amxmodx/plugins/include/xs.inc
2019-01-26 09:41:45 -03:00

1571 lines
39 KiB
SourcePawn
Executable File

// vim: set ts=4 sw=4 tw=99 noet:
//
// AMX Mod X, based on AMX Mod by Aleksander Naszko ("OLO").
// Copyright (C) The AMX Mod X Development Team.
// Copyright (C) 2004 Pavol "PM" Marko
//
// This software is licensed under the GNU General Public License, version 3 or higher.
// Additional exceptions apply. For full license details, see LICENSE.txt or visit:
// https://alliedmods.net/amxmodx-license
/**
* XS Library
* Version 0.1
*
* MACROS THAT YOU CAN DEFINE BEFORE INCLUDING XS.INC:
* XS_FLEQ_TOLERANCE:
* Tolerance that is used for XS_FLEQ float nearly-equal comparisions
* DEFAULT: 0.000005
* XS_DEBUG
* Turn debug logging on
* DEFAULT: 0
* XS_LOGBUFFER_SIZE
* Buffer size for logging
* DEFAULT: 512
* XS_TASK_MAXPARAMS
* Maximal parameter count for managed tasks
* DEFAULT: 8
* XS_TASK_MAXPARAMSIZE
* Maximal size of string parameter for tasks
* Has to be power of 2 and has to be >= 8
* DEFAULT: 512
* XS_TASK_MANAGEDIDS
* Number of managed IDs for tasks.
* DEFAULT: 2048
* XS_REPLACEBUF_SIZE
* DEFAULT: 3072
*
* NOTES:
* On AMX, VexdUM is required for some math functions
* xs__ / XS__ (2 underscores) stuff is meant to be intern
* untested: never tested
* half-tested: succesfully used in other applications; not extensively tested in xs though
* tested: fully tested
* If you have any useful functions / ideas for functions, please tell me.
*/
#if defined _xs_included
#endinput
#endif
#define _xs_included
// **** CONFIG CHECK
#if !defined XS_FLEQ_TOLERANCE
#define XS_FLEQ_TOLERANCE 0.000005
#endif
#if !defined XS_DEBUG
#define XS_DEBUG 0
#endif
#if !defined XS_LOGBUFFER_SIZE
#define XS_LOGBUFFER_SIZE 512
#endif
#if !defined XS_TASK_MAXPARAMS
#define XS_TASK_MAXPARAMS 8
#endif
#if !defined XS_TASK_MAXPARAMSIZE
#define XS_TASK_MAXPARAMSIZE 512
#endif
#if !defined XS_TASK_MANAGEDIDS
#define XS_TASK_MANAGEDIDS 2048
#endif
#if !defined XS_REPLACEBUF_SIZE
#define XS_REPLACEBUF_SIZE 3072
#endif
/****** DEBUGGING / LOGING FUNCTIONS ******/
enum xs_logtypes
{
xs_debug,
xs_message,
xs_warning,
xs_error,
xs_fatalerror,
xs__assertionfailed,
// must come last
xs_logtypes_count
}
stock const xs__logtypenames[xs_logtypes_count][] = {"DEBUG", "", "WARNING", "ERROR", "FATAL ERROR", "DEBUG ASSERTION FAILED"};
// tested
stock xs_log(xs_logtypes:logtype, any:...)
{
// WARNING: Don't try to use assert in here; it uses this func
// Don't log debug if not in debug mode
#if !XS_DEBUG
if (logtype == xs_debug)
return;
#endif
new buffer[XS_LOGBUFFER_SIZE+1];
buffer[XS_LOGBUFFER_SIZE]=0;
format_args(buffer, XS_LOGBUFFER_SIZE, 1 /* go from SECOND argument*/);
new bool:addLogTypeName = strlen(xs__logtypenames[logtype]) ? true : false;
// Use AMXX's logging system
log_amx("%s%s%s", addLogTypeName ? xs__logtypenames[logtype] : "",
addLogTypeName ? ": " : "", buffer);
}
// Assertion
// tested
stock xs_assertfunc(any:exp, const desc[])
{
// Check exp
if (exp)
return 1; // ok
// not ok
// print info
xs_log(xs__assertionfailed, "%s", desc);
return 0;
}
#define xs_assert(%1,%2) if (!xs_assertfunc(%1,%2)) xs__global_null /= xs__global_null
// Assertion; only in debug mode
// untested; logical flow says it should work
#if XS_DEBUG
#define xs_assert_dbg(%1,%2) if (!xs_assertfunc(%1,%2)) xs__global_null /= xs__global_null
#else
#define xs_assert_dbg(%1,%2)
#endif
new xs__global_null = 0;
/****** MATH FUNCTIONS ******/
/****** BASIC STUFF ******/
/**
* Gets the sign of a value.
*
* @param num Number to get the sign from.
*
* @return -1 if the number is negative,
* 0 if the number is equal to 0,
* 1 if the number is positive.
*/
stock xs_sign(num)
{
return (num < 0) ? -1 : ((num == 0) ? 0 : 1);
}
/**
* Gets the sign of a float value.
*
* @param num Number to get the sign from.
*
* @return -1 if the number is negative,
* 0 if the number is equal to 0,
* 1 if the number is positive.
*/
stock xs_fsign(Float:num)
{
return (num < 0.0) ? -1 : ((num == 0.0) ? 0 : 1);
}
/**
* Gets the absolute value of a number.
*
* @param num Number to get the absolute value from.
*
* @return Absolute value of the input number.
*/
stock xs_abs(num)
{
return (num < 0) ? -num : num;
}
/**
* Checks if the number is a power of 2.
*
* @param x Number to check.
*
* @return 1 if it is a power of 2, 0 otherwise.
*/
stock xs_is_2power(x)
{
return (x!=0) && ((x&(x-1))==0);
}
/**
* Converts degrees to radians.
*
* @param x Input degrees.
*
* @return Degrees converted to radians.
*/
stock Float:xs_deg2rad(Float:x)
{
return x * 0.017453292519943;
}
/**
* Converts radians to degrees.
*
* @param x Input radians.
*
* @return Radians converted to degrees.
*/
stock Float:xs_rad2deg(Float:x)
{
return x * 57.29577951308232;
}
/**
* Converts gradians to radians.
*
* @param x Input gradians.
*
* @return Gradians converted to radians.
*/
stock Float:xs_gra2rad(Float:x)
{
return x * 0.015707963267948;
}
/**
* Converts radians to gradians.
*
* @param x Input radians.
*
* @return Radians converted to gradians.
*/
stock Float:xs_rad2gra(Float:x)
{
return x * 63.66197723675813;
}
/**
* Checks if two floating point values are nearly equal.
*
* @param %1 The first value to compare.
* @param %2 The second value to compare.
*
* @return 1 if they are nearly equal, 0 otherwise.
*/
#define XS_FLEQ(%1,%2) (((%1) <= ((%2) + XS_FLEQ_TOLERANCE)) && ((%1) >= ((%2) - XS_FLEQ_TOLERANCE)))
/**
* Calculates the reciprocal of the square root of the input value.
*
* @param x The input value.
*
* @return The reciprocal of the square root of the input value.
*/
stock Float:xs_rsqrt(Float:x)
{
return 1.0 / floatsqroot(x);
}
/**
* Calculates the square root of the input value.
*
* @note This is an alias for floatsqroot().
*
* @param x The input value.
*
* @return The square root of the input value.
*/
stock Float:xs_sqrt(Float:x)
{
return floatsqroot(x);
}
// These functions generate errors if you use the macros with wrong parameter count.
stock Float:xs_fabs(Float:pa)
{
#pragma unused pa
new rawr = you_need_one_param_for_fabs;
rawr = warning_below_shows_line_number;
#pragma unused rawr
}
stock Float:xs_asin(Float:pa,Float:pb)
{
#pragma unused pa,pb
new rawr = you_need_two_params_for_asin;
rawr = warning_below_shows_line_number;
#pragma unused rawr
}
stock Float:xs_sin(Float:pa,Float:pb)
{
#pragma unused pa,pb
new rawr = you_need_two_params_for_sin;
#pragma unused rawr
}
stock Float:xs_acos(Float:pa,Float:pb)
{
#pragma unused pa,pb
new rawr = you_need_two_params_for_acos;
rawr = warning_below_shows_line_number;
#pragma unused rawr
}
stock Float:xs_cos(Float:pa,Float:pb)
{
#pragma unused pa,pb
new rawr = you_need_two_params_for_cos;
rawr = warning_below_shows_line_number;
#pragma unused rawr
}
stock Float:xs_atan(Float:pa,Float:pb)
{
#pragma unused pa,pb
new rawr = you_need_two_params_for_atan;
rawr = warning_below_shows_line_number;
#pragma unused rawr
}
stock Float:xs_atan2(Float:pa,Float:pb)
{
#pragma unused pa,pb
new rawr = you_need_two_params_for_atan2;
rawr = warning_below_shows_line_number;
#pragma unused rawr
}
stock Float:xs_tan(Float:pa, Float:pb)
{
#pragma unused pa,pb
new rawr = you_need_two_params_for_tan;
rawr = warning_below_shows_line_number;
#pragma unused rawr
}
#define xs_fabs(%1) floatabs(%1)
#define xs_asin(%1,%2) floatasin(%1, %2)
#define xs_sin(%1,%2) floatsin(%1, %2)
#define xs_acos(%1,%2) floatacos(%1, %2)
#define xs_cos(%1,%2) floatcos(%1, %2)
#define xs_atan(%1,%2) floatatan(%1, %2)
#define xs_atan2(%1,%2) floatatan2(%1, %2)
#define xs_tan(%1,%2) floattan(%1, %2)
/****** RANDOM NUMBERS ******/
// This routine comes from the book "Inner Loops" by Rick Booth, Addison-Wesley
// (ISBN 0-201-47960-5). This is a "multiplicative congruential random number
// generator" that has been extended to 31-bits
stock xs__internalseed=0x546875;
#define XS__IL_RMULT 1103515245
/**
* Sets the seed for the random number generation.
*
* @param x The seed to set.
*
* @noreturn
*/
stock xs_seed(seed)
{
xs__internalseed = seed;
}
/**
* Retrieves a random integer.
*
* @return A random integer.
*/
stock xs_irand()
{
new lo, hi, ll, lh, hh, hl;
new result;
lo = xs__internalseed & 0xffff;
hi = xs__internalseed >> 16;
xs__internalseed = xs__internalseed * XS__IL_RMULT + 12345;
ll = lo * (XS__IL_RMULT & 0xffff);
lh = lo * (XS__IL_RMULT >> 16 );
hl = hi * (XS__IL_RMULT & 0xffff);
hh = hi * (XS__IL_RMULT >> 16 );
result = xs_abs(((ll + 12345) >> 16) + lh + hl + (hh << 16));
return result;
}
/**
* Retrieves a random float.
*
* @return A random float.
*/
stock Float:xs_frand()
{
return float(xs_irand()) / float(xs_get_maxnum()); // -1/2 should be the biggest possible positive number
}
/**
* Retrieves a random integer between the specified values.
*
* @note @pmax has to be greater than @pmin!
*
* @param pmin The minimum value.
* @param pmax The maximum value.
*
* @return A random integer.
*/
stock xs_irand_range(pmin, pmax)
{
xs_assert_dbg(pmax - pmin >= 0, "xs_irand_range: pmin > pmax");
new i = pmin + floatround(xs_frand() * float(pmax - pmin));
if (i > pmax)
i = pmax;
return i;
}
/****** VECTORS & PLANES ******/
// *** vectors
/**
* Sets vector's components to specified values.
*
* @param vec The vector to set values to.
* @param x The X component to be set.
* @param y The Y component to be set.
* @param z The Z component to be set.
*
* @noreturn
*/
stock xs_vec_set(Float:vec[], Float:x, Float:y, Float:z)
{
vec[0] = x;
vec[1] = y;
vec[2] = z;
}
/**
* Adds two vectors.
*
* @param in1 The first vector to add.
* @param in2 The second vector to add.
* @param out The output vector. Can be one of the input vectors.
*
* @noreturn
*/
stock xs_vec_add(const Float:in1[], const Float:in2[], Float:out[])
{
out[0] = in1[0] + in2[0];
out[1] = in1[1] + in2[1];
out[2] = in1[2] + in2[2];
}
/**
* Subtracts one vector from another one.
*
* @param in1 Vector to subtract from.
* @param in2 Vector to subtract from the first one.
* @param out The output vector. Can be one of the input vectors.
*
* @noreturn
*/
stock xs_vec_sub(const Float:in1[], const Float:in2[], Float:out[])
{
out[0] = in1[0] - in2[0];
out[1] = in1[1] - in2[1];
out[2] = in1[2] - in2[2];
}
/**
* Adds the second vector scaled by a scalar to the first.
*
* @param in1 Vector to add to.
* @param in2 Vector to scale and add.
* @param scalar Scalar to scale the second vector with.
* @param out The output vector. Can be one of the input vectors.
*
* @noreturn
*/
stock xs_vec_add_scaled(const Float:in1[], const Float:in2[], Float:scalar, Float:out[])
{
out[0] = in1[0] + in2[0] * scalar;
out[1] = in1[1] + in2[1] * scalar;
out[2] = in1[2] + in2[2] * scalar;
}
/**
* Subtracts the second vector scaled by a scalar from the first one.
*
* @param in1 Vector to subtract from.
* @param in2 Vector to scale and subtract.
* @param scalar Scalar to scale the second vector with.
* @param out The output vector. Can be one of the input vectors.
*
* @noreturn
*/
stock xs_vec_sub_scaled(const Float:in1[], const Float:in2[], Float:scalar, Float:out[])
{
out[0] = in1[0] - in2[0] * scalar;
out[1] = in1[1] - in2[1] * scalar;
out[2] = in1[2] - in2[2] * scalar;
}
/**
* Checks if two vectors are equal.
*
* @note If you need to check if two vectors are nearly equal,
* take a look at xs_vec_nearlyequal().
*
* @param vec1 The first input vector to check.
* @param vec2 The second input vector to check.
*
* @return 1 if vectors are equal, 0 otherwise.
*/
stock bool:xs_vec_equal(const Float:vec1[], const Float:vec2[])
{
return (vec1[0] == vec2[0]) && (vec1[1] == vec2[1]) && (vec1[2] == vec2[2]);
}
/**
* Checks if two vectors are nearly equal.
*
* @note If you need to check if two vectors are exactly equal,
* take a look at xs_vec_equal().
*
* @param vec1 The first input vector to check.
* @param vec2 The second input vector to check.
*
* @return 1 if vectors are equal, 0 otherwise.
*/
stock bool:xs_vec_nearlyequal(const Float:vec1[], const Float:vec2[])
{
return XS_FLEQ(vec1[0], vec2[0]) && XS_FLEQ(vec1[1], vec2[1]) && XS_FLEQ(vec1[2], vec2[2]);
}
/**
* Multiply a vector by a scalar value.
*
* @param vec The vector to be multiplied.
* @param scalar The scalar value to multiply the vector with.
* @param out The output vector. Can be the same as the input vector.
*
* @noreturn
*/
stock xs_vec_mul_scalar(const Float:vec[], Float:scalar, Float:out[])
{
out[0] = vec[0] * scalar;
out[1] = vec[1] * scalar;
out[2] = vec[2] * scalar;
}
/**
* Divide a vector by a scalar value.
*
* @param vec The vector to be divided.
* @param scalar The scalar value to divide the vector with.
* @param out The output vector. Can be the same as the input vector.
*
* @noreturn
*/
stock xs_vec_div_scalar(const Float:vec[], Float:scalar, Float:out[])
{
new Float:__tmp = 1.0 / scalar;
out[0] = vec[0] * __tmp;
out[1] = vec[1] * __tmp;
out[2] = vec[2] * __tmp;
}
/**
* Computes the length of a vector.
*
* @param vec The vector to compute the length of.
*
* @return The length of the input vector.
*/
stock Float:xs_vec_len(const Float:vec[])
{
return xs_sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]);
}
/**
* Computes the length of a 2D vector.
*
* @param vec The vector to compute the length of.
*
* @return The length of the input vector.
*/
stock Float:xs_vec_len_2d(const Float:vec[])
{
return xs_sqrt(vec[0]*vec[0] + vec[1]*vec[1]);
}
/**
* Computes the distance between two vectors (points).
*
* @param vec1 First vector.
* @param vec2 Second vector.
*
* @return The distance between two vectors.
*/
stock Float:xs_vec_distance(const Float:vec1[], const Float:vec2[])
{
return xs_sqrt((vec1[0]-vec2[0]) * (vec1[0]-vec2[0]) +
(vec1[1]-vec2[1]) * (vec1[1]-vec2[1]) +
(vec1[2]-vec2[2]) * (vec1[2]-vec2[2]));
}
/**
* Computes the distance between two 2D vectors (points).
*
* @param vec1 First vector.
* @param vec2 Second vector.
*
* @return The distance between two vectors.
*/
stock Float:xs_vec_distance_2d(const Float:vec1[], const Float:vec2[])
{
return xs_sqrt((vec1[0]-vec2[0]) * (vec1[0]-vec2[0]) +
(vec1[1]-vec2[1]) * (vec1[1]-vec2[1]));
}
/**
* Computes the square of the distance between two vectors (points).
* This is faster than the distance.
*
* @param vec1 First vector.
* @param vec2 Second vector.
*
* @return The square of the distance between two vectors.
*/
stock Float:xs_vec_sqdistance(const Float:vec1[], const Float:vec2[])
{
return (vec1[0]-vec2[0]) * (vec1[0]-vec2[0]) +
(vec1[1]-vec2[1]) * (vec1[1]-vec2[1]) +
(vec1[2]-vec2[2]) * (vec1[2]-vec2[2]);
}
/**
* Computes the square of the distance between two 2D vectors (points).
* This is faster than the distance.
*
* @param vec1 First vector.
* @param vec2 Second vector.
*
* @return The square of the distance between two vectors.
*/
stock Float:xs_vec_sqdistance_2d(const Float:vec1[], const Float:vec2[])
{
return (vec1[0]-vec2[0]) * (vec1[0]-vec2[0]) +
(vec1[1]-vec2[1]) * (vec1[1]-vec2[1]);
}
/**
* Normalizes a vector. Normalized vector is a vector with the length of 1 unit,
* but with the same direction as the original vector.
*
* @param vec The vector to be normalized.
* @param out The output vector. Can be the same as the input vector.
*
* @noreturn
*/
stock xs_vec_normalize(const Float:vec[], Float:out[])
{
new Float:invlen = xs_rsqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]);
out[0] = vec[0] * invlen;
out[1] = vec[1] * invlen;
out[2] = vec[2] * invlen;
}
/**
* Computes the cross product of two vectors.
*
* @param vec1 The first vector operand of the cross operation.
* @param vec2 The second vector operand of the cross operation.
* @param out The output vector. *Can't* be one of the input vectors.
*
* @noreturn
*/
stock xs_vec_cross(const Float:vec1[], const Float:vec2[], Float:out[])
{
out[0] = vec1[1]*vec2[2] - vec1[2]*vec2[1];
out[1] = vec1[2]*vec2[0] - vec1[0]*vec2[2];
out[2] = vec1[0]*vec2[1] - vec1[1]*vec2[0];
}
/**
* Computes the dot product of two vectors.
*
* @param vec1 The first vector operand of the dot operation.
* @param vec2 The second vector operand of the dot operation.
*
* @return The dot product of two input vectors.
*/
stock Float:xs_vec_dot(const Float:vec1[], const Float:vec2[])
{
return vec1[0]*vec2[0] + vec1[1]*vec2[1] + vec1[2]*vec2[2];
}
/**
* Negates a vector.
*
* @param vec The vector to negate.
* @param out The output vector. Can be the same as the input vector.
*
* @noreturn
*/
stock xs_vec_neg(const Float:vec[], Float:out[])
{
out[0] = -vec[0];
out[1] = -vec[1];
out[2] = -vec[2];
}
/**
* Copies a vector into another one.
*
* @param vecIn The vector to copy.
* @param vecOut The output vector where to copy the input vector.
*
* @noreturn
*/
stock xs_vec_copy(const Float:vecIn[], Float:vecOut[])
{
vecOut[0] = vecIn[0];
vecOut[1] = vecIn[1];
vecOut[2] = vecIn[2];
}
/**
* Computes the angle between two vectors.
*
* @param vec1 The first vector.
* @param vec2 The second vector.
*
* @return The angle between two input vectors in degrees.
*/
stock Float:xs_vec_angle(const Float:vec1[], const Float:vec2[])
{
return xs_rad2deg(xs_acos(xs_vec_dot(vec1, vec2), radian));
}
/**
* Reflects a vector about a normal.
*
* @param vec The vector to be reflected.
* @param normal The normal vector about which to reflect.
* @param out The output reflected vector.
*
* @noreturn
*/
stock xs_vec_reflect(const Float:vec[], const Float:normal[], Float:out[])
{
// normalize(vec) - (normal * 2.0 * (tmp . normal)) * length(vec)
new Float:tmp1[3];
xs_vec_normalize(vec, tmp1);
// tmp1 - (normal * 2.0 * (tmp . normal)) * length(vec)
new Float:tmp2[3];
xs_vec_mul_scalar(normal, 2.0, tmp2);
xs_vec_mul_scalar(tmp2, xs_vec_dot(tmp1, normal), tmp2);
// tmp1 - tmp2 * length(vec)
xs_vec_mul_scalar(tmp2, xs_vec_len(vec), tmp2);
// tmp1 - tmp2
xs_vec_sub(tmp1, tmp2, out);
}
/**
* Turns a 3D vector into a 2D vector.
*
* @note This function just ignores the Z (3rd) component of a 3D vector.
*
* @param vec A 3D vector to turn into a 2D vector.
* @param out The output 2D vector.
*
* @noreturn
*/
stock xs_vec_make2d(const Float:vec[3], Float:out[2])
{
out[0] = vec[0];
out[1] = vec[1];
}
// *** planes
// normal
#define XS_PLANE_A 0
#define XS_PLANE_B 1
#define XS_PLANE_C 2
// plane shift distance
#define XS_PLANE_D 3
/**
* Sets a plane to the specified values.
*
* @param plane The plane to set the values to. It's a 4D vector.
* @param a The first component of a plane to be set.
* @param b The second component of a plane to be set.
* @param c The third component of a plane to be set.
* @param d The fouth component of a plane to be set.
*
* @noreturn
*/
stock xs_plane_set(Float:plane[], Float:a, Float:b, Float:c, Float:d)
{
plane[XS_PLANE_A] = a;
plane[XS_PLANE_B] = b;
plane[XS_PLANE_C] = c;
plane[XS_PLANE_D] = d;
}
/**
* Constructs a plane out of 4 points in space.
*
* @param plane The output plane to store the newly created plane.
* @param p1 The first point of a plane.
* @param p2 The second point of a plane.
* @param p3 The third point of a plane.
*
* @noreturn
*/
stock xs_plane_3p(Float:plane[], const Float:p1[], const Float:p2[], const Float:p3[])
{
new Float:normalA[3], Float:normalB[3];
// normalA = Normalize(p3 - p1);
normalA[0] = p3[0] - p1[0];
normalA[1] = p3[1] - p1[1];
normalA[2] = p3[2] - p1[2];
xs_vec_normalize(normalA, normalA);
// normalB = Normalize(p3 - p2);
normalB[0] = p3[0] - p2[0];
normalB[1] = p3[1] - p2[1];
normalB[2] = p3[2] - p2[2];
xs_vec_normalize(normalB, normalB);
// plane normal = Normalize(normalA cross normalB)
xs_vec_cross(normalA, normalB, plane);
xs_vec_normalize(plane, plane);
// plane shift distance = (-p1) dot plane normal
new Float:__tmp[3];
xs_vec_neg(plane, __tmp);
plane[XS_PLANE_D] = xs_vec_dot(__tmp, p1);
}
/**
* Checks if two planes are equal.
*
* @note If you have to check if two planes are just nearly equal,
* take a look at xs_plane_nearlyequal().
*
* @param plane1 The first plane to check.
* @param plane2 The second plane to check.
*
* @return 1 if planes are equal, 0 otherwise.
*/
stock bool:xs_plane_equal(const Float:plane1[], const Float:plane2[])
{
if ( (plane1[0] == plane2[0]) &&
(plane1[1] == plane2[1]) &&
(plane1[2] == plane2[2]) &&
(plane1[3] == plane2[3]))
return true;
return false;
}
/**
* Checks if two planes are nearly equal.
*
* @note If you have to check if two planes are exactly equal,
* take a look at xs_plane_equal().
*
* @param plane1 The first plane to check.
* @param plane2 The second plane to check.
*
* @return 1 if planes are nearly equal, 0 otherwise.
*/
stock bool:xs_plane_nearlyequal(const Float:plane1[], const Float:plane2[])
{
if ( XS_FLEQ(plane1[0], plane2[0]) &&
XS_FLEQ(plane1[1], plane2[1]) &&
XS_FLEQ(plane1[2], plane2[2]) &&
XS_FLEQ(plane1[3], plane2[3]))
return true;
return false;
}
/**
* Computes the distance between a plane and a point.
*
* @param plane The plane to check the distance from.
* @param point The point to check the distance to.
*
* @return The distance between the input plane and point.
*/
stock Float:xs_plane_dst2point(const Float:plane[], const Float:point[])
{
// return normal dot point + D
return xs_vec_dot(plane, point) + plane[XS_PLANE_D];
}
/**
* Checks whether a plane intersects with the ray starting at @rayStart and
* going to @rayDir direction.
* If it does intersect, outputs the intersection point in @out.
*
* @param plane The plane to check intersection with.
* @param rayStart The starting point of the ray.
* @param rayDir Direction in which the ray is going.
* @param out The vector to copy the intersection point to, if it exists.
*
* @return true if they intersect, false otherwise.
*/
stock bool:xs_plane_rayintersect(const Float:plane[], const Float:rayStart[], const Float:rayDir[], Float:out[])
{
new Float:a = xs_vec_dot(plane, rayDir);
if (a == 0.0)
return false; // ray is parallel to plane
// if (distance plane<->(rayStart + rayDir) > distance plane<->rayStart) and both have the same sign, the ray
// goes away from the plane
new Float:rsplusrd[3];
xs_vec_add(rayStart, rayDir, rsplusrd);
new Float:dst1 = xs_plane_dst2point(plane, rsplusrd);
new Float:dst2 = xs_plane_dst2point(plane, rayStart);
if (xs_fabs(dst1) > xs_fabs(dst2) && xs_fsign(dst1) == xs_fsign(dst2))
return false;
// out = rayStart - rayDir * ((distance plane<->rayStart) / a)
new Float:__tmp[3];
xs_vec_mul_scalar(rayDir, xs_plane_dst2point(plane, rayStart) / a, __tmp);
// out = rayStart - tmp
xs_vec_sub(rayStart, __tmp, out);
return true;
}
/**
* Checks if a point is on a specified plane.
*
* @param plane The plane to check.
* @param point The point to check.
*
* @return true if the point is on the plane, false otherwise.
*/
stock bool:xs_point_onplane(const Float:plane[], const Float:point[])
{
return XS_FLEQ(xs_plane_dst2point(plane, point), 0.0);
}
/**
* Projects a point on the plane. Stores the projected point in @out.
*
* @param plane The plane to project the point onto.
* @param point The point to project onto the plane.
* @param out The vector to copy the projected point into.
*
* @noreturn
*/
stock xs_projpoint_onplane(const Float:plane[], const Float:point[], Float:out[])
{
new Float:__tmp[3];
// out = point - (plane normal * distance point<->plane)
xs_vec_copy(plane, __tmp);
xs_vec_mul_scalar(__tmp, xs_plane_dst2point(plane, point), __tmp);
xs_vec_sub(point, __tmp, out);
}
/**
* Copies a plane.
*
* @param planeIn The plane to copy.
* @param planeOut The plane to store the copy into.
*
* @noreturn
*/
stock xs_plane_copy(const Float:planeIn[], Float:planeOut[])
{
planeOut[0] = planeIn[0];
planeOut[1] = planeIn[1];
planeOut[2] = planeIn[2];
planeOut[3] = planeIn[3];
}
/****** HL ENGINE SPECIFIC STUFF ******/
// angle indexes
#define XS_PITCH 0 // up / down
#define XS_YAW 1 // left / right
#define XS_ROLL 2 // fall over
/**
* Computes forward, right and up vectors from given angles.
*
* @param angles Angles to compute vectors from.
* @param fwd The vector to store the forward vector into.
* @param right The vector to store the right vector into.
* @param up The vector to store the up vector into.
*
* @noreturn
*/
stock xs_anglevectors(const Float:angles[3], Float:fwd[3], Float:right[3], Float:up[3])
{
// sin (s) and cos (c) for yaw (y), pitch (p) and roll (r)
new Float:sr, Float:sp, Float:sy, Float:cr, Float:cp, Float:cy;
sy = xs_sin(angles[XS_YAW], degrees);
cy = xs_cos(angles[XS_YAW], degrees);
sp = xs_sin(angles[XS_PITCH], degrees);
cp = xs_cos(angles[XS_PITCH], degrees);
sr = xs_sin(angles[XS_ROLL], degrees);
cr = xs_cos(angles[XS_ROLL], degrees);
fwd[0] = cp*cy;
fwd[1] = cp*sy;
fwd[2] = -sp;
right[0] = (-1*sr*sp*cy + -1*cr*-sy);
right[1] = (-1*sr*sp*sy + -1*cr*cy);
right[2] = -1*sr*cp;
up[0] = (cr*sp*cy + -sr*-sy);
up[1] = (cr*sp*sy + -sr*cy);
up[2] = cr*cp;
}
/****** STRING FUNCS *******/
/**
* Finds a character in a string and returns its position in the string.
*
* @param str The string to search in.
* @param chr The character to search for in the string.
*
* @return The character position if found, -1 otherwise.
*/
stock xs_strchr(const str[], chr)
{
for (new i = 0; str[i] != 0; ++i)
{
if (str[i] == chr)
return i;
}
return -1;
}
/**
* Remove @charstotrim number of characters from @stringtotrim,
* either from the beginning or the end of the string.
*
* @param stringtotrim The string to be trimmed.
* @param charstostrim The number of characters to trim.
* @param fromleft If set to true, the string will be trimmer from the left.
* If false, it will be trimmed from the right.
*
* @noreturn
*/
stock xs_strtrim(stringtotrim[], charstotrim, bool:fromleft = true)
{
if (charstotrim <= 0)
return;
if (fromleft)
{
new maxlen = strlen(stringtotrim);
if (charstotrim > maxlen)
charstotrim = maxlen;
// In format, input and output regions can overlap
format(stringtotrim, maxlen, "%s", stringtotrim[charstotrim]);
}
else
{
new maxlen = strlen(stringtotrim) - charstotrim;
if (maxlen < 0)
maxlen = 0;
// In format, input and output regions can overlap
format(stringtotrim, maxlen, "%s", stringtotrim);
}
}
/**
* Copies characters from @oldmsg to @newmsg, starting at @start and ending
* at @end (includes the end character).
*
* @param oldmsg The string to copy from.
* @param newmsg The string to copy to.
* @param start Starting position of the @oldmsg string to copy from.
* @param end Ending position of the @oldmsg string to copy from.
* @param outlen If positive, specifies the maximum number of characters
* to be copied. Otherwise, the function assumes that
* newmsg is at least @end - @start + 1 characters long.
*
* @noreturn
*/
stock xs_strmid(const oldmsg[], newmsg[], start, end, outlen=-1)
{
new len = strlen(oldmsg);
if(start < 0)
start = 0;
++end; // Include end
if(end <= start || end > len)
end = len;
new j = 0, i = start;
for(; (i < end) && (outlen--);)
newmsg[j++] = oldmsg[i++];
newmsg[j] = 0;
}
/**
* "Explodes" a string, breaking it at the @delimeter character and putting
* each exploded part into the @output array.
*
* @param input The input string to be exploded.
* @param output The output array of string where exploded string will be stored.
* @param delimeter The character to break the string at.
* @param maxelems Maximum amount of elements in @output.
* @param elemsize Maximum size of each string in the @output array.
*
* @return The number of strings successfully exploded.
*/
stock xs_explode(const input[], output[][], delimiter, maxelems, elemsize)
{
new nIdx = 0;
new nLen = 0;
new copied = 0;
while(nLen < strlen(input) && nIdx < maxelems)
{
copied = copyc(output[nIdx++], elemsize, input[nLen], delimiter);
if (copied == elemsize)
{
// maybe it got force-stopped because of maxsize
// so check whether we have to skip something
if (input[nLen + copied] != delimiter && input[nLen + copied] != 0)
{
new found = xs_strchr(input[nLen + copied], delimiter);
if (found == -1)
break;
copied += found;
}
}
nLen += copied + 1; // +1: skip delimiter
}
return nIdx;
}
/**
* The opposite of xs_explode(). Takes an array of strings and puts them together
* in a single string, delimeted by the @delimeter character.
*
* @param output The string to store the impoded string into.
* @param outsize The size of the output buffer.
* @param delimeter The character to put between imploded strings.
* @param input The array of strings to implode.
* @param elemsnum The number of strings in the input array.
*
* @return The number of characters in the final output buffer.
*/
stock xs_implode(output[], outsize, delimiter, const input[][], elemsnum)
{
new pos = 0;
new copied;
for (new i = 0; i < elemsnum; ++i)
{
copied = copy(output[pos], outsize - pos, input[i]);
pos += copied;
if (pos >= outsize)
return outsize;
// append delimiter
output[pos] = delimiter;
++pos;
// last check
if (pos >= outsize)
return outsize;
}
output[--pos] = 0; // The last char would be delimiter, so skip it.
return pos;
}
stock xs__replace_buf[XS_REPLACEBUF_SIZE];
/**
* Replaces all occurencies of @what in @text with @with.
*
* @param text The text to search in.
* @param len The maximum size of the @text buffer.
* @param what What to search for.
* @param with What to replace occurencies with.
*
* @return Returns the number of replaced items.
*/
stock xs_replace(text[], len, const what[], const with[])
{
new occur = 0;
new i = 0;
new bufPos = 0;
new replaceLen = strlen(with);
new whatLen = strlen(what);
for (; text[i]; ++i)
{
if (text[i] == what[0])
{
new posInWhat=0;
new j;
for (j = i; j-i < replaceLen && text[j]; ++j, ++posInWhat)
{
if (text[j] != what[posInWhat])
break;
}
if (whatLen == posInWhat)
{
for (new i2 = 0; i2 < replaceLen && bufPos < XS_REPLACEBUF_SIZE; ++i2)
xs__replace_buf[bufPos++] = with[i2];
i = j - 1;
++occur;
if (bufPos >= XS_REPLACEBUF_SIZE)
return occur;
continue;
}
}
if (bufPos >= XS_REPLACEBUF_SIZE)
return occur;
xs__replace_buf[bufPos++] = text[i];
}
xs__replace_buf[bufPos] = 0;
copy(text, len, xs__replace_buf);
return occur;
}
/**
* Replaces all occurencies of @what character in @text with @with character.
*
* @param text The text to search in.
* @param len The maximum size of the @text buffer.
* @param what What character to search for.
* @param with What charactear to replace occurencies with.
*
* @return The number of replaced characters.
*/
stock xs_replace_char(text[], len, what, with)
{
// let the xs_replace function do the work
new arr[4];
arr[0] = what;
arr[1] = 0;
arr[2] = with;
arr[3] = 0;
return xs_replace(text, len, arr[0], arr[2]);
}
/****** MISC FUNCS *******/
/**
* Retrieves the name of a command identified by its ID.
*
* @param cid The command ID.
* @param namestr The buffer where to store command's name.
* @param namelen The maximum size of the output buffer.
*
* @noreturn
*/
stock xs_concmd_name(cid, namestr[], namelen)
{
new dummy1;
new dummy2[1];
get_concmd(cid, namestr, namelen, dummy1, dummy2, 0, 0);
}
/**
* Checks whether there are at least @num free visible slots.
*
* @param num The number of slots to check.
*
* @return true if there are at least that many free, false otherwise.
*/
stock bool:xs_freevisibleslots(num)
{
new maxplayers = get_cvar_num("sv_visiblemaxplayers");
if (maxplayers <= 0)
maxplayers = MaxClients;
return (get_playersnum(1) <= maxplayers-num) ? true : false;
}
stock xs__maxnum = 0;
/**
* Returns the biggest possible positive number.
*
* @return The biggest possible positive number.
*/
stock xs_get_maxnum()
{
if (!xs__maxnum)
{
// build it
xs__maxnum = ((1 << (cellbits - 2)) - 1 ) | (1 << (cellbits - 2));
/*
new bits = get_cellsize() * 8 - 1;
for (new i = 0; i < bits; ++i)
xs__maxnum |= 1 << i;
*/
}
return xs__maxnum;
}
/**
* Returns the smallest possible negative number.
*
* @return The smallest possible negative number.
*/
stock xs_get_minnum()
{
return xs_get_maxnum() + 1;
}
// *** The following two functions were created by Damaged Soul.
// Max messages reserved by engine (DO NOT MODIFY)
#define XS__MAX_ENGINE_MESSAGES 63
// Max possible messages for mod, is 255 really the limit?
#define XS__MAX_POSSIBLE_MESSAGES 255
// Returns max number of messages for mod
stock xs_get_maxmessages()
{
new name[2];
for (new i = XS__MAX_ENGINE_MESSAGES + 1; i <= XS__MAX_POSSIBLE_MESSAGES; i++)
if (!get_user_msgname(i, name, 1))
return i - 1;
return XS__MAX_POSSIBLE_MESSAGES;
}
// Returns true if msgid is a valid message
stock bool:xs_is_msg_valid(msgid)
{
new name[2];
new retval = get_user_msgname(msgid, name, 1);
if (msgid < 1 || (msgid > XS__MAX_ENGINE_MESSAGES && !retval))
return false;
return true;
}
/****** MANAGED TASKS ******/
// ***** managed task ids
stock xs_find_freetaskid()
{
for (new i = 1; i <= XS_TASK_MANAGEDIDS; ++i)
{
if (!task_exists(i))
return i;
}
return -1;
}
// ***** managed tasks
enum xs_paramtypes
{
xs_invalid = 0,
xs_int,
xs_float,
xs_string
}
// new task
stock xs__TaskParam[ 1 + // number of parameters
XS_TASK_MAXPARAMS + // parameter types
(XS_TASK_MAXPARAMSIZE char) * XS_TASK_MAXPARAMS]; // space for len + value
stock Float:xs__TaskInterval = 0.0;
stock xs__TaskFlags[5];
stock xs__TaskFunc[48];
stock xs__TaskId;
stock xs__TaskRepeat;
#define xs__TaskParamCount xs__TaskParam[0]
#define xs__TaskParamType[%1] xs__TaskParam[1 + %1]
#define xs__TaskParamValue[%1] xs__TaskParam[1 + XS_TASK_MAXPARAMS + (%1 * (XS_TASK_MAXPARAMSIZE char))]
// incoming task
stock xs__ITaskParam[ 1 + // number of parameters
XS_TASK_MAXPARAMS + // parameter types
(XS_TASK_MAXPARAMSIZE char) * XS_TASK_MAXPARAMS]; // space for len + value
stock xs__ITaskId;
#define xs__ITaskParamCount xs__ITaskParam[0]
#define xs__ITaskParamType[%1] xs__ITaskParam[1 + %1]
#define xs__ITaskParamValue[%1] xs__ITaskParam[1 + XS_TASK_MAXPARAMS + (%1 * (XS_TASK_MAXPARAMSIZE char))]
// tested
stock xs_task_begin(Float:interval, const func[], id = 0, const flags[] = "", repeat = 0)
{
xs_assert(xs__TaskInterval == 0.0, "New xs_task_begin called before xs_task_end");
xs__TaskInterval = interval;
if (xs__TaskInterval < 0.1)
xs__TaskInterval = 0.1;
copy(xs__TaskFunc, 47, func);
xs__TaskId = id;
copy(xs__TaskFlags, 4, flags);
xs__TaskRepeat = repeat;
xs__TaskParamCount = 0;
}
// tested
stock xs_task_pushint(value, bool:__isfl=false /*internal use only*/)
{
xs_assert(xs__TaskInterval, "xs_task_push* called without xs_task_begin");
if (xs__TaskParamCount >= XS_TASK_MAXPARAMS)
return 0;
xs__TaskParamType[xs__TaskParamCount] = __isfl ? xs_float : xs_int;
xs__TaskParamValue[xs__TaskParamCount] = value;
++xs__TaskParamCount;
return 1;
}
// tested
stock xs_task_pushfl(Float:value)
{
return xs_task_pushint(_:value, true);
}
// tested
stock xs_task_pushstr(const value[])
{
xs_assert(xs__TaskInterval, "xs_task_push* called without xs_task_begin");
if (xs__TaskParamCount >= XS_TASK_MAXPARAMS)
return 0;
xs__TaskParamType[xs__TaskParamCount] = xs_string;
strpack(xs__TaskParamValue[xs__TaskParamCount], value);
++xs__TaskParamCount;
return 1;
}
// tested
stock xs_task_end()
{
xs_assert(xs__TaskInterval, "xs_task_end called without xs_task_begin");
// find a task id if needed
if (xs__TaskId == -1)
{
xs__TaskId = xs_find_freetaskid();
if (xs__TaskId == -1)
{
// not found
xs__TaskInterval = 0.0;
return -1;
}
}
set_task(xs__TaskInterval, xs__TaskFunc, xs__TaskId, xs__TaskParam,
1 + xs__TaskParamCount * (XS_TASK_MAXPARAMSIZE char), xs__TaskFlags, xs__TaskRepeat);
xs__TaskInterval = 0.0;
return xs__TaskId;
}
// tested
#define XS_MAKE_TASKFUNC(%1) public %1(const _xs__taskparam[], _xs__taskid) if(xs__task_setup(_xs__taskparam, _xs__taskid))
// tested
stock xs__task_setup(const param[], taskid)
{
xs__ITaskId = taskid;
new len = 1 + param[0] * (XS_TASK_MAXPARAMSIZE char);
for (new i = 0; i < len; ++i)
xs__ITaskParam[i] = param[i];
return 1;
}
// tested
stock xs_task_readid()
{
return xs__ITaskId;
}
// tested
stock xs_task_paramcount()
{
return xs__ITaskParamCount;
}
// tested
stock xs_paramtypes:xs_task_paramtype(paramid)
{
if (paramid < 0 || paramid >= xs__ITaskParamCount)
return xs_invalid;
return xs_paramtypes:xs__ITaskParamType[paramid];
}
// tested
stock xs_task_paramint(paramid)
{
if (paramid < 0 || paramid >= xs__ITaskParamCount)
return 0;
if (xs__ITaskParamType[paramid] != _:xs_int)
return 0;
return xs__ITaskParamValue[paramid];
}
// tested
stock Float:xs_task_paramfl(paramid)
{
if (paramid < 0 || paramid >= xs__ITaskParamCount)
return 0.0;
if (xs__ITaskParamType[paramid] != _:xs_float)
return 0.0;
return Float:xs__ITaskParamValue[paramid];
}
// tested
stock xs_task_paramstr(paramid, out[], maxlen)
{
#pragma unused maxlen
if (paramid < 0 || paramid >= xs__ITaskParamCount)
return 0;
if (xs__ITaskParamType[paramid] != _:xs_string)
return 0;
strunpack(out, xs__ITaskParamValue[paramid]);
return 1;
}