amxmodx/amxmodx/amxjitsn.asm

2624 lines
69 KiB
NASM
Executable File

; AMXJITSN.ASM: Just-In-Time compiler for the Abstract Machine of the "Pawn"
; scripting language
; (C) 1999-2000, Marc Peter; beta version; provided AS IS WITHOUT ANY WARRANTIES
; I reached >155 million instr./sec on my AMD K6-2/366 with the Hanoi "bench"
; (27 disks, no output, DOS4/GW under Win95) with this implementation of the
; JIT compiler.
; BUILD NOTE: Use nasm 0.97.x or 0.98.x with the options below.
; ----------------
; Windows : nasm -O2 -f win32 -o amxjitsn.obj amxjitsn.asm
; Linux : nasm -O2 -f elf -o amxjitsn.o amxjitsn.asm
; OS X : nasm -O2 -f macho -o amxjitsn-darwin.o amxjitsn.asm
; ----------------
; If nasm 2.x must be used, replace -O2 with -O0.
; NOTE 1:
; There is only one pass implemented in this version. This means there is no
; way of knowing the size of the compiled code before it has actually been com-
; piled. So the only chance the caller has, is to count the number of opcodes
; (in amx_BrowseRelocate()) and multiply this count with a "safe" factor to
; obtain a size value big enough to hold the entire code (and data, including
; the stack and heap, after adding their sizes). Afterwards it can realloc()
; this memory block to the actually needed smaller size.
; NOTE 2:
; The compiler destroys the opcode addresses of the given source by storing the
; respective compiled code's addresses there for the final address relocation
; step.
; NOTE 3:
; Although the Pawn compiler doesn't generate the LCTRL, SCTRL and CALL.I
; instructions, I have to tell that they don't work as expected in a JIT
; compiled program, because there is no easy way of transforming AMX code
; addresses and JIT translated ones. This might be fixed in a future version.
; NOTE 4:
; Stack Pointer issues (by David Anderson)
; The JIT was changed recently so it no longer uses ESP as a general purpose
; register (GRP), because it can conflict with threading/signal systems which
; rely on the stack pointer being in-tact to find thread-ids. My fix for this
; was to keep esp safe, but save the stack pointer in 'ecx'. As such, ecx is no
; longer the CIP or scratch register, it is the save point for pieces of the AMX
; structure on the x86 stack.
; This means that the optimization of the JIT has changed, as every amx stack
; push call now takes two operations instead of one (same for pop), and pushing
; addresses is 4 instructions instead of 1.
; As of this moment I don't see a better way around it, but the sacrifice for
; having pthread-safe code was deemed to be necessary.
; NOTE 5:
; NX ("No eXecute") and XD (eXecution Denied) bits
; (by Thiadmer Riemersma)
;
; AMD defined a bit "No eXecute" for the page table entries (for its 64-bit
; processors) and Intel came with the same design, but calling it differently.
; The purpose is to make "buffer overrun" security holes impossible, or at least
; very, very difficult, by marking the stack and the heap as memory regions
; such that an attempt to execute processor instructions will cause a processor
; exception (of course, a buffer overrun that is not explictly handled will then
; crash the application --instead of executing the rogue code).
;
; For JIT compilers, this has the impact that you are not allowed to execute the
; code that the JIT has generated. To do that, you must adjust the attributes
; for the memory page. For Microsoft Windows, you can use VirtualAlloc() to
; allocate a memory block with the appropriate fags; on Linux (with a recent
; kernel), you would use vmalloc_exec(). Microsoft Windows also offers the
; function VirtualProtect() to change the page attributes of an existing memory
; block, but there are caveats in its use: if the block spans multiple pages,
; these pages must be consecutive, and if there are blocks of memory in a page
; unrelated to the JIT, their page attributes will change too.
;
; The JIT compiler itself requires only read-write access (this is the default
; for a memory block that you allocate). The execution of the JIT-compiled code
; requires full access to the memory block: read, write and execute. It needs
; write access, because the SYSREQ.C opcode is patched to SYSREQ.D after the
; first lookup (this is an optimization, look up the address of the native
; function only once). For processors that do not support the NX/XD bit,
; execution of code is implicitly supported if read access is supported.
;
; During compilation, the JIT compiler requires write-access to its own code
; segment: the JIT-compiler patches P-code parameters into its own code segment
; during compilation. This is handled in the support code for amx_InitJIT.
;
; NOTE 6:
; CALLING CONVENTIONS
; (by Thiadmer Riemersma)
;
; This version is the JIT that uses the "stack calling convention". In the
; original implementation, this meant __cdecl; both for the calling convention
; for the _asm_runJIT routine itself as for the callback functions.
; The current release supports __stdcall for the callback functions; to
; use it, you need to assemble the file with STDECL defined (Since STDCALL is
; a reserved word on the assembler, I had to choose a different name for the
; macro, hence STDECL.)
; Revision History
; ----------------
; 24 february 2013 by Scott Ehlert
; Aligned stack to 16-byte boundary for native calls in case they make library
; calls on Mac OS X or use SSE instructions.
; 16 august 2005 by David "BAILOPAN" Anderson (DA)
; Changed JIT to not swap stack pointer during execution. This
; is playing with fire, especially with pthreads and signals on linux,
; where the stack pointer is used to find the current thread id. If
; the stack pointer is altered during a thread/signal switch/interrupt
; unexpected behaviour can occur (crashes).
; 26 july 2005 by David "BAILOPAN" Anderson (DA)
; Fixed a bug where zero casetbl entries would crash the JIT.
; 17 february 2005 by Thiadmer Riemersms
; Addition of the BREAK opcode, removal of the older debugging opcode
; table. There should now be some debug support (if enabled during the
; build of the JIT compiler), but not enough to run a debugger: the JIT
; compiler does not keep a list that relates the code addresses of the
; P-code versus the native code.
; 29 June 2004 by G.W.M. Vissers
; Translated the thing into NASM. The actual generation of the code is
; put into the data section because the code modifies itself whereas the
; text section is usually read-only in the Unix ELF format.
; 6 march 2004 by Thiadmer Riemersma
; Corrected a bug in OP_FILL, where a cell preceding the array would
; be overwritten (zero'ed out). This bug was brought to my attention
; by Robert Daniels.
; 22 december 2003 by Thiadmer Riemersma (TR)
; Added the SYMTAG and SYSCALL.D opcodes (these are not really supported;
; SYMTAG is a no-op).
; Support __stdcall calling convention for for the native function "hook"
; function (the __cdecl calling convention is also still supported).
; 14 October 2002 by Thiadmer Riemersma (TR)
; Corrected the amx_s structure. The _hlw field was missing, which caused
; errors for arguments to native functions that were passed by reference.
; 2002/08/05 TR
; * store the status of the abstract machine in the AMX structure upon
; return, so that the machine can be restarted (OP_SLEEP)
; * added OP_NOP (for alignment, it is ignored by the JIT)
; * make sure the JIT does not crash when we NULL is passed for the
; return value
; 2000/03/03 MP
; * _amx_opcodelist is equipped with an underscore, again 8-P
; * added SRANGE as a no-op, so debugging info doesn't upset the JIT
; compiler anymore
; * added note about LCTRL, SCTRL and CALL.I
; 2000/03/02 MP
; * made JIT support __cdecl calling conventions
; * removed some rather unnecessary pops in the epilog of amx_exec_asm
; * changed the template for CALL into a DB byte sequence (tasm 4.1
; didn't like the immediate value)
; 1999/12/07 MP
; * fixed crash caused by JIT compiler not saving registers
; 1999/08/06 MP - design change: closer to the "iron" with native stack
; * The JIT compiler now generates relocatable code for case tables by
; setting FORCERELOCATABLE = 1.
; * removed all debug hook code
; * exchanged meaning of ESP and ESI in asm_exec(): now low-level calls/
; pushes/pops are possible
; * removed the run-time functions for the CALL, CALL_I and RET op-codes,
; they are now inline
; * All these changes gained around 80% performance increase for the
; hanoi bench.
; 1999/08/05 MP
; * fixed OP_LINE in the case of NODBGCALLS==1, where no compiled address
; was stored for the LINE byte code (i.e. SWITCH would jump to totally
; wrong addresses). The same fix was applied to OP_FILL, OP_FILE and
; OP_SCTRL (for the no-op case).
; 1999/08/04 MP
; * updated with 4 new opcodes (SRANGE does nothing at the moment; 2dim.
; arrays have not been tested.)
; * hacked relocation code to support absoulute addresses for CASETBL
; (This assumes that no generated address will be greater than
; 0x7fffffff. Bit no. 31 is used as flag for absolute addresses.)
; * The run-time function for SWITCH uses a (hopefully) faster algorithm
; to compute the destination address: It searches backwards now.
; 1999/07/08 MP - initial revision
;
; Support for the BREAK opcode (callback to the debugger): 0 = no, all other
; values = yes. Beware that the compiled code runs slower when this is enabled,
; and that debug support is still fairly minimal.
;
; GWMV: to generate LINE opcode, %define DEBUGSUPPORT
;
%undef DEBUGSUPPORT
;
; If this is set to 1 the JIT generates relocatable code for case tables, too.
; If set to 0, a faster variant for switch (using absolute addresses) is
; generated. I consider setting it to 0 a bad idea.
;
; GWMV: to use absolute addresses, %undef FORCERELOCATABLE
;
%define FORCERELOCATABLE
;
; This variable controls the generation of memory range checks at run-time.
; You should set this to 0, only when you are sure that there are no range
; violations in your Pawn programs and you really need those 5% speed gain.
;
; GWMV: To disable runtime checks, %undef it, instread of setting it to zero
;
%define DORUNTIMECHECKS
%define JIT 1
%include "amxdefn.asm"
;Registers used for JIT during execution:
; eax - pri
; ebx - reloc frame
; ecx - info params
; edx - alt
; esi - AMX stack
; edi - DAT
; ebp - scratch
;DA:
; These are still stored in the stack, but the stack pointer
; holding them is now kept in ecx.
%define stk [ecx+32] ; define some aliases to registers that will
%define alt [ecx+28] ; be stored on the stack when the code is
%define pri [ecx+24] ; actually beeing executed
%define code [ecx+20]
%define amx [ecx+16]
%define retval [ecx+12]
%define stp [ecx+8]
%define hea [ecx+4]
%define frm [ecx] ; FRM is NOT stored in ebp, FRM+DAT is being held
; in ebx instead.
;
; #define PUSH(v) ( stk-=sizeof(cell), *(cell *)(data+(int)stk)=v )
;
%macro _PUSH 1
lea esi,[esi-4]
mov dword [esi], %1
%endmacro
%macro _PUSHMEM 1
lea esi,[esi-4]
mov ebp, dword %1
mov dword [esi], ebp
%endmacro
;
; #define POP(v) ( v=*(cell *)(data+(int)stk), stk+=sizeof(cell) )
;
%macro _POP 1
mov %1, dword [esi]
lea esi,[esi+4]
%endmacro
;
; For determining the biggest native code section generated for ONE Pawn
; opcode. (See the following macro and the PUBLIC function getMaxCodeSize().)
;
; GWMV: Do NOT see the following macro. See CHECKCODESIZE instead.
;
%assign MAXCODESIZE 0
;
; This is the work horse of the whole JIT: It actually copies the code.
%macro GO_ON 2-3 4
mov esi, %1 ;get source address of JIT code
mov ecx,%2-%1 ;get number of bytes to copy
mov [ebx],edi ;store address for jump-correction
add ebx,%3
rep movsb
cmp ebx,[end_code]
jae code_gen_done
jmp dword [ebx] ;go on with the next opcode
%endmacro
; GWMV:
; Nasm can't handle the determination of the maximum code size as was done
; in the Masm implementation, since it only does two passes. This macro is
; called *after* the code for each Pawn instruction.
%macro CHECKCODESIZE 1
%if MAXCODESIZE < $-%1
%assign MAXCODESIZE $-%1
%endif
%endmacro
;
; Modify the argument of an x86 instruction with the Pawn opcode's parameter
; before copying the code.
;
%macro putval 1
mov eax,[ebx+4]
mov dword [%1],eax
%endmacro
;
; Add an entry to the table of addresses which have to be relocated after the
; code compilation is done.
;
%macro RELOC 1-2 ; adr, dest
mov ebp,[reloc_num]
%if %0 < 2
mov eax,[ebx+4]
%else
lea eax,[%2]
%endif
mov [edx+ebp],eax ; write absolute destination
lea eax,[edi+%1]
mov [edx+ebp+4],eax ; write address of jump operand
add dword [reloc_num],8
%endmacro
%macro _DROPARGS 1 ; (TR) remove function arguments from the stack
%ifndef STDECL ; (for __cdecl calling convention only)
add esp,%1
%endif
%endmacro
%macro _STK_ALIGN 1 ; align stack to 16-byte boundary and
; allocate %1 bytes of stack space
; top of stack allocation will hold original esp
%if %1 % 16 != 0
%error "expected 16-byte aligned value"
%endif
%push stkalign
%assign stkspace %1
mov ebp, esp
and esp, 0xFFFFFFF0
sub esp, %1
mov [esp+%1-4], ebp
%endmacro
%macro _STK_RESTORE 0 ; restore stack pointer after 16-byte alignment
%ifnctx stkalign
%fatal "expected _STK_ALIGN before _STK_RESTORE"
%endif
mov esp, [esp+stkspace-4]
%pop
%endmacro
global asm_runJIT, _asm_runJIT
global amx_exec_jit, _amx_exec_jit
global getMaxCodeSize, _getMaxCodeSize
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; void asm_runJIT( AMX_HEADER *amxh, JumpAddressArray *jumps, void *dest ) ;
; eax edx ebx ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; asm_runJIT() assumes that the code of this module is allready browsed and
; relocated for the JIT compiler. It also assumes that both the jumps array and
; the dest memory block are large enough to hold all the data it has to write
; to them, as well as that the prefix (header) has already been copied to dest.
asm_runJIT:
_asm_runJIT:
push ebp
push ebx
push edi
push esi
mov eax,[esp+20] ; get amxh
mov edx,[esp+24] ; get jumps array
mov ebx,[esp+28] ; get destination
mov [amxhead],eax ; save pointer to AMX_HEADER struct
mov ecx,[eax+_cod] ; get offset of start of code
mov eax,[eax+_dat] ; offset of start of data = end of code
mov edi,ecx
add ecx,[amxhead] ; compute the real pointer
add eax,[amxhead] ; dito
add edi,ebx ; get write pointer into EDI
mov [compiled_code],ebx
mov [end_code],eax ; Store end-of-code address, so JIT
; compiler knows when to stop.
mov dword [reloc_num],0 ; init the index into the jumps array
mov ebx,ecx
jmp dword [ecx] ; start compiling
; The compiler will jump back here when code generation is complete.
code_gen_done: ; Now copy the data section.
mov ebp,[amxhead] ; get source AMX_HEADER start address
add edi,3 ; DAT follows directly after COD
and edi,0fffffffch ; align it on a DWORD boundary
push edi ; save data start pointer
mov esi,[end_code] ; get start of data segment
mov ecx,[ebp+_h_hea]
sub ecx,[ebp+_dat] ; compute length of array to copy
rep movsb ; copy the data
; Now adjust the register values in the compiled AMX_HEADER.
; COD stays the same since the size of AMX_HEADER doesn't change in
; compiled mode.
mov ebx,[compiled_code] ; get compiled AMX's header address
pop esi ; recall data start pointer
sub esi,ebx ; DAT = size of code + size of prefix
mov [ebx+_dat],esi ; write corrected DAT register
;HEA and STP are already relative to DAT, so we don't need to fix them.
; Now the calls/jumps in the compiled code have to be relocated.
sub ecx,ecx ; reset offset into relocation table
cmp ecx,[reloc_num]
jae reloc_code_done ; if there's nothing to fix, skip this part
reloc_code_loop:
mov eax,[edx+ecx] ; get destination address
mov edi,[edx+ecx+4] ; determine where to write the relocated value
add ecx,8 ; set pointer to next entry in relocation table
add edi,4 ; base address from where the offset is taken
%ifndef FORCERELOCATABLE
;MP: hack to suport absolute addresses for the CASETBL instruction
test eax,80000000h ; check whether it is an absolute address
pushf
and eax,7fffffffh ; clear the flag bit for absolute addresses
popf
mov eax,[eax] ; translate into compiled absolute address
jne write_reloc ; leave out the subtraction if absolute
%else
mov eax,[eax] ; translate into compiled absolute address
%endif
sub eax,edi ; make a relative offset
write_reloc:
mov [edi-4],eax ; write the relocated address
cmp ecx,[reloc_num]
jb reloc_code_loop
reloc_code_done:
; Relocate the addresses in the AMX_HEADER structure. (CIP and publics)
add ebp,[ebp+_cod] ; make all addresses relative to COD, not base
mov eax,[ebx+_h_cip]
add eax,ebp ; get absolute source CIP
mov eax,[eax] ; translate CIP to compiled address
sub eax,ebx ; make it relative to base
sub eax,[ebx+_cod] ; and now relative to COD
mov [ebx+_h_cip],eax; store relocated CIP
mov edi,[ebx+_publics]
sub esi,esi
mov ecx,[ebx+_natives]
sub ecx,edi ; ECX = _natives - _publics = public table size
mov si,[ebx+_defsize]
or ecx,ecx
jz reloc_done ; If there are no publics, we are done.
reloc_publics_loop:
mov eax,[ebx+edi] ; get public function offset
add eax,ebp ; make it a source address
mov eax,[eax] ; translate to compiled address
sub eax,ebx ; make it an offset relative to base
sub eax,[ebx+_cod] ; and now relative to COD
mov [ebx+edi],eax ; write corrected address back
add edi,esi ; step to next public function entry
sub ecx,esi
ja reloc_publics_loop
reloc_done:
mov eax,0
pop esi
pop edi
pop ebx
pop ebp
ret
OP_LOAD_PRI:
;nop;
putval j_load_pri+2
GO_ON j_load_pri, OP_LOAD_ALT, 8
j_load_pri:
mov eax,[edi+12345678h]
CHECKCODESIZE j_load_pri
OP_LOAD_ALT:
;nop;
putval j_load_alt+2
GO_ON j_load_alt, OP_LOAD_S_PRI, 8
j_load_alt:
mov edx,[edi+12345678h]
CHECKCODESIZE j_load_alt
;good
OP_LOAD_S_PRI:
;nop;
putval j_load_s_pri+2
GO_ON j_load_s_pri, OP_LOAD_S_ALT, 8
j_load_s_pri:
mov eax,[ebx+12345678h]
CHECKCODESIZE j_load_s_pri
;good
OP_LOAD_S_ALT:
;nop;
putval j_load_s_alt+2
GO_ON j_load_s_alt, OP_LOAD_I, 8
j_load_s_alt:
mov edx,[ebx+12345678h]
CHECKCODESIZE j_load_s_alt
OP_LOAD_I:
;nop;
GO_ON j_load_i, OP_LODB_I
j_load_i:
%ifdef DORUNTIMECHECKS
call [verify_adr_eax]
%endif
mov eax,[edi+eax]
CHECKCODESIZE j_load_i
OP_LODB_I:
;nop;
mov eax,[ebx+4]
mov eax,dword [(lodb_and-4)+eax*4]
mov dword [j_lodb_i_sm+1],eax ;modify AND instruction
GO_ON j_lodb_i, OP_LREF_PRI, 8
j_lodb_i:
%ifdef DORUNTIMECHECKS
call [verify_adr_eax]
%endif
mov eax,[edi+eax] ;subject to misalignment stalls
j_lodb_i_sm:
and eax,12345678h
CHECKCODESIZE j_lodb_i
OP_LREF_PRI:
;nop;
putval j_lref_pri+2
GO_ON j_lref_pri, OP_LREF_ALT, 8
j_lref_pri:
mov eax,[edi+12345678h]
mov eax,[edi+eax]
CHECKCODESIZE j_lref_pri
OP_LREF_ALT:
;nop;
putval j_lref_alt+2
GO_ON j_lref_alt, OP_LREF_S_PRI, 8
j_lref_alt:
mov edx,[edi+12345678h]
mov edx,[edi+edx]
CHECKCODESIZE j_lref_alt
OP_LREF_S_PRI:
;nop;
putval j_lref_s_pri+2
GO_ON j_lref_s_pri, OP_LREF_S_ALT, 8
j_lref_s_pri:
mov eax,[ebx+12345678h]
mov eax,[edi+eax]
CHECKCODESIZE j_lref_s_pri
OP_LREF_S_ALT:
;nop;
putval j_lref_s_alt+2
GO_ON j_lref_s_alt, OP_CONST_PRI, 8
j_lref_s_alt:
mov edx,[ebx+12345678h]
mov edx,[edi+edx]
CHECKCODESIZE j_lref_s_alt
;good
OP_CONST_PRI:
;nop;
putval j_const_pri+1
GO_ON j_const_pri, OP_CONST_ALT, 8
j_const_pri:
mov eax,12345678h
CHECKCODESIZE j_const_pri
;good
OP_CONST_ALT:
;nop;
putval j_const_alt+1
GO_ON j_const_alt, OP_ADDR_PRI, 8
j_const_alt:
mov edx,12345678h
CHECKCODESIZE j_const_alt
;good
OP_ADDR_PRI:
;nop;
putval j_addr_pri+1
GO_ON j_addr_pri, OP_ADDR_ALT, 8
j_addr_pri:
mov eax,12345678h
add eax,frm
CHECKCODESIZE j_addr_pri
;good
OP_ADDR_ALT:
;nop;
putval j_addr_alt+1
GO_ON j_addr_alt, OP_STOR_PRI, 8
j_addr_alt:
mov edx,12345678h
add edx,frm
CHECKCODESIZE j_addr_alt
OP_STOR_PRI:
;nop;
putval j_stor_pri+2
GO_ON j_stor_pri, OP_STOR_ALT, 8
j_stor_pri:
mov [edi+12345678h],eax
CHECKCODESIZE j_stor_pri
OP_STOR_ALT:
;nop;
putval j_stor_alt+2
GO_ON j_stor_alt, OP_STOR_S_PRI, 8
j_stor_alt:
mov [edi+12345678h],edx
CHECKCODESIZE j_stor_alt
;good
OP_STOR_S_PRI:
;nop;
putval j_stor_s_pri+2
GO_ON j_stor_s_pri, OP_STOR_S_ALT, 8
j_stor_s_pri:
mov [ebx+12345678h],eax
CHECKCODESIZE j_stor_s_pri
;good
OP_STOR_S_ALT:
;nop;
putval j_stor_s_alt+2
GO_ON j_stor_s_alt, OP_STOR_I, 8
j_stor_s_alt:
mov [ebx+12345678h],edx
CHECKCODESIZE j_stor_s_alt
;good
OP_STOR_I:
;nop;
GO_ON j_stor_i, OP_STRB_I
j_stor_i:
%ifdef DORUNTIMECHECKS
call [verify_adr_edx]
%endif
mov [edi+edx],eax
CHECKCODESIZE j_stor_i
OP_STRB_I:
;nop;
mov eax,[ebx+4]
cmp eax,1
jne strb_not1byte
GO_ON j_strb_i_1b, strb_not1byte, 8
j_strb_i_1b:
%ifdef DORUNTIMECHECKS
call [verify_adr_edx]
%endif
mov [edi+edx],al
CHECKCODESIZE j_strb_i_1b
strb_not1byte:
cmp eax,4
je strb_4byte
GO_ON j_strb_i_2b, strb_4byte, 8
j_strb_i_2b:
%ifdef DORUNTIMECHECKS
call [verify_adr_edx]
%endif
mov [edi+edx],ax
CHECKCODESIZE j_strb_i_2b
strb_4byte:
GO_ON j_strb_i_4b, OP_SREF_PRI, 8
j_strb_i_4b:
%ifdef DORUNTIMECHECKS
call [verify_adr_edx]
%endif
mov [edi+edx],eax
CHECKCODESIZE j_strb_i_4b
OP_SREF_PRI:
;nop;
putval j_sref_pri+2
GO_ON j_sref_pri, OP_SREF_ALT, 8
j_sref_pri:
mov ebp,[edi+12345678h]
mov [edi+ebp],eax
CHECKCODESIZE j_sref_pri
OP_SREF_ALT:
;nop;
putval j_sref_alt+2
GO_ON j_sref_alt, OP_SREF_S_PRI, 8
j_sref_alt:
mov ebp,[edi+12345678h]
mov [edi+ebp],edx
CHECKCODESIZE j_sref_alt
OP_SREF_S_PRI:
;nop;
putval j_sref_s_pri+2
GO_ON j_sref_s_pri, OP_SREF_S_ALT, 8
j_sref_s_pri:
mov ebp,[ebx+12345678h]
mov [edi+ebp],eax
CHECKCODESIZE j_sref_s_pri
OP_SREF_S_ALT:
;nop;
putval j_sref_s_alt+2
GO_ON j_sref_s_alt, OP_LIDX, 8
j_sref_s_alt:
mov ebp,[ebx+12345678h]
mov [edi+ebp],edx
CHECKCODESIZE j_sref_s_alt
;good
OP_LIDX:
;nop;
GO_ON j_lidx, OP_LIDX_B
j_lidx:
lea eax,[edx+4*eax]
%ifdef DORUNTIMECHECKS
call [verify_adr_eax]
%endif
mov eax,[edi+eax]
CHECKCODESIZE j_lidx
OP_LIDX_B:
;nop;
mov al,[ebx+4]
mov byte [j_lidx_b+2],al
GO_ON j_lidx_b, OP_IDXADDR, 8
j_lidx_b:
shl eax,12h
add eax,edx
%ifdef DORUNTIMECHECKS
call [verify_adr_eax]
%endif
mov eax,[edi+eax]
CHECKCODESIZE j_lidx_b
;good
OP_IDXADDR:
;nop;
GO_ON j_idxaddr, OP_IDXADDR_B
j_idxaddr:
lea eax,[edx+4*eax]
CHECKCODESIZE j_idxaddr
OP_IDXADDR_B:
;nop;
mov al,[ebx+4]
mov byte [j_idxaddr_b+2],al
GO_ON j_idxaddr_b, OP_ALIGN_PRI, 8
j_idxaddr_b:
shl eax,12h
add eax,edx
CHECKCODESIZE j_idxaddr_b
OP_ALIGN_PRI:
;nop;
mov eax,4
sub eax,[ebx+4]
mov dword [j_align_pri+1],eax
GO_ON j_align_pri, OP_ALIGN_ALT, 8
j_align_pri:
xor eax,12345678h
CHECKCODESIZE j_align_pri
OP_ALIGN_ALT:
;nop;
mov eax,4
sub eax,[ebx+4]
mov dword [j_align_alt+1],eax
GO_ON j_align_alt, OP_LCTRL, 8
j_align_alt:
xor edx,12345678h
CHECKCODESIZE j_align_alt
OP_LCTRL:
;nop;
mov eax,[ebx+4]
cmp eax,0
jne lctrl_1
GO_ON j_lctrl_0, lctrl_1, 8
j_lctrl_0:
mov eax,code ; 1=COD
CHECKCODESIZE j_lctrl_0
lctrl_1:
cmp eax,1
jne lctrl_2
GO_ON j_lctrl_1, lctrl_2, 8
j_lctrl_1:
mov eax,edi ; 1=DAT
CHECKCODESIZE j_lctrl_1
lctrl_2:
cmp eax,2
jne lctrl_3
GO_ON j_lctrl_2, lctrl_3, 8
j_lctrl_2:
mov eax,hea ; 2=HEA
CHECKCODESIZE j_lctrl_2
lctrl_3:
cmp eax,3
jne lctrl_4
GO_ON j_lctrl_3, lctrl_4, 8
j_lctrl_3:
mov ebp,amx
mov eax,[ebp+_stp]
CHECKCODESIZE j_lctrl_3
lctrl_4:
cmp eax,4
jne lctrl_5
GO_ON j_lctrl_4, lctrl_5, 8
j_lctrl_4:
mov eax,esi ; 4=STK
sub eax,edi
CHECKCODESIZE j_lctrl_4
lctrl_5:
cmp eax,5
jne lctrl_6
GO_ON j_lctrl_5, lctrl_6, 8
j_lctrl_5:
mov eax,frm ; 5=FRM
CHECKCODESIZE j_lctrl_5
lctrl_6:
mov dword [j_lctrl_6+1],edi
GO_ON j_lctrl_6, OP_SCTRL, 8
j_lctrl_6:
mov eax,12345678h ; 6=CIP
CHECKCODESIZE j_lctrl_6
OP_SCTRL:
;nop;
mov eax,[ebx+4]
cmp eax,2
jne sctrl_4
GO_ON j_sctrl_2, sctrl_4, 8
j_sctrl_2:
mov hea,eax ; 2=HEA
CHECKCODESIZE j_sctrl_2
sctrl_4:
cmp eax,4
jne sctrl_5
GO_ON j_sctrl_4, sctrl_5, 8
j_sctrl_4:
;mov esp,eax ; 4=STK
;add esp,edi ; relocate stack
lea esi,[eax+edi]
CHECKCODESIZE j_sctrl_4
sctrl_5:
cmp eax,5
jne sctrl_ignore
GO_ON j_sctrl_5, sctrl_ignore, 8
j_sctrl_5:
mov ebx,eax ; 5=FRM
mov frm,eax
add ebx,edi ; relocate frame
CHECKCODESIZE j_sctrl_5
sctrl_ignore:
mov [ebx],edi
add ebx,8
jmp dword [ebx]
OP_MOVE_PRI:
;nop;
GO_ON j_move_pri, OP_MOVE_ALT
j_move_pri:
mov eax,edx
CHECKCODESIZE j_move_pri
;good
OP_MOVE_ALT:
;nop;
GO_ON j_move_alt, OP_XCHG
j_move_alt:
mov edx,eax
CHECKCODESIZE j_move_alt
OP_XCHG:
;nop;
GO_ON j_xchg, OP_PUSH_PRI
j_xchg: ;one might use pushes/pops for pre-586's
xchg eax,edx
CHECKCODESIZE j_xchg
;good
OP_PUSH_PRI:
;nop;
GO_ON j_push_pri, OP_PUSH_ALT
j_push_pri:
_PUSH eax
CHECKCODESIZE j_push_pri
;good
OP_PUSH_ALT:
;nop;
GO_ON j_push_alt, OP_PUSH_R_PRI
j_push_alt:
_PUSH edx
CHECKCODESIZE j_push_alt
OP_PUSH_R_PRI:
;nop;
putval j_push_r_pri+2
GO_ON j_push_r_pri, OP_PUSH_C, 8
j_push_r_pri:
push ecx
mov ecx,12345678h
j_push_loop:
_PUSH eax
loop j_push_loop
pop ecx
;dec ecx
;jnz j_push_loop
CHECKCODESIZE j_push_r_pri
;good
OP_PUSH_C:
;nop;
putval j_push_c_end-4
GO_ON j_push_c, OP_PUSH, 8
j_push_c:
_PUSH 12345678h
j_push_c_end:
CHECKCODESIZE j_push_c
OP_PUSH:
;nop;
putval j_push_end-6
GO_ON j_push, OP_PUSH_S, 8
j_push:
_PUSHMEM [edi+12345678h]
j_push_end:
CHECKCODESIZE j_push
;good
OP_PUSH_S:
;nop;
putval j_push_s_end-6
GO_ON j_push_s, OP_POP_PRI, 8
j_push_s:
_PUSHMEM [ebx+12345678h]
j_push_s_end:
CHECKCODESIZE j_push_s
OP_POP_PRI:
;nop;
GO_ON j_pop_pri, OP_POP_ALT
j_pop_pri:
_POP eax
CHECKCODESIZE j_pop_pri
;good
OP_POP_ALT:
;nop;
GO_ON j_pop_alt, OP_STACK
j_pop_alt:
_POP edx
CHECKCODESIZE j_pop_alt
;good
OP_STACK:
;nop;
putval j_stack+4
GO_ON j_stack, OP_HEAP, 8
j_stack:
mov edx,esi
add esi,12345678h
sub edx,edi
%ifdef DORUNTIMECHECKS
call [chk_marginstack]
%endif
CHECKCODESIZE j_stack
;good
OP_HEAP:
;nop;
putval j_heap_call-4
GO_ON j_heap, OP_PROC, 8
j_heap:
mov edx,hea
add dword hea,12345678h
j_heap_call:
%ifdef DORUNTIMECHECKS
call [chk_marginheap]
%endif
CHECKCODESIZE j_heap
;good
OP_PROC:
;nop;
GO_ON j_proc, OP_RET
j_proc: ;[STK] = FRM, STK = STK - cell size, FRM = STK
_PUSHMEM frm ; push old frame (for RET/RETN)
mov frm,esi ; get new frame
mov ebx,esi ; already relocated
sub frm,edi ; relocate frame
CHECKCODESIZE j_proc
OP_RET:
;nop;
GO_ON j_ret, OP_RETN
j_ret:
_POP ebx ; pop frame
lea esi,[esi+4]
mov frm,ebx
add ebx,edi
ret
;call [jit_ret]
CHECKCODESIZE j_ret
;good
OP_RETN:
;nop;
GO_ON j_retn, OP_CALL
j_retn:
jmp [jit_retn]
CHECKCODESIZE j_retn
;good
OP_CALL:
;nop;
RELOC j_call_e8-j_call+1
GO_ON j_call, OP_CALL_I, 8
j_call:
;call 12345678h ; tasm chokes on this out of a sudden
_PUSH 0
j_call_e8:
db 0e8h, 0, 0, 0, 0
CHECKCODESIZE j_call
OP_CALL_I:
;nop;
GO_ON j_call_i, OP_JUMP
j_call_i:
_PUSH 0
call eax
CHECKCODESIZE j_call_i
;good
OP_JUMP:
;nop;
RELOC 1
GO_ON j_jump, OP_JREL, 8
j_jump:
DB 0e9h
DD 12345678h
CHECKCODESIZE j_jump
OP_JREL:
;nop;
mov eax,[ebx+4]
; create an absolute address from the relative one
RELOC 1, eax+ebx+8
; GWMV: is the next line really correct!?
GO_ON j_jump, OP_JREL, 8
;good
OP_JZER:
;nop;
RELOC 4
GO_ON j_jzer, OP_JNZ, 8
j_jzer:
or eax,eax
DB 0fh, 84h, 0, 0, 0, 0 ;jz NEAR 0 (tasm sucks a bit)
CHECKCODESIZE j_jzer
;good
OP_JNZ:
;nop;
RELOC 4
GO_ON j_jnz, OP_JEQ, 8
j_jnz:
or eax,eax
DB 0fh, 85h, 0, 0, 0, 0 ;jnz NEAR 0
CHECKCODESIZE j_jnz
;good
OP_JEQ:
;nop;
RELOC 4
GO_ON j_jeq, OP_JNEQ, 8
j_jeq:
cmp eax,edx
DB 0fh, 84h, 0, 0, 0, 0 ;je NEAR 0 (tasm sucks a bit)
CHECKCODESIZE j_jeq
OP_JNEQ:
;nop;
RELOC 4
GO_ON j_jneq, OP_JLESS, 8
j_jneq:
cmp eax,edx
DB 0fh, 85h, 0, 0, 0, 0 ;jne NEAR 0 (tasm sucks a bit)
CHECKCODESIZE j_jneq
OP_JLESS:
;nop;
RELOC 4
GO_ON j_jless, OP_JLEQ, 8
j_jless:
cmp eax,edx
DB 0fh, 82h, 0, 0, 0, 0 ;jb NEAR 0 (tasm sucks a bit)
CHECKCODESIZE j_jless
OP_JLEQ:
;nop;
RELOC 4
GO_ON j_jleq, OP_JGRTR, 8
j_jleq:
cmp eax,edx
DB 0fh, 86h, 0, 0, 0, 0 ;jbe NEAR 0 (tasm sucks a bit)
CHECKCODESIZE j_jleq
OP_JGRTR:
;nop;
RELOC 4
GO_ON j_jgrtr, OP_JGEQ, 8
j_jgrtr:
cmp eax,edx
DB 0fh, 87h, 0, 0, 0, 0 ;ja NEAR 0 (tasm sucks a bit)
CHECKCODESIZE j_jgrtr
OP_JGEQ:
;nop;
RELOC 4
GO_ON j_jgeq, OP_JSLESS, 8
j_jgeq:
cmp eax,edx
DB 0fh, 83h, 0, 0, 0, 0 ;jae NEAR 0 (unsigned comparison)
CHECKCODESIZE j_jgeq
OP_JSLESS:
;nop;
RELOC 4
GO_ON j_jsless, OP_JSLEQ, 8
j_jsless:
cmp eax,edx
DB 0fh, 8ch, 0, 0, 0, 0 ;jl NEAR 0
CHECKCODESIZE j_jsless
;good
OP_JSLEQ:
;nop;
RELOC 4
GO_ON j_jsleq, OP_JSGRTR, 8
j_jsleq:
cmp eax,edx
DB 0fh, 8eh, 0, 0, 0, 0 ;jle NEAR 0
CHECKCODESIZE j_jsleq
OP_JSGRTR:
;nop;
RELOC 4
GO_ON j_jsgrtr, OP_JSGEQ, 8
j_jsgrtr:
cmp eax,edx
DB 0fh, 8Fh, 0, 0, 0, 0 ;jg NEAR 0
CHECKCODESIZE j_jsgrtr
OP_JSGEQ:
;nop;
RELOC 4
GO_ON j_jsgeq, OP_SHL, 8
j_jsgeq:
cmp eax,edx
DB 0fh, 8dh, 0, 0, 0, 0 ;jge NEAR 0
CHECKCODESIZE j_jsgeq
OP_SHL:
;nop;
GO_ON j_shl, OP_SHR
j_shl:
push ecx
mov ecx,edx
shl eax,cl
pop ecx
CHECKCODESIZE j_shl
OP_SHR:
;nop;
GO_ON j_shr, OP_SSHR
j_shr:
push ecx
mov ecx,edx
shr eax,cl
pop ecx
CHECKCODESIZE j_shr
OP_SSHR:
;nop;
GO_ON j_sshr, OP_SHL_C_PRI
j_sshr:
push ecx
mov ecx,edx
sar eax,cl
pop ecx
CHECKCODESIZE j_sshr
OP_SHL_C_PRI:
;nop;
mov al,[ebx+4]
mov byte [j_shl_c_pri+2],al
GO_ON j_shl_c_pri, OP_SHL_C_ALT, 8
j_shl_c_pri:
shl eax,12h
CHECKCODESIZE j_shl_c_pri
OP_SHL_C_ALT:
;nop;
mov al,[ebx+4]
mov byte [j_shl_c_alt+2],al
GO_ON j_shl_c_alt, OP_SHR_C_PRI, 8
j_shl_c_alt:
shl edx,12h
CHECKCODESIZE j_shl_c_alt
OP_SHR_C_PRI:
;nop;
mov al,[ebx+4]
mov byte [j_shr_c_pri+2],al
GO_ON j_shr_c_pri, OP_SHR_C_ALT, 8
j_shr_c_pri:
shr eax,12h
CHECKCODESIZE j_shr_c_pri
OP_SHR_C_ALT:
;nop;
mov al,[ebx+4]
mov byte [j_shr_c_alt+2],al
GO_ON j_shr_c_alt, OP_SMUL, 8
j_shr_c_alt:
shr edx,12h
CHECKCODESIZE j_shr_c_alt
OP_SMUL:
;nop;
GO_ON j_smul, OP_SDIV
j_smul:
push edx
imul edx
pop edx
CHECKCODESIZE j_smul
;good
OP_SDIV:
;nop;
GO_ON j_sdiv, OP_SDIV_ALT
j_sdiv:
call [jit_sdiv]
CHECKCODESIZE j_sdiv
OP_SDIV_ALT:
;nop;
GO_ON j_sdiv_alt, OP_UMUL
j_sdiv_alt:
xchg eax,edx
call [jit_sdiv]
CHECKCODESIZE j_sdiv_alt
OP_UMUL:
;nop;
GO_ON j_umul, OP_UDIV
j_umul:
push edx
mul edx
pop edx
CHECKCODESIZE j_umul
OP_UDIV:
;nop;
GO_ON j_udiv, OP_UDIV_ALT
j_udiv:
mov ebp,edx
sub edx,edx
call [chk_dividezero]
div ebp
CHECKCODESIZE j_udiv
OP_UDIV_ALT:
;nop;
GO_ON j_udiv_alt, OP_ADD
j_udiv_alt:
mov ebp,eax
mov eax,edx
sub edx,edx
call [chk_dividezero]
div ebp
CHECKCODESIZE j_udiv_alt
;good
OP_ADD:
;nop;
GO_ON j_add, OP_SUB
j_add:
add eax,edx
CHECKCODESIZE j_add
;good
OP_SUB:
;nop;
GO_ON j_sub, OP_SUB_ALT
j_sub:
sub eax,edx
CHECKCODESIZE j_sub
;good
OP_SUB_ALT:
;nop;
GO_ON j_sub_alt, OP_AND
j_sub_alt:
neg eax
add eax,edx
CHECKCODESIZE j_sub_alt
OP_AND:
;nop;
GO_ON j_and, OP_OR
j_and:
and eax,edx
CHECKCODESIZE j_and
OP_OR:
;nop;
GO_ON j_or, OP_XOR
j_or:
or eax,edx
CHECKCODESIZE j_or
OP_XOR:
;nop;
GO_ON j_xor, OP_NOT
j_xor:
xor eax,edx
CHECKCODESIZE j_xor
OP_NOT:
;nop;
GO_ON j_not, OP_NEG
j_not:
neg eax ; sets CF iff EAX != 0
sbb eax,eax ; EAX == -1 iff CF set (zero otherwise)
inc eax ; -1 => 0 and 0 => 1
CHECKCODESIZE j_not
OP_NEG:
;nop;
GO_ON j_neg, OP_INVERT
j_neg:
neg eax
CHECKCODESIZE j_neg
OP_INVERT:
;nop;
GO_ON j_invert, OP_ADD_C
j_invert:
not eax
CHECKCODESIZE j_invert
;good
OP_ADD_C:
;nop;
putval j_add_c+1
GO_ON j_add_c, OP_SMUL_C, 8
j_add_c:
add eax,12345678h
CHECKCODESIZE j_add_c
;good
OP_SMUL_C:
;nop;
putval j_smul_c+3
GO_ON j_smul_c, OP_ZERO_PRI, 8
j_smul_c:
push edx
imul eax,12345678h
pop edx
CHECKCODESIZE j_smul_c
;good
OP_ZERO_PRI:
;nop;
GO_ON j_zero_pri, OP_ZERO_ALT
j_zero_pri:
sub eax,eax
CHECKCODESIZE j_zero_pri
;good
OP_ZERO_ALT:
;nop;
GO_ON j_zero_alt, OP_ZERO
j_zero_alt:
sub edx,edx
CHECKCODESIZE j_zero_alt
OP_ZERO:
;nop;
putval j_zero+2
GO_ON j_zero, OP_ZERO_S, 8
j_zero:
mov dword [edi+12345678h],0
CHECKCODESIZE j_zero
OP_ZERO_S:
;nop;
putval j_zero_s+2
GO_ON j_zero_s, OP_SIGN_PRI, 8
j_zero_s:
mov dword [ebx+12345678h],0
CHECKCODESIZE j_zero_s
OP_SIGN_PRI:
;nop;
GO_ON j_sign_pri, OP_SIGN_ALT
j_sign_pri:
shl eax,24
sar eax,24
CHECKCODESIZE j_sign_pri
OP_SIGN_ALT:
;nop;
GO_ON j_sign_alt, OP_EQ
j_sign_alt:
shl edx,24
sar edx,24
CHECKCODESIZE j_sign_alt
OP_EQ:
;nop;
GO_ON j_eq, OP_NEQ
j_eq:
cmp eax,edx ; PRI == ALT ?
mov eax,0
sete al
CHECKCODESIZE j_eq
OP_NEQ:
;nop;
GO_ON j_neq, OP_LESS
j_neq:
cmp eax,edx ; PRI != ALT ?
mov eax,0
setne al
CHECKCODESIZE j_neq
OP_LESS:
;nop;
GO_ON j_less, OP_LEQ
j_less:
cmp eax,edx ; PRI < ALT ? (unsigned)
mov eax,0
setb al
CHECKCODESIZE j_less
OP_LEQ:
;nop;
GO_ON j_leq, OP_GRTR
j_leq:
cmp eax,edx ; PRI <= ALT ? (unsigned)
mov eax,0
setbe al
CHECKCODESIZE j_leq
OP_GRTR:
;nop;
GO_ON j_grtr, OP_GEQ
j_grtr:
cmp eax,edx ; PRI > ALT ? (unsigned)
mov eax,0
seta al
CHECKCODESIZE j_grtr
OP_GEQ:
;nop;
GO_ON j_geq, OP_SLESS
j_geq:
cmp eax,edx ; PRI >= ALT ? (unsigned)
mov eax,0
setae al
CHECKCODESIZE j_geq
;good
OP_SLESS:
;nop;
GO_ON j_sless, OP_SLEQ
j_sless:
cmp eax,edx ; PRI < ALT ? (signed)
mov eax,0
setl al
CHECKCODESIZE j_sless
OP_SLEQ:
;nop;
GO_ON j_sleq, OP_SGRTR
j_sleq:
cmp eax,edx ; PRI <= ALT ? (signed)
mov eax,0
setle al
CHECKCODESIZE j_sleq
OP_SGRTR:
;nop;
GO_ON j_sgrtr, OP_SGEQ
j_sgrtr:
cmp eax,edx ; PRI > ALT ? (signed)
mov eax,0
setg al
CHECKCODESIZE j_sgrtr
OP_SGEQ:
;nop;
GO_ON j_sgeq, OP_EQ_C_PRI
j_sgeq:
cmp eax,edx ; PRI >= ALT ? (signed)
mov eax,0
setge al
CHECKCODESIZE j_sgeq
OP_EQ_C_PRI:
;nop;
putval j_eq_c_pri+1
GO_ON j_eq_c_pri, OP_EQ_C_ALT, 8
j_eq_c_pri:
cmp eax,12345678h ; PRI == value ?
mov eax,0
sete al
CHECKCODESIZE j_eq_c_pri
OP_EQ_C_ALT:
;nop;
putval j_eq_c_alt+4
GO_ON j_eq_c_alt, OP_INC_PRI, 8
j_eq_c_alt:
sub eax,eax
cmp edx,12345678h ; ALT == value ?
sete al
CHECKCODESIZE j_eq_c_alt
OP_INC_PRI:
;nop;
GO_ON j_inc_pri, OP_INC_ALT
j_inc_pri:
inc eax
CHECKCODESIZE j_inc_pri
OP_INC_ALT:
;nop;
GO_ON j_inc_alt, OP_INC
j_inc_alt:
inc edx
CHECKCODESIZE j_inc_alt
OP_INC:
;nop;
putval j_inc+2
GO_ON j_inc, OP_INC_S, 8
j_inc:
inc dword [edi+12345678h]
CHECKCODESIZE j_inc
;good
OP_INC_S:
;nop;
putval j_inc_s+2
GO_ON j_inc_s, OP_INC_I, 8
j_inc_s:
inc dword [ebx+12345678h]
CHECKCODESIZE j_inc_s
OP_INC_I:
;nop;
GO_ON j_inc_i, OP_DEC_PRI
j_inc_i:
inc dword [edi+eax]
CHECKCODESIZE j_inc_i
OP_DEC_PRI:
;nop;
GO_ON j_dec_pri, OP_DEC_ALT
j_dec_pri:
dec eax
CHECKCODESIZE j_dec_pri
OP_DEC_ALT:
;nop;
GO_ON j_dec_alt, OP_DEC
j_dec_alt:
dec edx
CHECKCODESIZE j_dec_alt
OP_DEC:
;nop;
putval j_dec+2
GO_ON j_dec, OP_DEC_S, 8
j_dec:
dec dword [edi+12345678h]
CHECKCODESIZE j_dec
OP_DEC_S:
;nop;
putval j_dec_s+2
GO_ON j_dec_s, OP_DEC_I, 8
j_dec_s:
dec dword [ebx+12345678h]
CHECKCODESIZE j_dec_s
OP_DEC_I:
;nop;
GO_ON j_dec_i, OP_MOVS
j_dec_i:
dec dword [edi+eax]
CHECKCODESIZE j_dec_i
OP_MOVS:
;nop;
putval j_movs+2
GO_ON j_movs, OP_CMPS, 8
j_movs:
push ecx
mov ecx,12345678h
call [jit_movs]
pop ecx
CHECKCODESIZE j_movs
OP_CMPS:
;nop;
putval j_cmps+2
GO_ON j_cmps, OP_FILL, 8
j_cmps:
push ecx
mov ecx,12345678h
call [jit_cmps]
pop ecx
CHECKCODESIZE j_cmps
OP_FILL:
;nop;
putval j_fill+2
GO_ON j_fill, OP_HALT, 8
j_fill:
push ecx
mov ecx,12345678h ;TODO: save ECX if used as special register
call [jit_fill]
pop ecx
CHECKCODESIZE j_fill
;good
OP_HALT:
;nop;
putval j_halt_sm+1
GO_ON j_halt, OP_BOUNDS, 8
j_halt:
cmp dword retval,0
je j_halt_no_value
mov ebp,retval
mov [ebp],eax
j_halt_no_value:
j_halt_sm:
mov eax,12345678h
jmp [jit_return]
CHECKCODESIZE j_halt
;good
OP_BOUNDS:
;nop;
putval j_bounds+1
GO_ON j_bounds, OP_SYSREQ_C, 8
j_bounds:
mov ebp,12345678h
call [jit_bounds]
CHECKCODESIZE j_bounds
;good
OP_SYSREQ_C:
;nop;
putval j_sysreq_c+1
GO_ON j_sysreq_c, OP_SYSREQ_PRI, 8
j_sysreq_c:
mov eax,12345678h ; get function number
j_sysreq:
call [jit_sysreq]
CHECKCODESIZE j_sysreq_c
; GWMV: oh well, it may look stupid, but I don't want to miss anything
CHECKCODESIZE j_sysreq
OP_SYSREQ_PRI:
;nop;
GO_ON j_sysreq, OP_SYSREQ_PRI
OP_FILE: ;opcode is simply ignored
;nop;
mov eax,[ebx+4] ;get size
mov [ebx],edi
lea ebx,[ebx+eax+8] ;move on to next opcode
cmp ebx,dword [end_code]
jae code_gen_done
jmp dword [ebx] ;go on with the next opcode
OP_LINE:
;nop;
mov [ebx],edi ; no line number support: ignore opcode
add ebx,12 ; move on to next opcode
cmp ebx,[end_code]
jae code_gen_done
jmp dword [ebx] ; go on with the next opcode
OP_SYMBOL: ;ignored
mov [ebx],edi
mov eax,[ebx+4] ; get size
lea ebx,[ebx+eax+8] ; move on to next opcode
cmp ebx,[end_code]
jae code_gen_done
jmp dword [ebx] ; go on with the next opcode
OP_SRANGE: ;ignored
mov [ebx],edi ; store relocated address
add ebx,12 ; move on to next opcode
cmp ebx,[end_code]
jae code_gen_done
jmp dword [ebx] ; go on with the next opcode
;not tested
OP_JUMP_PRI:
GO_ON j_jump_pri, OP_SWITCH
j_jump_pri: ; MP: This opcode makes sense only in con-
jmp [eax] ; junction with a possibility to get the
; address of a code location...
CHECKCODESIZE j_jump_pri
;good
OP_SWITCH:
lea eax,[edi+6] ; The case table will be copied directly
neg eax ; after the run-time call to [jit_switch].
and eax,3 ; We should align this table on a DWORD
mov ecx,eax ; boundary.
mov al,90h ; 90h = opcode of x86 NOP instruction
rep stosb ; Write the right number of NOPs.
mov [ebx],edi ; store address of SWITCH for relocation step
mov esi, j_switch
mov ecx,6
rep movsb ; copy the call instruction
mov esi,[ebx+4] ; get address of CASETBL instruction
add ebx,8 ; set instruction pointer to next opcode
add esi,4 ; point esi to first entry: (count, default adr)
mov ecx,[esi] ; get number of cases (excluding default)
inc ecx
mov ebp,[reloc_num]
j_case_loop:
mov eax,[esi] ; get case value
stosd ; write it
mov eax,[esi+4] ; get destination address
%ifndef FORCERELOCATABLE
or eax,80000000h ; add flag for "absolute address"
%endif
mov [edx+ebp],eax ; write dest. adr. into relocation table
mov eax,[esi+4] ; get destination address (again)
add esi,8 ; set ESI to next case
mov [edx+ebp+4],edi ; write adr. to patch into relocation table
add ebp,8 ; promote relocation pointer
stosd ; write dest. adr.
dec ecx
jnz j_case_loop
mov dword [reloc_num],ebp ; write back updated reloc_num
jmp [ebx] ; GO_ON to next op-code
j_switch:
call [jit_switch]
;good
OP_CASETBL: ; compiles to nothing, SWITCH does all the work
mov eax,[ebx+4] ; get count of cases
lea ebx,[ebx+8*eax+(8+4)] ; adjust instruction pointer
jmp [ebx] ; GO_ON with next op-code
OP_SWAP_PRI: ; TR
GO_ON j_swap_pri, OP_SWAP_ALT
j_swap_pri:
_POP ebp
_PUSH eax
mov eax,ebp
CHECKCODESIZE j_swap_pri
OP_SWAP_ALT: ; TR
GO_ON j_swap_alt, OP_PUSHADDR
j_swap_alt:
_POP ebp
_PUSH edx
mov edx,ebp
CHECKCODESIZE j_swap_alt
OP_PUSHADDR: ; TR
putval j_pushaddr+1
GO_ON j_pushaddr, OP_NOP, 8
j_pushaddr:
mov ebp,12345678h ;get address (offset from frame)
add ebp,frm
_PUSH ebp
CHECKCODESIZE j_pushaddr
OP_NOP: ; TR
GO_ON j_nop, OP_SYSREQ_D
j_nop: ; code alignment is ignored by the JIT
CHECKCODESIZE j_nop
OP_SYSREQ_D:
;nop;
putval j_sysreq_d+1
GO_ON j_sysreq_d, OP_SYMTAG, 8
j_sysreq_d:
mov ebx,12345678h ; get function address
call [jit_sysreq_d]
CHECKCODESIZE j_sysreq_d
OP_SYMTAG: ;ignored (TR)
mov [ebx],edi ; store relocated address
add ebx,8 ; move on to next opcode
cmp ebx,[end_code]
jae code_gen_done
jmp dword [ebx] ; go on with the next opcode
OP_BREAK:
%ifndef DEBUGSUPPORT
mov [ebx],edi ; no line number support: ignore opcode
add ebx,4 ; move on to next opcode
cmp ebx,[end_code]
jae code_gen_done
jmp DWORD [ebx] ; go on with the next opcode
%else
GO_ON j_break, OP_FLOAT_MUL
j_break:
mov ebp,amx
cmp DWORD [ebp+_debug], 0
je $+4 ; jump around the "call" statement
call [jit_break]
CHECKCODESIZE j_break
%endif
OP_FLOAT_MUL:
GO_ON j_float_mul, OP_FLOAT_DIV
j_float_mul:
fld dword [esi+4]
fmul dword [esi+8]
sub esp, 4
fstp dword [esp]
pop eax
CHECKCODESIZE j_float_mul
OP_FLOAT_DIV:
GO_ON j_float_div, OP_FLOAT_ADD
j_float_div:
fld dword [esi+4]
fdiv dword [esi+8]
sub esp, 4
fstp dword [esp]
pop eax
CHECKCODESIZE j_float_div
OP_FLOAT_ADD:
GO_ON j_float_add, OP_FLOAT_SUB
j_float_add:
fld dword [esi+4]
fadd dword [esi+8]
sub esp, 4
fstp dword [esp]
pop eax
CHECKCODESIZE j_float_add
OP_FLOAT_SUB:
GO_ON j_float_sub, OP_FLOAT_TO
j_float_sub:
fld dword [esi+4]
fsub dword [esi+8]
sub esp, 4
fstp dword [esp]
pop eax
CHECKCODESIZE j_float_sub
OP_FLOAT_TO:
GO_ON j_float_to, OP_FLOAT_ROUND
j_float_to:
fild dword [esi+4]
sub esp, 4
fstp dword [esp]
pop eax
CHECKCODESIZE j_float_to
OP_FLOAT_ROUND:
GO_ON j_float_round, OP_FLOAT_CMP
j_float_round:
;get the float control word
push 0
mov ebp,esp
fstcw [ebp]
mov eax,[ebp]
push eax
;clear the top bits
xor ah,ah
;get the control method
push edx
mov edx,[esi+8]
and edx,3 ;sanity check
shl edx,2 ;shift it to right position
;set the bits
or ah,dl ;set bits 15,14 of FCW to rounding method
or ah,3 ;set precision to 64bit
mov [ebp], eax
fldcw [ebp]
;calculate
sub esp,4
fld dword [esi+4]
test edx,edx
jz .correct
jmp .skip_correct
.correct:
fadd st0
fadd dword [g_round_nearest]
fistp dword [esp]
pop eax
sar eax,1
jmp .done
.skip_correct:
frndint
fistp dword [esp]
pop eax
.done:
pop edx
;restore bits
pop ebp
mov [esp], ebp
fldcw [esp]
pop ebp
CHECKCODESIZE j_float_round
OP_FLOAT_CMP:
GO_ON j_float_cmp, OP_INVALID
j_float_cmp:
fld dword [esi+8]
fld dword [esi+4]
fucompp
fnstsw ax
fwait
sahf
cmovz eax, [g_flagsjit+4]
cmova eax, [g_flagsjit+8]
cmovb eax, [g_flagsjit+0]
CHECKCODESIZE j_float_cmp
OP_INVALID: ; break from the compiler with an error code
mov eax,AMX_ERR_INVINSTR
pop esi
pop edi
pop ecx
pop ebp
ret
section .text
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
;cell amx_exec( cell *regs, cell *retval, cell stp, cell hea );
; eax edx ebx ecx ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
amx_exec_jit:
_amx_exec_jit:
push edi
push esi
push ebp
push ebx ; due to __cdecl
; __cdecl overhead
mov eax, [esp+20] ; get address of amx regs structure
mov edx, [esp+24] ; get address of retval
mov ebx, [esp+28] ; get stp
mov ecx, [esp+32] ; get hea
sub esp,4*3 ; place for PRI, ALT & STK at SYSREQs
push dword [eax+28] ; store pointer to code segment
push dword [eax+24] ; store pointer to AMX
push edx ; store address of retval
push ebx ; store STP
push ecx ; store HEA
push dword [eax+20]; store FRM
mov edx,[eax+4] ; get ALT
mov ebp,[eax+8] ; get CIP
mov edi,[eax+12] ; get pointer to data segment
mov esi,[eax+16] ; get STK !!changed, now ECX free as counter!!
mov ebx,[eax+20] ; get FRM
mov eax,[eax] ; get PRI
add ebx,edi ; relocate frame
add esi,edi ; ESP will contain DAT+STK
add [esp+8],edi ; make STP absolute address for run-time checks
mov dword [esi], 0 ; zero this out, but we need to keep it so
; the stack frame is in tact
mov ecx,esp ; copy stack pointer
; Call compiled code via CALL NEAR <address>
call ebp
return_to_caller:
cmp dword retval,0
je return_to_caller_no_value
mov ebp,retval
mov [ebp],eax ; provide return value
return_to_caller_no_value:
mov eax,AMX_ERR_NONE
jmp _return
_return_popstack:
mov esp,ecx ; get our old stack pointer
_return:
; store machine state
push ecx
push ecx
mov ebp,amx ; get amx into EBP
mov ecx,esi ; get STK into ECX
sub ecx,edi ; correct STK
mov [ebp+_stk],ecx ; store values in AMX structure: STK, ...
pop ecx ; get orig value
mov ecx,hea ; ... HEA, ...
mov [ebp+_hea],ecx
mov ecx,ebx ; ... and FRM
sub ecx,edi ; (correct FRM)
mov [ebp+_frm],ecx
mov [ebp+_pri],eax ; also store PRI, ...
mov [ebp+_alt],edx ; ... and ALT
; return
pop ecx
sub stp,edi ; make STP relative to DAT again
add esp,4*9 ; remove temporary data
pop ebx ; restore registers that have to be preserved
pop ebp ; when using __cdecl convention
pop esi
pop edi
ret
err_stack:
mov eax,AMX_ERR_STACKERR
jmp _return_popstack
err_stacklow:
mov eax,AMX_ERR_STACKLOW
jmp _return_popstack
_CHKMARGIN_STACK: ; some run-time check routines
cmp esi,stp
jg err_stacklow
ret
err_heaplow:
mov eax,AMX_ERR_HEAPLOW
jmp _return_popstack
_CHKMARGIN_HEAP:
cmp esi,stp
jg err_stacklow
mov ebp,amx
mov ebp,[ebp+_hlw]
cmp dword hea,ebp
jl err_heaplow
ret
err_memaccess:
mov eax,AMX_ERR_MEMACCESS
jmp _return_popstack
_VERIFYADDRESS_eax: ; used in load.i, store.i & lidx
cmp eax,stp
jae err_memaccess
cmp eax,hea
jb veax1
lea ebp,[eax+edi]
cmp ebp,esi
jb err_memaccess
veax1:
ret
_VERIFYADDRESS_edx: ; used in load.i, store.i & lidx
cmp edx,stp
jae err_memaccess
cmp edx,hea
jb vedx1
lea ebp,[edx+edi]
cmp ebp,esi
jb err_memaccess
vedx1:
ret
JIT_OP_SDIV:
mov ebp,edx
xor edx,eax ; Check signs of the operands.
cdq
js sdiv_fiddle ; If the signs of the operands are different
; we'll have to fiddle around to achieve
; proper rounding towards minus infinity.
or ebp,ebp ; check for divide by zero
jz err_divide
idiv ebp ; default behavior is right in the other cases
ret
sdiv_fiddle:
or ebp,ebp ; check for divide by zero
jz err_divide
idiv ebp
or edx,edx
jz sdiv_goon ; If there's no remainder the result is correct
add edx,ebp ; else fix the result values.
dec eax ; Amazing, how simple this is...
sdiv_goon:
ret
ALIGN 4
JIT_OP_RETN:
_POP ebx ; pop frame
add esi,4 ; get rid of the extra parameter from call
mov frm,ebx
_POP ebp
add ebx,edi
add esi,ebp ; remove data from stack
ret
JIT_OP_MOVS: ;length of block to copy is already in ECX
push edi
push esi
lea esi,[edi+eax]
lea edi,[edi+edx]
push ecx ; I hope the blocks to copy are properly
shr ecx,2 ; aligned, so I don't do anything about that.
rep movsd
pop ecx
and ecx,3
rep movsb
pop esi
pop edi
ret
JIT_OP_CMPS: ;length of block to compare is already in ECX
push edi
push esi
lea esi,[edi+edx]
lea edi,[edi+eax]
xor eax,eax ; This is surely not the fastest way to do this
repe cmpsb ; but the most simple one.
je cmps1
sbb eax,eax
sbb eax,0ffffffffh
cmps1:
pop esi
pop edi
ret
JIT_OP_FILL: ;length (in bytes) of block to fill is already in ECX
push edi
lea edi,[edi+edx]
shr ecx,2 ;length in 32-bit cells
rep stosd ;the value to use is already in EAX
pop edi
ret
JIT_OP_BOUNDS:
cmp eax,0
jl err_bounds
cmp eax,ebp
jg err_bounds
ret
err_bounds:
mov eax,AMX_ERR_BOUNDS
jmp _return_popstack
_CHKDIVIDEZERO:
or ebp,ebp ; check for divide by zero
jz err_divide
ret
err_divide:
mov eax,AMX_ERR_DIVIDE
jmp _return_popstack
JIT_OP_SYSREQ:
_STK_ALIGN 32 ; align stack to 16-byte boundary and
; allocate 32 bytes of stack space
mov [esp+16], ecx
mov [esp+12], esi
mov ebp,amx ; get amx into EBP
sub esi,edi ; correct STK
mov alt,edx ; save ALT
mov [ebp+_stk],esi ; store values in AMX structure: STK,
mov esi,hea ; HEA,
mov ebx,frm ; and FRM
mov [ebp+_hea],esi
mov [ebp+_frm],ebx
lea ebx,pri ; 3rd param: addr. of retval
;Our original esi is still pushed!
mov [esp+08], ebx
mov [esp+04], eax ; 2nd param: function number
mov [esp], ebp ; 1st param: amx
call [ebp+_callback]
mov esi, [esp+12] ; restore esi
mov ecx, [esp+16] ; restore ecx
_STK_RESTORE ; restore stack pointer
cmp eax,AMX_ERR_NONE
jne _return_popstack
.continue:
mov eax,pri ; get retval into eax (PRI)
mov edx,alt ; restore ALT
mov ebx,frm ; restore FRM
add ebx,edi ; relocate frame
ret
JIT_OP_SYSREQ_D: ; (TR)
_STK_ALIGN 16 ; align stack to 16-byte boundary and
; allocate 16 bytes of stack space
mov [esp+08], ecx
mov [esp+04], esi
mov ebp,amx ; get amx into EBP
sub esi,edi ; correct STK
mov alt,edx ; save ALT
mov [ebp+_stk],esi ; store values in AMX structure: STK,
mov esi,hea ; HEA,
mov eax,frm ; and FRM
mov [ebp+_hea],esi
mov [ebp+_frm],eax ; eax & ecx are invalid by now
;esi is still pushed!
mov [esp], ebp ; 1st param: amx
call ebx ; direct call
mov ecx, [esp+08] ; restore ecx
_STK_RESTORE ; restore stack pointer
mov ebp,amx ; get amx into EBP
cmp dword [ebp+_error],AMX_ERR_NONE
jne _return_popstack; return error code, if any
; return value is in eax (PRI)
mov edx,alt ; restore ALT
mov ebx,frm ; restore FRM
add ebx,edi ; relocate frame
ret
JIT_OP_BREAK:
%ifdef DEBUGSUPPORT
_STK_ALIGN 16 ; align stack to 16-byte boundary and
; allocate 16 bytes of stack space
mov [esp+08], ecx
mov [esp+04], esi
mov ebp,amx ; get amx into EBP
sub esi,edi ; correct STK
mov [ebp+_pri],eax ; store values in AMX structure: PRI,
mov [ebp+_alt],edx ; ALT,
mov [ebp+_stk],esi ; STK,
mov esi,hea ; HEA,
mov ebx,frm ; and FRM
mov [ebp+_hea],esi
mov [ebp+_frm],ebx ; EBX & ECX are invalid by now
;??? storing CIP is not very useful, because the code changed (during JIT compile)
mov [esp], ebp ; 1st param: amx
call [ebp+_debug]
mov esi, [esp+04] ; restore esi
mov ecx, [esp+08] ; restore ecx
_STK_RESTORE ; restore stack pointer
cmp eax,AMX_ERR_NONE
jne _return_popstack; return error code, if any
mov ebp,amx ; get amx into EBP
mov eax,[ebp+_pri] ; restore values
mov edx,[ebp+_alt] ; ALT,
mov edx,alt ; restore ALT
mov ebx,frm ; restore FRM
add ebx,edi ; relocate frame
%endif
ret
JIT_OP_SWITCH:
pop ebp ; pop return address = table address
push ecx
mov ecx,[ebp] ; ECX = number of records
lea ebp,[ebp+ecx*8+8] ; set pointer _after_ LAST case
;if there are zero cases we should just skip this -- bail
test ecx, ecx
jz op_switch_jump
op_switch_loop:
cmp eax,[ebp-8] ; PRI == case label?
je op_switch_jump ; found, jump
sub ebp,8 ; position to preceding case
loop op_switch_loop ; check next case, or fall through
op_switch_jump:
pop ecx
%ifndef FORCERELOCATABLE
jmp [ebp-4] ; jump to the case instructions
%else
add ebp,[ebp-4] ; add offset to make absolute adddress
jmp ebp
%endif
; The caller of asm_runJIT() can determine the maximum size of the compiled
; code by multiplying the result of this function by the number of opcodes in
; Pawn module.
;
; unsigned long getMaxCodeSize_();
;
getMaxCodeSize:
_getMaxCodeSize:
mov eax,MAXCODESIZE
ret
section .data
ALIGN 4 ; This is essential to avoid misalignment stalls.
end_code DD 0 ; pointer to the end of the source code
compiled_code DD 0 ; pointer to compiled code (including preamble)
amxhead DD 0 ; pointer to the AMX_HEADER struct (arg #1 to runJIT)
reloc_num DD 0 ; counts the addresses in the relocation table (jumps)
lodb_and DD 0ffh, 0ffffh, 0, 0ffffffffh
;
; A list of the "run-time-library" functions that are called via indirect calls.
; So these calls don't have to be relocated. This gives also the possibility to
; replace some of these with shorter/faster non-debug or non-checking versions,
; without changing the compiled code. Instead this table could be changed...
;
verify_adr_eax DD _VERIFYADDRESS_eax
verify_adr_edx DD _VERIFYADDRESS_edx
chk_marginstack DD _CHKMARGIN_STACK
chk_marginheap DD _CHKMARGIN_HEAP
chk_dividezero DD _CHKDIVIDEZERO
jit_return DD _return
jit_retn DD JIT_OP_RETN
jit_sdiv DD JIT_OP_SDIV
jit_movs DD JIT_OP_MOVS
jit_cmps DD JIT_OP_CMPS
jit_fill DD JIT_OP_FILL
jit_bounds DD JIT_OP_BOUNDS
jit_sysreq DD JIT_OP_SYSREQ
jit_sysreq_d DD JIT_OP_SYSREQ_D
jit_break DD JIT_OP_BREAK
jit_switch DD JIT_OP_SWITCH
;
; The table for the browser/relocator function.
;
global g_flagsjit
g_flagsjit:
DD -1
DD 0
DD 1
global g_round_nearest
g_round_nearest:
DD 0.5
global amx_opcodelist_jit, _amx_opcodelist_jit
amx_opcodelist_jit:
_amx_opcodelist_jit:
DD OP_INVALID
DD OP_LOAD_PRI
DD OP_LOAD_ALT
DD OP_LOAD_S_PRI
DD OP_LOAD_S_ALT
DD OP_LREF_PRI
DD OP_LREF_ALT
DD OP_LREF_S_PRI
DD OP_LREF_S_ALT
DD OP_LOAD_I
DD OP_LODB_I
DD OP_CONST_PRI
DD OP_CONST_ALT
DD OP_ADDR_PRI
DD OP_ADDR_ALT
DD OP_STOR_PRI
DD OP_STOR_ALT
DD OP_STOR_S_PRI
DD OP_STOR_S_ALT
DD OP_SREF_PRI
DD OP_SREF_ALT
DD OP_SREF_S_PRI
DD OP_SREF_S_ALT
DD OP_STOR_I
DD OP_STRB_I
DD OP_LIDX
DD OP_LIDX_B
DD OP_IDXADDR
DD OP_IDXADDR_B
DD OP_ALIGN_PRI
DD OP_ALIGN_ALT
DD OP_LCTRL
DD OP_SCTRL
DD OP_MOVE_PRI
DD OP_MOVE_ALT
DD OP_XCHG
DD OP_PUSH_PRI
DD OP_PUSH_ALT
DD OP_PUSH_R_PRI
DD OP_PUSH_C
DD OP_PUSH
DD OP_PUSH_S
DD OP_POP_PRI
DD OP_POP_ALT
DD OP_STACK
DD OP_HEAP
DD OP_PROC
DD OP_RET
DD OP_RETN
DD OP_CALL
DD OP_CALL_I
DD OP_JUMP
DD OP_JREL
DD OP_JZER
DD OP_JNZ
DD OP_JEQ
DD OP_JNEQ
DD OP_JLESS
DD OP_JLEQ
DD OP_JGRTR
DD OP_JGEQ
DD OP_JSLESS
DD OP_JSLEQ
DD OP_JSGRTR
DD OP_JSGEQ
DD OP_SHL
DD OP_SHR
DD OP_SSHR
DD OP_SHL_C_PRI
DD OP_SHL_C_ALT
DD OP_SHR_C_PRI
DD OP_SHR_C_ALT
DD OP_SMUL
DD OP_SDIV
DD OP_SDIV_ALT
DD OP_UMUL
DD OP_UDIV
DD OP_UDIV_ALT
DD OP_ADD
DD OP_SUB
DD OP_SUB_ALT
DD OP_AND
DD OP_OR
DD OP_XOR
DD OP_NOT
DD OP_NEG
DD OP_INVERT
DD OP_ADD_C
DD OP_SMUL_C
DD OP_ZERO_PRI
DD OP_ZERO_ALT
DD OP_ZERO
DD OP_ZERO_S
DD OP_SIGN_PRI
DD OP_SIGN_ALT
DD OP_EQ
DD OP_NEQ
DD OP_LESS
DD OP_LEQ
DD OP_GRTR
DD OP_GEQ
DD OP_SLESS
DD OP_SLEQ
DD OP_SGRTR
DD OP_SGEQ
DD OP_EQ_C_PRI
DD OP_EQ_C_ALT
DD OP_INC_PRI
DD OP_INC_ALT
DD OP_INC
DD OP_INC_S
DD OP_INC_I
DD OP_DEC_PRI
DD OP_DEC_ALT
DD OP_DEC
DD OP_DEC_S
DD OP_DEC_I
DD OP_MOVS
DD OP_CMPS
DD OP_FILL
DD OP_HALT
DD OP_BOUNDS
DD OP_SYSREQ_PRI
DD OP_SYSREQ_C
DD OP_FILE
DD OP_LINE
DD OP_SYMBOL
DD OP_SRANGE
DD OP_JUMP_PRI
DD OP_SWITCH
DD OP_CASETBL
DD OP_SWAP_PRI ; TR
DD OP_SWAP_ALT ; TR
DD OP_PUSHADDR ; TR
DD OP_NOP ; TR
DD OP_SYSREQ_D ; TR
DD OP_SYMTAG ; TR
DD OP_BREAK ; TR
DD OP_FLOAT_MUL ; DA
DD OP_FLOAT_DIV ; DA
DD OP_FLOAT_ADD ; DA
DD OP_FLOAT_SUB ; DA
DD OP_FLOAT_TO ; DA
DD OP_FLOAT_ROUND ; DA
DD OP_FLOAT_CMP ; DA
END: