|
** This routine returns FALSE for the string -2147483648 even that
|
|
** that number will in fact fit in a 32-bit integer. But positive
|
|
** 2147483648 will not fit in 32 bits. So it seems safer to return
|
|
** false.
|
|
*/
|
|
static int sqlite3FitsIn32Bits(const char *zNum){
|
|
int i, c;
|
|
if( *zNum=='-' || *zNum=='+' ) zNum++;
|
|
for(i=0; (c=zNum[i])>='0' && c<='9'; i++){}
|
|
return i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0);
|
|
}
|
|
|
|
/*
|
|
** If zNum represents an integer that will fit in 32-bits, then set
|
|
** *pValue to that integer and return true. Otherwise return false.
|
|
*/
|
|
int sqlite3GetInt32(const char *zNum, int *pValue){
|
|
if( sqlite3FitsIn32Bits(zNum) ){
|
|
*pValue = atoi(zNum);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** The string zNum represents an integer. There might be some other
|
|
** information following the integer too, but that part is ignored.
|
|
** If the integer that the prefix of zNum represents will fit in a
|
|
** 64-bit signed integer, return TRUE. Otherwise return FALSE.
|
|
**
|
|
** This routine returns FALSE for the string -9223372036854775808 even that
|
|
** that number will, in theory fit in a 64-bit integer. Positive
|
|
** 9223373036854775808 will not fit in 64 bits. So it seems safer to return
|
|
** false.
|
|
*/
|
|
int sqlite3FitsIn64Bits(const char *zNum){
|
|
int i, c;
|
|
if( *zNum=='-' || *zNum=='+' ) zNum++;
|
|
for(i=0; (c=zNum[i])>='0' && c<='9'; i++){}
|
|
return i<19 || (i==19 && memcmp(zNum,"9223372036854775807",19)<=0);
|
|
}
|
|
|
|
|
|
/*
|
|
** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.
|
|
** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN
|
|
** when this routine is called.
|
|
**
|
|
** This routine is a attempt to detect if two threads use the
|
|
** same sqlite* pointer at the same time. There is a race
|
|
** condition so it is possible that the error is not detected.
|
|
** But usually the problem will be seen. The result will be an
|
|
** error which can be used to debug the application that is
|
|
** using SQLite incorrectly.
|
|
**
|
|
** Ticket #202: If db->magic is not a valid open value, take care not
|
|
** to modify the db structure at all. It could be that db is a stale
|
|
** pointer. In other words, it could be that there has been a prior
|
|
** call to sqlite3_close(db) and db has been deallocated. And we do
|
|
** not want to write into deallocated memory.
|
|
*/
|
|
int sqlite3SafetyOn(sqlite3 *db){
|
|
if( db->magic==SQLITE_MAGIC_OPEN ){
|
|
db->magic = SQLITE_MAGIC_BUSY;
|
|
return 0;
|
|
}else if( db->magic==SQLITE_MAGIC_BUSY ){
|
|
db->magic = SQLITE_MAGIC_ERROR;
|
|
db->flags |= SQLITE_Interrupt;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
|
|
** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
|
|
** when this routine is called.
|
|
*/
|
|
int sqlite3SafetyOff(sqlite3 *db){
|
|
if( db->magic==SQLITE_MAGIC_BUSY ){
|
|
db->magic = SQLITE_MAGIC_OPEN;
|
|
return 0;
|
|
}else if( db->magic==SQLITE_MAGIC_OPEN ){
|
|
db->magic = SQLITE_MAGIC_ERROR;
|
|
db->flags |= SQLITE_Interrupt;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Check to make sure we have a valid db pointer. This test is not
|
|
** foolproof but it does provide some measure of protection against
|
|
** misuse of the interface such as passing in db pointers that are
|
|
** NULL or which have been previously closed. If this routine returns
|
|
** TRUE it means that the db pointer is invalid and should not be
|
|
** dereferenced for any reason. The calling function should invoke
|
|
** SQLITE_MISUSE immediately.
|
|
*/
|
|
int sqlite3SafetyCheck(sqlite3 *db){
|
|
int magic;
|
|
if( db==0 ) return 1;
|
|
magic = db->magic;
|
|
if( magic!=SQLITE_MAGIC_CLOSED &&
|
|
magic!=SQLITE_MAGIC_OPEN &&
|
|
magic!=SQLITE_MAGIC_BUSY ) return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** The variable-length integer encoding is as follows:
|
|
**
|
|
** KEY:
|
|
** A = 0xxxxxxx 7 bits of data and one flag bit
|
|
** B = 1xxxxxxx 7 bits of data and one flag bit
|
|
** C = xxxxxxxx 8 bits of data
|
|
**
|
|
** 7 bits - A
|
|
** 14 bits - BA
|
|
** 21 bits - BBA
|
|
** 28 bits - BBBA
|
|
** 35 bits - BBBBA
|
|
** 42 bits - BBBBBA
|
|
** 49 bits - BBBBBBA
|
|
** 56 bits - BBBBBBBA
|
|
** 64 bits - BBBBBBBBC
|
|
*/
|
|
|
|
/*
|
|
** Write a 64-bit variable-length integer to memory starting at p[0].
|
|
** The length of data write will be between 1 and 9 bytes. The number
|
|
** of bytes written is returned.
|
|
**
|
|
** A variable-length integer consists of the lower 7 bits of each byte
|
|
** for all bytes that have the 8th bit set and one byte with the 8th
|
|
** bit clear. Except, if we get to the 9th byte, it stores the full
|
|
** 8 bits and is the last byte.
|
|
*/
|
|
int sqlite3PutVarint(unsigned char *p, u64 v){
|
|
int i, j, n;
|
|
u8 buf[10];
|
|
if( v & (((u64)0xff000000)<<32) ){
|
|
p[8] = (unsigned char)v;
|
|
v >>= 8;
|
|
for(i=7; i>=0; i--){
|
|
p[i] = (unsigned char)((v & 0x7f) | 0x80);
|
|
v >>= 7;
|
|
}
|
|
return 9;
|
|
}
|
|
n = 0;
|
|
do{
|
|
buf[n++] = (u8)((v & 0x7f) | 0x80);
|
|
v >>= 7;
|
|
}while( v!=0 );
|
|
buf[0] &= 0x7f;
|
|
assert( n<=9 );
|
|
for(i=0, j=n-1; j>=0; j--, i++){
|
|
p[i] = buf[j];
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Read a 64-bit variable-length integer from memory starting at p[0].
|
|
** Return the number of bytes read. The value is stored in *v.
|
|
*/
|
|
int sqlite3GetVarint(const unsigned char *p, u64 *v){
|
|
u32 x;
|
|
u64 x64;
|
|
int n;
|
|
unsigned char c;
|
|
if( ((c = p[0]) & 0x80)==0 ){
|
|
*v = c;
|
|
return 1;
|
|
}
|
|
x = c & 0x7f;
|
|
if( ((c = p[1]) & 0x80)==0 ){
|
|
*v = (x<<7) | c;
|
|
return 2;
|
|
}
|
|
x = (x<<7) | (c&0x7f);
|
|
if( ((c = p[2]) & 0x80)==0 ){
|
|
*v = (x<<7) | c;
|
|
return 3;
|
|
}
|
|
x = (x<<7) | (c&0x7f);
|
|
if( ((c = p[3]) & 0x80)==0 ){
|
|
*v = (x<<7) | c;
|
|
return 4;
|
|
}
|
|
x64 = (x<<7) | (c&0x7f);
|
|
n = 4;
|
|
do{
|
|
c = p[n++];
|
|
if( n==9 ){
|
|
x64 = (x64<<8) | c;
|
|
break;
|
|
}
|
|
x64 = (x64<<7) | (c&0x7f);
|
|
}while( (c & 0x80)!=0 );
|
|
*v = x64;
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Read a 32-bit variable-length integer from memory starting at p[0].
|
|
** Return the number of bytes read. The value is stored in *v.
|
|
*/
|
|
int sqlite3GetVarint32(const unsigned char *p, u32 *v){
|
|
u32 x;
|
|
int n;
|
|
unsigned char c;
|
|
if( ((signed char*)p)[0]>=0 ){
|
|
*v = p[0];
|
|
return 1;
|
|
}
|
|
x = p[0] & 0x7f;
|
|
if( ((signed char*)p)[1]>=0 ){
|
|
*v = (x<<7) | p[1];
|
|
return 2;
|
|
}
|
|
x = (x<<7) | (p[1] & 0x7f);
|
|
n = 2;
|
|
do{
|
|
x = (x<<7) | ((c = p[n++])&0x7f);
|
|
}while( (c & 0x80)!=0 && n<9 );
|
|
*v = x;
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Return the number of bytes that will be needed to store the given
|
|
** 64-bit integer.
|
|
*/
|
|
int sqlite3VarintLen(u64 v){
|
|
int i = 0;
|
|
do{
|
|
i++;
|
|
v >>= 7;
|
|
}while( v!=0 && i<9 );
|
|
return i;
|
|
}
|
|
|
|
#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) \
|
|
|| defined(SQLITE_TEST)
|
|
/*
|
|
** Translate a single byte of Hex into an integer.
|
|
*/
|
|
static int hexToInt(int h){
|
|
if( h>='0' && h<='9' ){
|
|
return h - '0';
|
|
}else if( h>='a' && h<='f' ){
|
|
return h - 'a' + 10;
|
|
}else{
|
|
assert( h>='A' && h<='F' );
|
|
return h - 'A' + 10;
|
|
}
|
|
}
|
|
#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC || SQLITE_TEST */
|
|
|
|
#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
|
|
/*
|
|
** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
|
|
** value. Return a pointer to its binary value. Space to hold the
|
|
** binary value has been obtained from malloc and must be freed by
|
|
** the calling routine.
|
|
*/
|
|
void *sqlite3HexToBlob(const char *z){
|
|
char *zBlob;
|
|
int i;
|
|
int n = strlen(z);
|
|
if( n%2 ) return 0;
|
|
|
|
zBlob = (char *)sqliteMalloc(n/2);
|
|
for(i=0; i<n; i+=2){
|
|
zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]);
|
|
}
|
|
return zBlob;
|
|
}
|
|
#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
|
|
|
|
#if defined(SQLITE_TEST)
|
|
/*
|
|
** Convert text generated by the "%p" conversion format back into
|
|
** a pointer.
|
|
*/
|
|
void *sqlite3TextToPtr(const char *z){
|
|
void *p;
|
|
u64 v;
|
|
u32 v2;
|
|
if( z[0]=='0' && z[1]=='x' ){
|
|
z += 2;
|
|
}
|
|
v = 0;
|
|
while( *z ){
|
|
v = (v<<4) + hexToInt(*z);
|
|
z++;
|
|
}
|
|
if( sizeof(p)==sizeof(v) ){
|
|
p = *(void**)&v;
|
|
}else{
|
|
assert( sizeof(p)==sizeof(v2) );
|
|
v2 = (u32)v;
|
|
p = *(void**)&v2;
|
|
}
|
|
return p;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Return a pointer to the ThreadData associated with the calling thread.
|
|
*/
|
|
ThreadData *sqlite3ThreadData(){
|
|
ThreadData *p = (ThreadData*)sqlite3OsThreadSpecificData(1);
|
|
if( !p ){
|
|
sqlite3FailedMalloc();
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to the ThreadData associated with the calling thread.
|
|
** If no ThreadData has been allocated to this thread yet, return a pointer
|
|
** to a substitute ThreadData structure that is all zeros.
|
|
*/
|
|
const ThreadData *sqlite3ThreadDataReadOnly(){
|
|
static const ThreadData zeroData = {0}; /* Initializer to silence warnings
|
|
** from broken compilers */
|
|
const ThreadData *pTd = sqlite3OsThreadSpecificData(0);
|
|
return pTd ? pTd : &zeroData;
|
|
}
|
|
|
|
/*
|
|
** Check to see if the ThreadData for this thread is all zero. If it
|
|
** is, then deallocate it.
|
|
*/
|
|
void sqlite3ReleaseThreadData(){
|
|
sqlite3OsThreadSpecificData(-1);
|
|
}
|
|
|
|
/*
|
|
** This function must be called before exiting any API function (i.e.
|
|
** returning control to the user) that has called sqlite3Malloc or
|
|
** sqlite3Realloc.
|
|
**
|
|
** The returned value is normally a copy of the second argument to this
|
|
** function. However, if a malloc() failure has occured since the previous
|
|
** invocation SQLITE_NOMEM is returned instead.
|
|
**
|
|
** If the first argument, db, is not NULL and a malloc() error has occured,
|
|
** then the connection error-code (the value returned by sqlite3_errcode())
|
|
** is set to SQLITE_NOMEM.
|
|
*/
|
|
static int mallocHasFailed = 0;
|
|
int sqlite3ApiExit(sqlite3* db, int rc){
|
|
if( sqlite3MallocFailed() ){
|
|
mallocHasFailed = 0;
|
|
sqlite3OsLeaveMutex();
|
|
sqlite3Error(db, SQLITE_NOMEM, 0);
|
|
rc = SQLITE_NOMEM;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return true is a malloc has failed in this thread since the last call
|
|
** to sqlite3ApiExit(), or false otherwise.
|
|
*/
|
|
int sqlite3MallocFailed(){
|
|
return (mallocHasFailed && sqlite3OsInMutex(1));
|
|
}
|
|
|
|
/*
|
|
** Set the "malloc has failed" condition to true for this thread.
|
|
*/
|
|
void sqlite3FailedMalloc(){
|
|
sqlite3OsEnterMutex();
|
|
assert( mallocHasFailed==0 );
|
|
mallocHasFailed = 1;
|
|
}
|
|
|
|
#ifdef SQLITE_MEMDEBUG
|
|
/*
|
|
** This function sets a flag in the thread-specific-data structure that will
|
|
** cause an assert to fail if sqliteMalloc() or sqliteRealloc() is called.
|
|
*/
|
|
void sqlite3MallocDisallow(){
|
|
assert( sqlite3_mallocDisallowed>=0 );
|
|
sqlite3_mallocDisallowed++;
|
|
}
|
|
|
|
/*
|
|
** This function clears the flag set in the thread-specific-data structure set
|
|
** by sqlite3MallocDisallow().
|
|
*/
|
|
void sqlite3MallocAllow(){
|
|
assert( sqlite3_mallocDisallowed>0 );
|
|
sqlite3_mallocDisallowed--;
|
|
}
|
|
#endif
|