mirror of
https://github.com/alliedmodders/amxmodx.git
synced 2024-12-25 22:35:37 +03:00
3361 lines
106 KiB
C
3361 lines
106 KiB
C
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains C code routines that are called by the SQLite parser
|
|
** when syntax rules are reduced. The routines in this file handle the
|
|
** following kinds of SQL syntax:
|
|
**
|
|
** CREATE TABLE
|
|
** DROP TABLE
|
|
** CREATE INDEX
|
|
** DROP INDEX
|
|
** creating ID lists
|
|
** BEGIN TRANSACTION
|
|
** COMMIT
|
|
** ROLLBACK
|
|
**
|
|
** $Id$
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#include <ctype.h>
|
|
|
|
/*
|
|
** This routine is called when a new SQL statement is beginning to
|
|
** be parsed. Initialize the pParse structure as needed.
|
|
*/
|
|
void sqlite3BeginParse(Parse *pParse, int explainFlag){
|
|
pParse->explain = explainFlag;
|
|
pParse->nVar = 0;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
/*
|
|
** The TableLock structure is only used by the sqlite3TableLock() and
|
|
** codeTableLocks() functions.
|
|
*/
|
|
struct TableLock {
|
|
int iDb; /* The database containing the table to be locked */
|
|
int iTab; /* The root page of the table to be locked */
|
|
u8 isWriteLock; /* True for write lock. False for a read lock */
|
|
const char *zName; /* Name of the table */
|
|
};
|
|
|
|
/*
|
|
** Record the fact that we want to lock a table at run-time.
|
|
**
|
|
** The table to be locked has root page iTab and is found in database iDb.
|
|
** A read or a write lock can be taken depending on isWritelock.
|
|
**
|
|
** This routine just records the fact that the lock is desired. The
|
|
** code to make the lock occur is generated by a later call to
|
|
** codeTableLocks() which occurs during sqlite3FinishCoding().
|
|
*/
|
|
void sqlite3TableLock(
|
|
Parse *pParse, /* Parsing context */
|
|
int iDb, /* Index of the database containing the table to lock */
|
|
int iTab, /* Root page number of the table to be locked */
|
|
u8 isWriteLock, /* True for a write lock */
|
|
const char *zName /* Name of the table to be locked */
|
|
){
|
|
int i;
|
|
int nBytes;
|
|
TableLock *p;
|
|
|
|
if( 0==sqlite3ThreadDataReadOnly()->useSharedData || iDb<0 ){
|
|
return;
|
|
}
|
|
|
|
for(i=0; i<pParse->nTableLock; i++){
|
|
p = &pParse->aTableLock[i];
|
|
if( p->iDb==iDb && p->iTab==iTab ){
|
|
p->isWriteLock = (p->isWriteLock || isWriteLock);
|
|
return;
|
|
}
|
|
}
|
|
|
|
nBytes = sizeof(TableLock) * (pParse->nTableLock+1);
|
|
sqliteReallocOrFree((void **)&pParse->aTableLock, nBytes);
|
|
if( pParse->aTableLock ){
|
|
p = &pParse->aTableLock[pParse->nTableLock++];
|
|
p->iDb = iDb;
|
|
p->iTab = iTab;
|
|
p->isWriteLock = isWriteLock;
|
|
p->zName = zName;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Code an OP_TableLock instruction for each table locked by the
|
|
** statement (configured by calls to sqlite3TableLock()).
|
|
*/
|
|
static void codeTableLocks(Parse *pParse){
|
|
int i;
|
|
Vdbe *pVdbe;
|
|
assert( sqlite3ThreadDataReadOnly()->useSharedData || pParse->nTableLock==0 );
|
|
|
|
if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){
|
|
return;
|
|
}
|
|
|
|
for(i=0; i<pParse->nTableLock; i++){
|
|
TableLock *p = &pParse->aTableLock[i];
|
|
int p1 = p->iDb;
|
|
if( p->isWriteLock ){
|
|
p1 = -1*(p1+1);
|
|
}
|
|
sqlite3VdbeOp3(pVdbe, OP_TableLock, p1, p->iTab, p->zName, P3_STATIC);
|
|
}
|
|
}
|
|
#else
|
|
#define codeTableLocks(x)
|
|
#endif
|
|
|
|
/*
|
|
** This routine is called after a single SQL statement has been
|
|
** parsed and a VDBE program to execute that statement has been
|
|
** prepared. This routine puts the finishing touches on the
|
|
** VDBE program and resets the pParse structure for the next
|
|
** parse.
|
|
**
|
|
** Note that if an error occurred, it might be the case that
|
|
** no VDBE code was generated.
|
|
*/
|
|
void sqlite3FinishCoding(Parse *pParse){
|
|
sqlite3 *db;
|
|
Vdbe *v;
|
|
|
|
if( sqlite3MallocFailed() ) return;
|
|
if( pParse->nested ) return;
|
|
if( !pParse->pVdbe ){
|
|
if( pParse->rc==SQLITE_OK && pParse->nErr ){
|
|
pParse->rc = SQLITE_ERROR;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Begin by generating some termination code at the end of the
|
|
** vdbe program
|
|
*/
|
|
db = pParse->db;
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
sqlite3VdbeAddOp(v, OP_Halt, 0, 0);
|
|
|
|
/* The cookie mask contains one bit for each database file open.
|
|
** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
|
|
** set for each database that is used. Generate code to start a
|
|
** transaction on each used database and to verify the schema cookie
|
|
** on each used database.
|
|
*/
|
|
if( pParse->cookieGoto>0 ){
|
|
u32 mask;
|
|
int iDb;
|
|
sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
|
|
for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
|
|
if( (mask & pParse->cookieMask)==0 ) continue;
|
|
sqlite3VdbeAddOp(v, OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
|
|
sqlite3VdbeAddOp(v, OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( pParse->pVirtualLock ){
|
|
char *vtab = (char *)pParse->pVirtualLock->pVtab;
|
|
sqlite3VdbeOp3(v, OP_VBegin, 0, 0, vtab, P3_VTAB);
|
|
}
|
|
#endif
|
|
|
|
/* Once all the cookies have been verified and transactions opened,
|
|
** obtain the required table-locks. This is a no-op unless the
|
|
** shared-cache feature is enabled.
|
|
*/
|
|
codeTableLocks(pParse);
|
|
sqlite3VdbeAddOp(v, OP_Goto, 0, pParse->cookieGoto);
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_TRACE
|
|
/* Add a No-op that contains the complete text of the compiled SQL
|
|
** statement as its P3 argument. This does not change the functionality
|
|
** of the program.
|
|
**
|
|
** This is used to implement sqlite3_trace().
|
|
*/
|
|
sqlite3VdbeOp3(v, OP_Noop, 0, 0, pParse->zSql, pParse->zTail-pParse->zSql);
|
|
#endif /* SQLITE_OMIT_TRACE */
|
|
}
|
|
|
|
|
|
/* Get the VDBE program ready for execution
|
|
*/
|
|
if( v && pParse->nErr==0 && !sqlite3MallocFailed() ){
|
|
FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
|
|
sqlite3VdbeTrace(v, trace);
|
|
sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
|
|
pParse->nTab+3, pParse->explain);
|
|
pParse->rc = SQLITE_DONE;
|
|
pParse->colNamesSet = 0;
|
|
}else if( pParse->rc==SQLITE_OK ){
|
|
pParse->rc = SQLITE_ERROR;
|
|
}
|
|
pParse->nTab = 0;
|
|
pParse->nMem = 0;
|
|
pParse->nSet = 0;
|
|
pParse->nVar = 0;
|
|
pParse->cookieMask = 0;
|
|
pParse->cookieGoto = 0;
|
|
}
|
|
|
|
/*
|
|
** Run the parser and code generator recursively in order to generate
|
|
** code for the SQL statement given onto the end of the pParse context
|
|
** currently under construction. When the parser is run recursively
|
|
** this way, the final OP_Halt is not appended and other initialization
|
|
** and finalization steps are omitted because those are handling by the
|
|
** outermost parser.
|
|
**
|
|
** Not everything is nestable. This facility is designed to permit
|
|
** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
|
|
** care if you decide to try to use this routine for some other purposes.
|
|
*/
|
|
void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
|
|
va_list ap;
|
|
char *zSql;
|
|
# define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
|
|
char saveBuf[SAVE_SZ];
|
|
|
|
if( pParse->nErr ) return;
|
|
assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
|
|
va_start(ap, zFormat);
|
|
zSql = sqlite3VMPrintf(zFormat, ap);
|
|
va_end(ap);
|
|
if( zSql==0 ){
|
|
return; /* A malloc must have failed */
|
|
}
|
|
pParse->nested++;
|
|
memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
|
|
memset(&pParse->nVar, 0, SAVE_SZ);
|
|
sqlite3RunParser(pParse, zSql, 0);
|
|
sqliteFree(zSql);
|
|
memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
|
|
pParse->nested--;
|
|
}
|
|
|
|
/*
|
|
** Locate the in-memory structure that describes a particular database
|
|
** table given the name of that table and (optionally) the name of the
|
|
** database containing the table. Return NULL if not found.
|
|
**
|
|
** If zDatabase is 0, all databases are searched for the table and the
|
|
** first matching table is returned. (No checking for duplicate table
|
|
** names is done.) The search order is TEMP first, then MAIN, then any
|
|
** auxiliary databases added using the ATTACH command.
|
|
**
|
|
** See also sqlite3LocateTable().
|
|
*/
|
|
Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
|
|
Table *p = 0;
|
|
int i;
|
|
assert( zName!=0 );
|
|
for(i=OMIT_TEMPDB; i<db->nDb; i++){
|
|
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
|
if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
|
|
p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName)+1);
|
|
if( p ) break;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Locate the in-memory structure that describes a particular database
|
|
** table given the name of that table and (optionally) the name of the
|
|
** database containing the table. Return NULL if not found. Also leave an
|
|
** error message in pParse->zErrMsg.
|
|
**
|
|
** The difference between this routine and sqlite3FindTable() is that this
|
|
** routine leaves an error message in pParse->zErrMsg where
|
|
** sqlite3FindTable() does not.
|
|
*/
|
|
Table *sqlite3LocateTable(Parse *pParse, const char *zName, const char *zDbase){
|
|
Table *p;
|
|
|
|
/* Read the database schema. If an error occurs, leave an error message
|
|
** and code in pParse and return NULL. */
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
return 0;
|
|
}
|
|
|
|
p = sqlite3FindTable(pParse->db, zName, zDbase);
|
|
if( p==0 ){
|
|
if( zDbase ){
|
|
sqlite3ErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
|
|
}else{
|
|
sqlite3ErrorMsg(pParse, "no such table: %s", zName);
|
|
}
|
|
pParse->checkSchema = 1;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Locate the in-memory structure that describes
|
|
** a particular index given the name of that index
|
|
** and the name of the database that contains the index.
|
|
** Return NULL if not found.
|
|
**
|
|
** If zDatabase is 0, all databases are searched for the
|
|
** table and the first matching index is returned. (No checking
|
|
** for duplicate index names is done.) The search order is
|
|
** TEMP first, then MAIN, then any auxiliary databases added
|
|
** using the ATTACH command.
|
|
*/
|
|
Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
|
|
Index *p = 0;
|
|
int i;
|
|
for(i=OMIT_TEMPDB; i<db->nDb; i++){
|
|
int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
|
Schema *pSchema = db->aDb[j].pSchema;
|
|
if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
|
|
assert( pSchema || (j==1 && !db->aDb[1].pBt) );
|
|
if( pSchema ){
|
|
p = sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName)+1);
|
|
}
|
|
if( p ) break;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Reclaim the memory used by an index
|
|
*/
|
|
static void freeIndex(Index *p){
|
|
sqliteFree(p->zColAff);
|
|
sqliteFree(p);
|
|
}
|
|
|
|
/*
|
|
** Remove the given index from the index hash table, and free
|
|
** its memory structures.
|
|
**
|
|
** The index is removed from the database hash tables but
|
|
** it is not unlinked from the Table that it indexes.
|
|
** Unlinking from the Table must be done by the calling function.
|
|
*/
|
|
static void sqliteDeleteIndex(Index *p){
|
|
Index *pOld;
|
|
const char *zName = p->zName;
|
|
|
|
pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen( zName)+1, 0);
|
|
assert( pOld==0 || pOld==p );
|
|
freeIndex(p);
|
|
}
|
|
|
|
/*
|
|
** For the index called zIdxName which is found in the database iDb,
|
|
** unlike that index from its Table then remove the index from
|
|
** the index hash table and free all memory structures associated
|
|
** with the index.
|
|
*/
|
|
void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
|
|
Index *pIndex;
|
|
int len;
|
|
Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
|
|
|
|
len = strlen(zIdxName);
|
|
pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0);
|
|
if( pIndex ){
|
|
if( pIndex->pTable->pIndex==pIndex ){
|
|
pIndex->pTable->pIndex = pIndex->pNext;
|
|
}else{
|
|
Index *p;
|
|
for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
|
|
if( p && p->pNext==pIndex ){
|
|
p->pNext = pIndex->pNext;
|
|
}
|
|
}
|
|
freeIndex(pIndex);
|
|
}
|
|
db->flags |= SQLITE_InternChanges;
|
|
}
|
|
|
|
/*
|
|
** Erase all schema information from the in-memory hash tables of
|
|
** a single database. This routine is called to reclaim memory
|
|
** before the database closes. It is also called during a rollback
|
|
** if there were schema changes during the transaction or if a
|
|
** schema-cookie mismatch occurs.
|
|
**
|
|
** If iDb<=0 then reset the internal schema tables for all database
|
|
** files. If iDb>=2 then reset the internal schema for only the
|
|
** single file indicated.
|
|
*/
|
|
void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
|
|
int i, j;
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
for(i=iDb; i<db->nDb; i++){
|
|
Db *pDb = &db->aDb[i];
|
|
if( pDb->pSchema ){
|
|
sqlite3SchemaFree(pDb->pSchema);
|
|
}
|
|
if( iDb>0 ) return;
|
|
}
|
|
assert( iDb==0 );
|
|
db->flags &= ~SQLITE_InternChanges;
|
|
|
|
/* If one or more of the auxiliary database files has been closed,
|
|
** then remove them from the auxiliary database list. We take the
|
|
** opportunity to do this here since we have just deleted all of the
|
|
** schema hash tables and therefore do not have to make any changes
|
|
** to any of those tables.
|
|
*/
|
|
for(i=0; i<db->nDb; i++){
|
|
struct Db *pDb = &db->aDb[i];
|
|
if( pDb->pBt==0 ){
|
|
if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
|
|
pDb->pAux = 0;
|
|
}
|
|
}
|
|
for(i=j=2; i<db->nDb; i++){
|
|
struct Db *pDb = &db->aDb[i];
|
|
if( pDb->pBt==0 ){
|
|
sqliteFree(pDb->zName);
|
|
pDb->zName = 0;
|
|
continue;
|
|
}
|
|
if( j<i ){
|
|
db->aDb[j] = db->aDb[i];
|
|
}
|
|
j++;
|
|
}
|
|
memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
|
|
db->nDb = j;
|
|
if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
|
|
memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
|
|
sqliteFree(db->aDb);
|
|
db->aDb = db->aDbStatic;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine is called whenever a rollback occurs. If there were
|
|
** schema changes during the transaction, then we have to reset the
|
|
** internal hash tables and reload them from disk.
|
|
*/
|
|
void sqlite3RollbackInternalChanges(sqlite3 *db){
|
|
if( db->flags & SQLITE_InternChanges ){
|
|
sqlite3ResetInternalSchema(db, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine is called when a commit occurs.
|
|
*/
|
|
void sqlite3CommitInternalChanges(sqlite3 *db){
|
|
db->flags &= ~SQLITE_InternChanges;
|
|
}
|
|
|
|
/*
|
|
** Clear the column names from a table or view.
|
|
*/
|
|
static void sqliteResetColumnNames(Table *pTable){
|
|
int i;
|
|
Column *pCol;
|
|
assert( pTable!=0 );
|
|
if( (pCol = pTable->aCol)!=0 ){
|
|
for(i=0; i<pTable->nCol; i++, pCol++){
|
|
sqliteFree(pCol->zName);
|
|
sqlite3ExprDelete(pCol->pDflt);
|
|
sqliteFree(pCol->zType);
|
|
sqliteFree(pCol->zColl);
|
|
}
|
|
sqliteFree(pTable->aCol);
|
|
}
|
|
pTable->aCol = 0;
|
|
pTable->nCol = 0;
|
|
}
|
|
|
|
/*
|
|
** Remove the memory data structures associated with the given
|
|
** Table. No changes are made to disk by this routine.
|
|
**
|
|
** This routine just deletes the data structure. It does not unlink
|
|
** the table data structure from the hash table. Nor does it remove
|
|
** foreign keys from the sqlite.aFKey hash table. But it does destroy
|
|
** memory structures of the indices and foreign keys associated with
|
|
** the table.
|
|
**
|
|
** Indices associated with the table are unlinked from the "db"
|
|
** data structure if db!=NULL. If db==NULL, indices attached to
|
|
** the table are deleted, but it is assumed they have already been
|
|
** unlinked.
|
|
*/
|
|
void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
|
|
Index *pIndex, *pNext;
|
|
FKey *pFKey, *pNextFKey;
|
|
|
|
db = 0;
|
|
|
|
if( pTable==0 ) return;
|
|
|
|
/* Do not delete the table until the reference count reaches zero. */
|
|
pTable->nRef--;
|
|
if( pTable->nRef>0 ){
|
|
return;
|
|
}
|
|
assert( pTable->nRef==0 );
|
|
|
|
/* Delete all indices associated with this table
|
|
*/
|
|
for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
|
|
pNext = pIndex->pNext;
|
|
assert( pIndex->pSchema==pTable->pSchema );
|
|
sqliteDeleteIndex(pIndex);
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
/* Delete all foreign keys associated with this table. The keys
|
|
** should have already been unlinked from the db->aFKey hash table
|
|
*/
|
|
for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
|
|
pNextFKey = pFKey->pNextFrom;
|
|
assert( sqlite3HashFind(&pTable->pSchema->aFKey,
|
|
pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
|
|
sqliteFree(pFKey);
|
|
}
|
|
#endif
|
|
|
|
/* Delete the Table structure itself.
|
|
*/
|
|
sqliteResetColumnNames(pTable);
|
|
sqliteFree(pTable->zName);
|
|
sqliteFree(pTable->zColAff);
|
|
sqlite3SelectDelete(pTable->pSelect);
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
sqlite3ExprDelete(pTable->pCheck);
|
|
#endif
|
|
sqlite3VtabClear(pTable);
|
|
sqliteFree(pTable);
|
|
}
|
|
|
|
/*
|
|
** Unlink the given table from the hash tables and the delete the
|
|
** table structure with all its indices and foreign keys.
|
|
*/
|
|
void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
|
|
Table *p;
|
|
FKey *pF1, *pF2;
|
|
Db *pDb;
|
|
|
|
assert( db!=0 );
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
assert( zTabName && zTabName[0] );
|
|
pDb = &db->aDb[iDb];
|
|
p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0);
|
|
if( p ){
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
|
|
int nTo = strlen(pF1->zTo) + 1;
|
|
pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo);
|
|
if( pF2==pF1 ){
|
|
sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo);
|
|
}else{
|
|
while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
|
|
if( pF2 ){
|
|
pF2->pNextTo = pF1->pNextTo;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
sqlite3DeleteTable(db, p);
|
|
}
|
|
db->flags |= SQLITE_InternChanges;
|
|
}
|
|
|
|
/*
|
|
** Given a token, return a string that consists of the text of that
|
|
** token with any quotations removed. Space to hold the returned string
|
|
** is obtained from sqliteMalloc() and must be freed by the calling
|
|
** function.
|
|
**
|
|
** Tokens are often just pointers into the original SQL text and so
|
|
** are not \000 terminated and are not persistent. The returned string
|
|
** is \000 terminated and is persistent.
|
|
*/
|
|
char *sqlite3NameFromToken(Token *pName){
|
|
char *zName;
|
|
if( pName ){
|
|
zName = sqliteStrNDup((char*)pName->z, pName->n);
|
|
sqlite3Dequote(zName);
|
|
}else{
|
|
zName = 0;
|
|
}
|
|
return zName;
|
|
}
|
|
|
|
/*
|
|
** Open the sqlite_master table stored in database number iDb for
|
|
** writing. The table is opened using cursor 0.
|
|
*/
|
|
void sqlite3OpenMasterTable(Parse *p, int iDb){
|
|
Vdbe *v = sqlite3GetVdbe(p);
|
|
sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
|
|
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
|
|
sqlite3VdbeAddOp(v, OP_OpenWrite, 0, MASTER_ROOT);
|
|
sqlite3VdbeAddOp(v, OP_SetNumColumns, 0, 5); /* sqlite_master has 5 columns */
|
|
}
|
|
|
|
/*
|
|
** The token *pName contains the name of a database (either "main" or
|
|
** "temp" or the name of an attached db). This routine returns the
|
|
** index of the named database in db->aDb[], or -1 if the named db
|
|
** does not exist.
|
|
*/
|
|
int sqlite3FindDb(sqlite3 *db, Token *pName){
|
|
int i = -1; /* Database number */
|
|
int n; /* Number of characters in the name */
|
|
Db *pDb; /* A database whose name space is being searched */
|
|
char *zName; /* Name we are searching for */
|
|
|
|
zName = sqlite3NameFromToken(pName);
|
|
if( zName ){
|
|
n = strlen(zName);
|
|
for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
|
|
if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) &&
|
|
0==sqlite3StrICmp(pDb->zName, zName) ){
|
|
break;
|
|
}
|
|
}
|
|
sqliteFree(zName);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
/* The table or view or trigger name is passed to this routine via tokens
|
|
** pName1 and pName2. If the table name was fully qualified, for example:
|
|
**
|
|
** CREATE TABLE xxx.yyy (...);
|
|
**
|
|
** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
|
|
** the table name is not fully qualified, i.e.:
|
|
**
|
|
** CREATE TABLE yyy(...);
|
|
**
|
|
** Then pName1 is set to "yyy" and pName2 is "".
|
|
**
|
|
** This routine sets the *ppUnqual pointer to point at the token (pName1 or
|
|
** pName2) that stores the unqualified table name. The index of the
|
|
** database "xxx" is returned.
|
|
*/
|
|
int sqlite3TwoPartName(
|
|
Parse *pParse, /* Parsing and code generating context */
|
|
Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
|
|
Token *pName2, /* The "yyy" in the name "xxx.yyy" */
|
|
Token **pUnqual /* Write the unqualified object name here */
|
|
){
|
|
int iDb; /* Database holding the object */
|
|
sqlite3 *db = pParse->db;
|
|
|
|
if( pName2 && pName2->n>0 ){
|
|
assert( !db->init.busy );
|
|
*pUnqual = pName2;
|
|
iDb = sqlite3FindDb(db, pName1);
|
|
if( iDb<0 ){
|
|
sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
|
|
pParse->nErr++;
|
|
return -1;
|
|
}
|
|
}else{
|
|
assert( db->init.iDb==0 || db->init.busy );
|
|
iDb = db->init.iDb;
|
|
*pUnqual = pName1;
|
|
}
|
|
return iDb;
|
|
}
|
|
|
|
/*
|
|
** This routine is used to check if the UTF-8 string zName is a legal
|
|
** unqualified name for a new schema object (table, index, view or
|
|
** trigger). All names are legal except those that begin with the string
|
|
** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
|
|
** is reserved for internal use.
|
|
*/
|
|
int sqlite3CheckObjectName(Parse *pParse, const char *zName){
|
|
if( !pParse->db->init.busy && pParse->nested==0
|
|
&& (pParse->db->flags & SQLITE_WriteSchema)==0
|
|
&& 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
|
|
sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
|
|
return SQLITE_ERROR;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Begin constructing a new table representation in memory. This is
|
|
** the first of several action routines that get called in response
|
|
** to a CREATE TABLE statement. In particular, this routine is called
|
|
** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
|
|
** flag is true if the table should be stored in the auxiliary database
|
|
** file instead of in the main database file. This is normally the case
|
|
** when the "TEMP" or "TEMPORARY" keyword occurs in between
|
|
** CREATE and TABLE.
|
|
**
|
|
** The new table record is initialized and put in pParse->pNewTable.
|
|
** As more of the CREATE TABLE statement is parsed, additional action
|
|
** routines will be called to add more information to this record.
|
|
** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
|
|
** is called to complete the construction of the new table record.
|
|
*/
|
|
void sqlite3StartTable(
|
|
Parse *pParse, /* Parser context */
|
|
Token *pName1, /* First part of the name of the table or view */
|
|
Token *pName2, /* Second part of the name of the table or view */
|
|
int isTemp, /* True if this is a TEMP table */
|
|
int isView, /* True if this is a VIEW */
|
|
int isVirtual, /* True if this is a VIRTUAL table */
|
|
int noErr /* Do nothing if table already exists */
|
|
){
|
|
Table *pTable;
|
|
char *zName = 0; /* The name of the new table */
|
|
sqlite3 *db = pParse->db;
|
|
Vdbe *v;
|
|
int iDb; /* Database number to create the table in */
|
|
Token *pName; /* Unqualified name of the table to create */
|
|
|
|
/* The table or view name to create is passed to this routine via tokens
|
|
** pName1 and pName2. If the table name was fully qualified, for example:
|
|
**
|
|
** CREATE TABLE xxx.yyy (...);
|
|
**
|
|
** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
|
|
** the table name is not fully qualified, i.e.:
|
|
**
|
|
** CREATE TABLE yyy(...);
|
|
**
|
|
** Then pName1 is set to "yyy" and pName2 is "".
|
|
**
|
|
** The call below sets the pName pointer to point at the token (pName1 or
|
|
** pName2) that stores the unqualified table name. The variable iDb is
|
|
** set to the index of the database that the table or view is to be
|
|
** created in.
|
|
*/
|
|
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
|
if( iDb<0 ) return;
|
|
if( !OMIT_TEMPDB && isTemp && iDb>1 ){
|
|
/* If creating a temp table, the name may not be qualified */
|
|
sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
|
|
return;
|
|
}
|
|
if( !OMIT_TEMPDB && isTemp ) iDb = 1;
|
|
|
|
pParse->sNameToken = *pName;
|
|
zName = sqlite3NameFromToken(pName);
|
|
if( zName==0 ) return;
|
|
if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
|
|
goto begin_table_error;
|
|
}
|
|
if( db->init.iDb==1 ) isTemp = 1;
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
assert( (isTemp & 1)==isTemp );
|
|
{
|
|
int code;
|
|
char *zDb = db->aDb[iDb].zName;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
|
|
goto begin_table_error;
|
|
}
|
|
if( isView ){
|
|
if( !OMIT_TEMPDB && isTemp ){
|
|
code = SQLITE_CREATE_TEMP_VIEW;
|
|
}else{
|
|
code = SQLITE_CREATE_VIEW;
|
|
}
|
|
}else{
|
|
if( !OMIT_TEMPDB && isTemp ){
|
|
code = SQLITE_CREATE_TEMP_TABLE;
|
|
}else{
|
|
code = SQLITE_CREATE_TABLE;
|
|
}
|
|
}
|
|
if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
|
|
goto begin_table_error;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Make sure the new table name does not collide with an existing
|
|
** index or table name in the same database. Issue an error message if
|
|
** it does. The exception is if the statement being parsed was passed
|
|
** to an sqlite3_declare_vtab() call. In that case only the column names
|
|
** and types will be used, so there is no need to test for namespace
|
|
** collisions.
|
|
*/
|
|
if( !IN_DECLARE_VTAB ){
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
goto begin_table_error;
|
|
}
|
|
pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
|
|
if( pTable ){
|
|
if( !noErr ){
|
|
sqlite3ErrorMsg(pParse, "table %T already exists", pName);
|
|
}
|
|
goto begin_table_error;
|
|
}
|
|
if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){
|
|
sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
|
|
goto begin_table_error;
|
|
}
|
|
}
|
|
|
|
pTable = sqliteMalloc( sizeof(Table) );
|
|
if( pTable==0 ){
|
|
pParse->rc = SQLITE_NOMEM;
|
|
pParse->nErr++;
|
|
goto begin_table_error;
|
|
}
|
|
pTable->zName = zName;
|
|
pTable->iPKey = -1;
|
|
pTable->pSchema = db->aDb[iDb].pSchema;
|
|
pTable->nRef = 1;
|
|
if( pParse->pNewTable ) sqlite3DeleteTable(db, pParse->pNewTable);
|
|
pParse->pNewTable = pTable;
|
|
|
|
/* If this is the magic sqlite_sequence table used by autoincrement,
|
|
** then record a pointer to this table in the main database structure
|
|
** so that INSERT can find the table easily.
|
|
*/
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
|
|
pTable->pSchema->pSeqTab = pTable;
|
|
}
|
|
#endif
|
|
|
|
/* Begin generating the code that will insert the table record into
|
|
** the SQLITE_MASTER table. Note in particular that we must go ahead
|
|
** and allocate the record number for the table entry now. Before any
|
|
** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
|
|
** indices to be created and the table record must come before the
|
|
** indices. Hence, the record number for the table must be allocated
|
|
** now.
|
|
*/
|
|
if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
|
|
int lbl;
|
|
int fileFormat;
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( isVirtual ){
|
|
sqlite3VdbeAddOp(v, OP_VBegin, 0, 0);
|
|
}
|
|
#endif
|
|
|
|
/* If the file format and encoding in the database have not been set,
|
|
** set them now.
|
|
*/
|
|
sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1); /* file_format */
|
|
lbl = sqlite3VdbeMakeLabel(v);
|
|
sqlite3VdbeAddOp(v, OP_If, 0, lbl);
|
|
fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
|
|
1 : SQLITE_MAX_FILE_FORMAT;
|
|
sqlite3VdbeAddOp(v, OP_Integer, fileFormat, 0);
|
|
sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1);
|
|
sqlite3VdbeAddOp(v, OP_Integer, ENC(db), 0);
|
|
sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 4);
|
|
sqlite3VdbeResolveLabel(v, lbl);
|
|
|
|
/* This just creates a place-holder record in the sqlite_master table.
|
|
** The record created does not contain anything yet. It will be replaced
|
|
** by the real entry in code generated at sqlite3EndTable().
|
|
**
|
|
** The rowid for the new entry is left on the top of the stack.
|
|
** The rowid value is needed by the code that sqlite3EndTable will
|
|
** generate.
|
|
*/
|
|
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
|
|
if( isView || isVirtual ){
|
|
sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
|
|
}else
|
|
#endif
|
|
{
|
|
sqlite3VdbeAddOp(v, OP_CreateTable, iDb, 0);
|
|
}
|
|
sqlite3OpenMasterTable(pParse, iDb);
|
|
sqlite3VdbeAddOp(v, OP_NewRowid, 0, 0);
|
|
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
|
|
sqlite3VdbeAddOp(v, OP_Null, 0, 0);
|
|
sqlite3VdbeAddOp(v, OP_Insert, 0, 0);
|
|
sqlite3VdbeAddOp(v, OP_Close, 0, 0);
|
|
sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
|
|
}
|
|
|
|
/* Normal (non-error) return. */
|
|
return;
|
|
|
|
/* If an error occurs, we jump here */
|
|
begin_table_error:
|
|
sqliteFree(zName);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** This macro is used to compare two strings in a case-insensitive manner.
|
|
** It is slightly faster than calling sqlite3StrICmp() directly, but
|
|
** produces larger code.
|
|
**
|
|
** WARNING: This macro is not compatible with the strcmp() family. It
|
|
** returns true if the two strings are equal, otherwise false.
|
|
*/
|
|
#define STRICMP(x, y) (\
|
|
sqlite3UpperToLower[*(unsigned char *)(x)]== \
|
|
sqlite3UpperToLower[*(unsigned char *)(y)] \
|
|
&& sqlite3StrICmp((x)+1,(y)+1)==0 )
|
|
|
|
/*
|
|
** Add a new column to the table currently being constructed.
|
|
**
|
|
** The parser calls this routine once for each column declaration
|
|
** in a CREATE TABLE statement. sqlite3StartTable() gets called
|
|
** first to get things going. Then this routine is called for each
|
|
** column.
|
|
*/
|
|
void sqlite3AddColumn(Parse *pParse, Token *pName){
|
|
Table *p;
|
|
int i;
|
|
char *z;
|
|
Column *pCol;
|
|
if( (p = pParse->pNewTable)==0 ) return;
|
|
z = sqlite3NameFromToken(pName);
|
|
if( z==0 ) return;
|
|
for(i=0; i<p->nCol; i++){
|
|
if( STRICMP(z, p->aCol[i].zName) ){
|
|
sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
|
|
sqliteFree(z);
|
|
return;
|
|
}
|
|
}
|
|
if( (p->nCol & 0x7)==0 ){
|
|
Column *aNew;
|
|
aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
|
|
if( aNew==0 ){
|
|
sqliteFree(z);
|
|
return;
|
|
}
|
|
p->aCol = aNew;
|
|
}
|
|
pCol = &p->aCol[p->nCol];
|
|
memset(pCol, 0, sizeof(p->aCol[0]));
|
|
pCol->zName = z;
|
|
|
|
/* If there is no type specified, columns have the default affinity
|
|
** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
|
|
** be called next to set pCol->affinity correctly.
|
|
*/
|
|
pCol->affinity = SQLITE_AFF_NONE;
|
|
p->nCol++;
|
|
}
|
|
|
|
/*
|
|
** This routine is called by the parser while in the middle of
|
|
** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
|
|
** been seen on a column. This routine sets the notNull flag on
|
|
** the column currently under construction.
|
|
*/
|
|
void sqlite3AddNotNull(Parse *pParse, int onError){
|
|
Table *p;
|
|
int i;
|
|
if( (p = pParse->pNewTable)==0 ) return;
|
|
i = p->nCol-1;
|
|
if( i>=0 ) p->aCol[i].notNull = onError;
|
|
}
|
|
|
|
/*
|
|
** Scan the column type name zType (length nType) and return the
|
|
** associated affinity type.
|
|
**
|
|
** This routine does a case-independent search of zType for the
|
|
** substrings in the following table. If one of the substrings is
|
|
** found, the corresponding affinity is returned. If zType contains
|
|
** more than one of the substrings, entries toward the top of
|
|
** the table take priority. For example, if zType is 'BLOBINT',
|
|
** SQLITE_AFF_INTEGER is returned.
|
|
**
|
|
** Substring | Affinity
|
|
** --------------------------------
|
|
** 'INT' | SQLITE_AFF_INTEGER
|
|
** 'CHAR' | SQLITE_AFF_TEXT
|
|
** 'CLOB' | SQLITE_AFF_TEXT
|
|
** 'TEXT' | SQLITE_AFF_TEXT
|
|
** 'BLOB' | SQLITE_AFF_NONE
|
|
** 'REAL' | SQLITE_AFF_REAL
|
|
** 'FLOA' | SQLITE_AFF_REAL
|
|
** 'DOUB' | SQLITE_AFF_REAL
|
|
**
|
|
** If none of the substrings in the above table are found,
|
|
** SQLITE_AFF_NUMERIC is returned.
|
|
*/
|
|
char sqlite3AffinityType(const Token *pType){
|
|
u32 h = 0;
|
|
char aff = SQLITE_AFF_NUMERIC;
|
|
const unsigned char *zIn = pType->z;
|
|
const unsigned char *zEnd = &pType->z[pType->n];
|
|
|
|
while( zIn!=zEnd ){
|
|
h = (h<<8) + sqlite3UpperToLower[*zIn];
|
|
zIn++;
|
|
if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
|
|
aff = SQLITE_AFF_TEXT;
|
|
}else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
|
|
aff = SQLITE_AFF_TEXT;
|
|
}else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
|
|
aff = SQLITE_AFF_TEXT;
|
|
}else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
|
|
&& (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
|
|
aff = SQLITE_AFF_NONE;
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
}else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
|
|
&& aff==SQLITE_AFF_NUMERIC ){
|
|
aff = SQLITE_AFF_REAL;
|
|
}else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
|
|
&& aff==SQLITE_AFF_NUMERIC ){
|
|
aff = SQLITE_AFF_REAL;
|
|
}else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
|
|
&& aff==SQLITE_AFF_NUMERIC ){
|
|
aff = SQLITE_AFF_REAL;
|
|
#endif
|
|
}else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
|
|
aff = SQLITE_AFF_INTEGER;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return aff;
|
|
}
|
|
|
|
/*
|
|
** This routine is called by the parser while in the middle of
|
|
** parsing a CREATE TABLE statement. The pFirst token is the first
|
|
** token in the sequence of tokens that describe the type of the
|
|
** column currently under construction. pLast is the last token
|
|
** in the sequence. Use this information to construct a string
|
|
** that contains the typename of the column and store that string
|
|
** in zType.
|
|
*/
|
|
void sqlite3AddColumnType(Parse *pParse, Token *pType){
|
|
Table *p;
|
|
int i;
|
|
Column *pCol;
|
|
|
|
if( (p = pParse->pNewTable)==0 ) return;
|
|
i = p->nCol-1;
|
|
if( i<0 ) return;
|
|
pCol = &p->aCol[i];
|
|
sqliteFree(pCol->zType);
|
|
pCol->zType = sqlite3NameFromToken(pType);
|
|
pCol->affinity = sqlite3AffinityType(pType);
|
|
}
|
|
|
|
/*
|
|
** The expression is the default value for the most recently added column
|
|
** of the table currently under construction.
|
|
**
|
|
** Default value expressions must be constant. Raise an exception if this
|
|
** is not the case.
|
|
**
|
|
** This routine is called by the parser while in the middle of
|
|
** parsing a CREATE TABLE statement.
|
|
*/
|
|
void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
|
|
Table *p;
|
|
Column *pCol;
|
|
if( (p = pParse->pNewTable)!=0 ){
|
|
pCol = &(p->aCol[p->nCol-1]);
|
|
if( !sqlite3ExprIsConstantOrFunction(pExpr) ){
|
|
sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
|
|
pCol->zName);
|
|
}else{
|
|
Expr *pCopy;
|
|
sqlite3ExprDelete(pCol->pDflt);
|
|
pCol->pDflt = pCopy = sqlite3ExprDup(pExpr);
|
|
if( pCopy ){
|
|
sqlite3TokenCopy(&pCopy->span, &pExpr->span);
|
|
}
|
|
}
|
|
}
|
|
sqlite3ExprDelete(pExpr);
|
|
}
|
|
|
|
/*
|
|
** Designate the PRIMARY KEY for the table. pList is a list of names
|
|
** of columns that form the primary key. If pList is NULL, then the
|
|
** most recently added column of the table is the primary key.
|
|
**
|
|
** A table can have at most one primary key. If the table already has
|
|
** a primary key (and this is the second primary key) then create an
|
|
** error.
|
|
**
|
|
** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
|
|
** then we will try to use that column as the rowid. Set the Table.iPKey
|
|
** field of the table under construction to be the index of the
|
|
** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
|
|
** no INTEGER PRIMARY KEY.
|
|
**
|
|
** If the key is not an INTEGER PRIMARY KEY, then create a unique
|
|
** index for the key. No index is created for INTEGER PRIMARY KEYs.
|
|
*/
|
|
void sqlite3AddPrimaryKey(
|
|
Parse *pParse, /* Parsing context */
|
|
ExprList *pList, /* List of field names to be indexed */
|
|
int onError, /* What to do with a uniqueness conflict */
|
|
int autoInc, /* True if the AUTOINCREMENT keyword is present */
|
|
int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
|
|
){
|
|
Table *pTab = pParse->pNewTable;
|
|
char *zType = 0;
|
|
int iCol = -1, i;
|
|
if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
|
|
if( pTab->hasPrimKey ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"table \"%s\" has more than one primary key", pTab->zName);
|
|
goto primary_key_exit;
|
|
}
|
|
pTab->hasPrimKey = 1;
|
|
if( pList==0 ){
|
|
iCol = pTab->nCol - 1;
|
|
pTab->aCol[iCol].isPrimKey = 1;
|
|
}else{
|
|
for(i=0; i<pList->nExpr; i++){
|
|
for(iCol=0; iCol<pTab->nCol; iCol++){
|
|
if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
|
|
break;
|
|
}
|
|
}
|
|
if( iCol<pTab->nCol ){
|
|
pTab->aCol[iCol].isPrimKey = 1;
|
|
}
|
|
}
|
|
if( pList->nExpr>1 ) iCol = -1;
|
|
}
|
|
if( iCol>=0 && iCol<pTab->nCol ){
|
|
zType = pTab->aCol[iCol].zType;
|
|
}
|
|
if( zType && sqlite3StrICmp(zType, "INTEGER")==0
|
|
&& sortOrder==SQLITE_SO_ASC ){
|
|
pTab->iPKey = iCol;
|
|
pTab->keyConf = onError;
|
|
pTab->autoInc = autoInc;
|
|
}else if( autoInc ){
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
|
|
"INTEGER PRIMARY KEY");
|
|
#endif
|
|
}else{
|
|
sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
|
|
pList = 0;
|
|
}
|
|
|
|
primary_key_exit:
|
|
sqlite3ExprListDelete(pList);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** Add a new CHECK constraint to the table currently under construction.
|
|
*/
|
|
void sqlite3AddCheckConstraint(
|
|
Parse *pParse, /* Parsing context */
|
|
Expr *pCheckExpr /* The check expression */
|
|
){
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
Table *pTab = pParse->pNewTable;
|
|
if( pTab && !IN_DECLARE_VTAB ){
|
|
/* The CHECK expression must be duplicated so that tokens refer
|
|
** to malloced space and not the (ephemeral) text of the CREATE TABLE
|
|
** statement */
|
|
pTab->pCheck = sqlite3ExprAnd(pTab->pCheck, sqlite3ExprDup(pCheckExpr));
|
|
}
|
|
#endif
|
|
sqlite3ExprDelete(pCheckExpr);
|
|
}
|
|
|
|
/*
|
|
** Set the collation function of the most recently parsed table column
|
|
** to the CollSeq given.
|
|
*/
|
|
void sqlite3AddCollateType(Parse *pParse, const char *zType, int nType){
|
|
Table *p;
|
|
int i;
|
|
|
|
if( (p = pParse->pNewTable)==0 ) return;
|
|
i = p->nCol-1;
|
|
|
|
if( sqlite3LocateCollSeq(pParse, zType, nType) ){
|
|
Index *pIdx;
|
|
p->aCol[i].zColl = sqliteStrNDup(zType, nType);
|
|
|
|
/* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
|
|
** then an index may have been created on this column before the
|
|
** collation type was added. Correct this if it is the case.
|
|
*/
|
|
for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
assert( pIdx->nColumn==1 );
|
|
if( pIdx->aiColumn[0]==i ){
|
|
pIdx->azColl[0] = p->aCol[i].zColl;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This function returns the collation sequence for database native text
|
|
** encoding identified by the string zName, length nName.
|
|
**
|
|
** If the requested collation sequence is not available, or not available
|
|
** in the database native encoding, the collation factory is invoked to
|
|
** request it. If the collation factory does not supply such a sequence,
|
|
** and the sequence is available in another text encoding, then that is
|
|
** returned instead.
|
|
**
|
|
** If no versions of the requested collations sequence are available, or
|
|
** another error occurs, NULL is returned and an error message written into
|
|
** pParse.
|
|
**
|
|
** This routine is a wrapper around sqlite3FindCollSeq(). This routine
|
|
** invokes the collation factory if the named collation cannot be found
|
|
** and generates an error message.
|
|
*/
|
|
CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
|
|
sqlite3 *db = pParse->db;
|
|
u8 enc = ENC(db);
|
|
u8 initbusy = db->init.busy;
|
|
CollSeq *pColl;
|
|
|
|
pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy);
|
|
if( !initbusy && (!pColl || !pColl->xCmp) ){
|
|
pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
|
|
if( !pColl ){
|
|
if( nName<0 ){
|
|
nName = strlen(zName);
|
|
}
|
|
sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
|
|
pColl = 0;
|
|
}
|
|
}
|
|
|
|
return pColl;
|
|
}
|
|
|
|
|
|
/*
|
|
** Generate code that will increment the schema cookie.
|
|
**
|
|
** The schema cookie is used to determine when the schema for the
|
|
** database changes. After each schema change, the cookie value
|
|
** changes. When a process first reads the schema it records the
|
|
** cookie. Thereafter, whenever it goes to access the database,
|
|
** it checks the cookie to make sure the schema has not changed
|
|
** since it was last read.
|
|
**
|
|
** This plan is not completely bullet-proof. It is possible for
|
|
** the schema to change multiple times and for the cookie to be
|
|
** set back to prior value. But schema changes are infrequent
|
|
** and the probability of hitting the same cookie value is only
|
|
** 1 chance in 2^32. So we're safe enough.
|
|
*/
|
|
void sqlite3ChangeCookie(sqlite3 *db, Vdbe *v, int iDb){
|
|
sqlite3VdbeAddOp(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, 0);
|
|
sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 0);
|
|
}
|
|
|
|
/*
|
|
** Measure the number of characters needed to output the given
|
|
** identifier. The number returned includes any quotes used
|
|
** but does not include the null terminator.
|
|
**
|
|
** The estimate is conservative. It might be larger that what is
|
|
** really needed.
|
|
*/
|
|
static int identLength(const char *z){
|
|
int n;
|
|
for(n=0; *z; n++, z++){
|
|
if( *z=='"' ){ n++; }
|
|
}
|
|
return n + 2;
|
|
}
|
|
|
|
/*
|
|
** Write an identifier onto the end of the given string. Add
|
|
** quote characters as needed.
|
|
*/
|
|
static void identPut(char *z, int *pIdx, char *zSignedIdent){
|
|
unsigned char *zIdent = (unsigned char*)zSignedIdent;
|
|
int i, j, needQuote;
|
|
i = *pIdx;
|
|
for(j=0; zIdent[j]; j++){
|
|
if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
|
|
}
|
|
needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
|
|
|| sqlite3KeywordCode(zIdent, j)!=TK_ID;
|
|
if( needQuote ) z[i++] = '"';
|
|
for(j=0; zIdent[j]; j++){
|
|
z[i++] = zIdent[j];
|
|
if( zIdent[j]=='"' ) z[i++] = '"';
|
|
}
|
|
if( needQuote ) z[i++] = '"';
|
|
z[i] = 0;
|
|
*pIdx = i;
|
|
}
|
|
|
|
/*
|
|
** Generate a CREATE TABLE statement appropriate for the given
|
|
** table. Memory to hold the text of the statement is obtained
|
|
** from sqliteMalloc() and must be freed by the calling function.
|
|
*/
|
|
static char *createTableStmt(Table *p, int isTemp){
|
|
int i, k, n;
|
|
char *zStmt;
|
|
char *zSep, *zSep2, *zEnd, *z;
|
|
Column *pCol;
|
|
n = 0;
|
|
for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
|
|
n += identLength(pCol->zName);
|
|
z = pCol->zType;
|
|
if( z ){
|
|
n += (strlen(z) + 1);
|
|
}
|
|
}
|
|
n += identLength(p->zName);
|
|
if( n<50 ){
|
|
zSep = "";
|
|
zSep2 = ",";
|
|
zEnd = ")";
|
|
}else{
|
|
zSep = "\n ";
|
|
zSep2 = ",\n ";
|
|
zEnd = "\n)";
|
|
}
|
|
n += 35 + 6*p->nCol;
|
|
zStmt = sqliteMallocRaw( n );
|
|
if( zStmt==0 ) return 0;
|
|
strcpy(zStmt, !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE ");
|
|
k = strlen(zStmt);
|
|
identPut(zStmt, &k, p->zName);
|
|
zStmt[k++] = '(';
|
|
for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
|
|
strcpy(&zStmt[k], zSep);
|
|
k += strlen(&zStmt[k]);
|
|
zSep = zSep2;
|
|
identPut(zStmt, &k, pCol->zName);
|
|
if( (z = pCol->zType)!=0 ){
|
|
zStmt[k++] = ' ';
|
|
strcpy(&zStmt[k], z);
|
|
k += strlen(z);
|
|
}
|
|
}
|
|
strcpy(&zStmt[k], zEnd);
|
|
return zStmt;
|
|
}
|
|
|
|
/*
|
|
** This routine is called to report the final ")" that terminates
|
|
** a CREATE TABLE statement.
|
|
**
|
|
** The table structure that other action routines have been building
|
|
** is added to the internal hash tables, assuming no errors have
|
|
** occurred.
|
|
**
|
|
** An entry for the table is made in the master table on disk, unless
|
|
** this is a temporary table or db->init.busy==1. When db->init.busy==1
|
|
** it means we are reading the sqlite_master table because we just
|
|
** connected to the database or because the sqlite_master table has
|
|
** recently changed, so the entry for this table already exists in
|
|
** the sqlite_master table. We do not want to create it again.
|
|
**
|
|
** If the pSelect argument is not NULL, it means that this routine
|
|
** was called to create a table generated from a
|
|
** "CREATE TABLE ... AS SELECT ..." statement. The column names of
|
|
** the new table will match the result set of the SELECT.
|
|
*/
|
|
void sqlite3EndTable(
|
|
Parse *pParse, /* Parse context */
|
|
Token *pCons, /* The ',' token after the last column defn. */
|
|
Token *pEnd, /* The final ')' token in the CREATE TABLE */
|
|
Select *pSelect /* Select from a "CREATE ... AS SELECT" */
|
|
){
|
|
Table *p;
|
|
sqlite3 *db = pParse->db;
|
|
int iDb;
|
|
|
|
if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite3MallocFailed() ) {
|
|
return;
|
|
}
|
|
p = pParse->pNewTable;
|
|
if( p==0 ) return;
|
|
|
|
assert( !db->init.busy || !pSelect );
|
|
|
|
iDb = sqlite3SchemaToIndex(db, p->pSchema);
|
|
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
/* Resolve names in all CHECK constraint expressions.
|
|
*/
|
|
if( p->pCheck ){
|
|
SrcList sSrc; /* Fake SrcList for pParse->pNewTable */
|
|
NameContext sNC; /* Name context for pParse->pNewTable */
|
|
|
|
memset(&sNC, 0, sizeof(sNC));
|
|
memset(&sSrc, 0, sizeof(sSrc));
|
|
sSrc.nSrc = 1;
|
|
sSrc.a[0].zName = p->zName;
|
|
sSrc.a[0].pTab = p;
|
|
sSrc.a[0].iCursor = -1;
|
|
sNC.pParse = pParse;
|
|
sNC.pSrcList = &sSrc;
|
|
sNC.isCheck = 1;
|
|
if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){
|
|
return;
|
|
}
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_CHECK) */
|
|
|
|
/* If the db->init.busy is 1 it means we are reading the SQL off the
|
|
** "sqlite_master" or "sqlite_temp_master" table on the disk.
|
|
** So do not write to the disk again. Extract the root page number
|
|
** for the table from the db->init.newTnum field. (The page number
|
|
** should have been put there by the sqliteOpenCb routine.)
|
|
*/
|
|
if( db->init.busy ){
|
|
p->tnum = db->init.newTnum;
|
|
}
|
|
|
|
/* If not initializing, then create a record for the new table
|
|
** in the SQLITE_MASTER table of the database. The record number
|
|
** for the new table entry should already be on the stack.
|
|
**
|
|
** If this is a TEMPORARY table, write the entry into the auxiliary
|
|
** file instead of into the main database file.
|
|
*/
|
|
if( !db->init.busy ){
|
|
int n;
|
|
Vdbe *v;
|
|
char *zType; /* "view" or "table" */
|
|
char *zType2; /* "VIEW" or "TABLE" */
|
|
char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) return;
|
|
|
|
sqlite3VdbeAddOp(v, OP_Close, 0, 0);
|
|
|
|
/* Create the rootpage for the new table and push it onto the stack.
|
|
** A view has no rootpage, so just push a zero onto the stack for
|
|
** views. Initialize zType at the same time.
|
|
*/
|
|
if( p->pSelect==0 ){
|
|
/* A regular table */
|
|
zType = "table";
|
|
zType2 = "TABLE";
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
}else{
|
|
/* A view */
|
|
zType = "view";
|
|
zType2 = "VIEW";
|
|
#endif
|
|
}
|
|
|
|
/* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
|
|
** statement to populate the new table. The root-page number for the
|
|
** new table is on the top of the vdbe stack.
|
|
**
|
|
** Once the SELECT has been coded by sqlite3Select(), it is in a
|
|
** suitable state to query for the column names and types to be used
|
|
** by the new table.
|
|
**
|
|
** A shared-cache write-lock is not required to write to the new table,
|
|
** as a schema-lock must have already been obtained to create it. Since
|
|
** a schema-lock excludes all other database users, the write-lock would
|
|
** be redundant.
|
|
*/
|
|
if( pSelect ){
|
|
Table *pSelTab;
|
|
sqlite3VdbeAddOp(v, OP_Dup, 0, 0);
|
|
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
|
|
sqlite3VdbeAddOp(v, OP_OpenWrite, 1, 0);
|
|
pParse->nTab = 2;
|
|
sqlite3Select(pParse, pSelect, SRT_Table, 1, 0, 0, 0, 0);
|
|
sqlite3VdbeAddOp(v, OP_Close, 1, 0);
|
|
if( pParse->nErr==0 ){
|
|
pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
|
|
if( pSelTab==0 ) return;
|
|
assert( p->aCol==0 );
|
|
p->nCol = pSelTab->nCol;
|
|
p->aCol = pSelTab->aCol;
|
|
pSelTab->nCol = 0;
|
|
pSelTab->aCol = 0;
|
|
sqlite3DeleteTable(0, pSelTab);
|
|
}
|
|
}
|
|
|
|
/* Compute the complete text of the CREATE statement */
|
|
if( pSelect ){
|
|
zStmt = createTableStmt(p, p->pSchema==pParse->db->aDb[1].pSchema);
|
|
}else{
|
|
n = pEnd->z - pParse->sNameToken.z + 1;
|
|
zStmt = sqlite3MPrintf("CREATE %s %.*s", zType2, n, pParse->sNameToken.z);
|
|
}
|
|
|
|
/* A slot for the record has already been allocated in the
|
|
** SQLITE_MASTER table. We just need to update that slot with all
|
|
** the information we've collected. The rowid for the preallocated
|
|
** slot is the 2nd item on the stack. The top of the stack is the
|
|
** root page for the new table (or a 0 if this is a view).
|
|
*/
|
|
sqlite3NestedParse(pParse,
|
|
"UPDATE %Q.%s "
|
|
"SET type='%s', name=%Q, tbl_name=%Q, rootpage=#0, sql=%Q "
|
|
"WHERE rowid=#1",
|
|
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
|
|
zType,
|
|
p->zName,
|
|
p->zName,
|
|
zStmt
|
|
);
|
|
sqliteFree(zStmt);
|
|
sqlite3ChangeCookie(db, v, iDb);
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
/* Check to see if we need to create an sqlite_sequence table for
|
|
** keeping track of autoincrement keys.
|
|
*/
|
|
if( p->autoInc ){
|
|
Db *pDb = &db->aDb[iDb];
|
|
if( pDb->pSchema->pSeqTab==0 ){
|
|
sqlite3NestedParse(pParse,
|
|
"CREATE TABLE %Q.sqlite_sequence(name,seq)",
|
|
pDb->zName
|
|
);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Reparse everything to update our internal data structures */
|
|
sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
|
|
sqlite3MPrintf("tbl_name='%q'",p->zName), P3_DYNAMIC);
|
|
}
|
|
|
|
|
|
/* Add the table to the in-memory representation of the database.
|
|
*/
|
|
if( db->init.busy && pParse->nErr==0 ){
|
|
Table *pOld;
|
|
FKey *pFKey;
|
|
Schema *pSchema = p->pSchema;
|
|
pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p);
|
|
if( pOld ){
|
|
assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
|
|
return;
|
|
}
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
|
|
int nTo = strlen(pFKey->zTo) + 1;
|
|
pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo);
|
|
sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey);
|
|
}
|
|
#endif
|
|
pParse->pNewTable = 0;
|
|
db->nTable++;
|
|
db->flags |= SQLITE_InternChanges;
|
|
|
|
#ifndef SQLITE_OMIT_ALTERTABLE
|
|
if( !p->pSelect ){
|
|
const char *zName = (const char *)pParse->sNameToken.z;
|
|
int nName;
|
|
assert( !pSelect && pCons && pEnd );
|
|
if( pCons->z==0 ){
|
|
pCons = pEnd;
|
|
}
|
|
nName = (const char *)pCons->z - zName;
|
|
p->addColOffset = 13 + sqlite3utf8CharLen(zName, nName);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
/*
|
|
** The parser calls this routine in order to create a new VIEW
|
|
*/
|
|
void sqlite3CreateView(
|
|
Parse *pParse, /* The parsing context */
|
|
Token *pBegin, /* The CREATE token that begins the statement */
|
|
Token *pName1, /* The token that holds the name of the view */
|
|
Token *pName2, /* The token that holds the name of the view */
|
|
Select *pSelect, /* A SELECT statement that will become the new view */
|
|
int isTemp, /* TRUE for a TEMPORARY view */
|
|
int noErr /* Suppress error messages if VIEW already exists */
|
|
){
|
|
Table *p;
|
|
int n;
|
|
const unsigned char *z;
|
|
Token sEnd;
|
|
DbFixer sFix;
|
|
Token *pName;
|
|
int iDb;
|
|
|
|
if( pParse->nVar>0 ){
|
|
sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
|
|
sqlite3SelectDelete(pSelect);
|
|
return;
|
|
}
|
|
sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
|
|
p = pParse->pNewTable;
|
|
if( p==0 || pParse->nErr ){
|
|
sqlite3SelectDelete(pSelect);
|
|
return;
|
|
}
|
|
sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
|
iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
|
|
if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
|
|
&& sqlite3FixSelect(&sFix, pSelect)
|
|
){
|
|
sqlite3SelectDelete(pSelect);
|
|
return;
|
|
}
|
|
|
|
/* Make a copy of the entire SELECT statement that defines the view.
|
|
** This will force all the Expr.token.z values to be dynamically
|
|
** allocated rather than point to the input string - which means that
|
|
** they will persist after the current sqlite3_exec() call returns.
|
|
*/
|
|
p->pSelect = sqlite3SelectDup(pSelect);
|
|
sqlite3SelectDelete(pSelect);
|
|
if( sqlite3MallocFailed() ){
|
|
return;
|
|
}
|
|
if( !pParse->db->init.busy ){
|
|
sqlite3ViewGetColumnNames(pParse, p);
|
|
}
|
|
|
|
/* Locate the end of the CREATE VIEW statement. Make sEnd point to
|
|
** the end.
|
|
*/
|
|
sEnd = pParse->sLastToken;
|
|
if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
|
|
sEnd.z += sEnd.n;
|
|
}
|
|
sEnd.n = 0;
|
|
n = sEnd.z - pBegin->z;
|
|
z = (const unsigned char*)pBegin->z;
|
|
while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
|
|
sEnd.z = &z[n-1];
|
|
sEnd.n = 1;
|
|
|
|
/* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
|
|
sqlite3EndTable(pParse, 0, &sEnd, 0);
|
|
return;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIEW */
|
|
|
|
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
|
|
/*
|
|
** The Table structure pTable is really a VIEW. Fill in the names of
|
|
** the columns of the view in the pTable structure. Return the number
|
|
** of errors. If an error is seen leave an error message in pParse->zErrMsg.
|
|
*/
|
|
int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
|
|
Table *pSelTab; /* A fake table from which we get the result set */
|
|
Select *pSel; /* Copy of the SELECT that implements the view */
|
|
int nErr = 0; /* Number of errors encountered */
|
|
int n; /* Temporarily holds the number of cursors assigned */
|
|
|
|
assert( pTable );
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( sqlite3VtabCallConnect(pParse, pTable) ){
|
|
return SQLITE_ERROR;
|
|
}
|
|
if( IsVirtual(pTable) ) return 0;
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
/* A positive nCol means the columns names for this view are
|
|
** already known.
|
|
*/
|
|
if( pTable->nCol>0 ) return 0;
|
|
|
|
/* A negative nCol is a special marker meaning that we are currently
|
|
** trying to compute the column names. If we enter this routine with
|
|
** a negative nCol, it means two or more views form a loop, like this:
|
|
**
|
|
** CREATE VIEW one AS SELECT * FROM two;
|
|
** CREATE VIEW two AS SELECT * FROM one;
|
|
**
|
|
** Actually, this error is caught previously and so the following test
|
|
** should always fail. But we will leave it in place just to be safe.
|
|
*/
|
|
if( pTable->nCol<0 ){
|
|
sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
|
|
return 1;
|
|
}
|
|
assert( pTable->nCol>=0 );
|
|
|
|
/* If we get this far, it means we need to compute the table names.
|
|
** Note that the call to sqlite3ResultSetOfSelect() will expand any
|
|
** "*" elements in the results set of the view and will assign cursors
|
|
** to the elements of the FROM clause. But we do not want these changes
|
|
** to be permanent. So the computation is done on a copy of the SELECT
|
|
** statement that defines the view.
|
|
*/
|
|
assert( pTable->pSelect );
|
|
pSel = sqlite3SelectDup(pTable->pSelect);
|
|
if( pSel ){
|
|
n = pParse->nTab;
|
|
sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
|
|
pTable->nCol = -1;
|
|
pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
|
|
pParse->nTab = n;
|
|
if( pSelTab ){
|
|
assert( pTable->aCol==0 );
|
|
pTable->nCol = pSelTab->nCol;
|
|
pTable->aCol = pSelTab->aCol;
|
|
pSelTab->nCol = 0;
|
|
pSelTab->aCol = 0;
|
|
sqlite3DeleteTable(0, pSelTab);
|
|
pTable->pSchema->flags |= DB_UnresetViews;
|
|
}else{
|
|
pTable->nCol = 0;
|
|
nErr++;
|
|
}
|
|
sqlite3SelectDelete(pSel);
|
|
} else {
|
|
nErr++;
|
|
}
|
|
#endif /* SQLITE_OMIT_VIEW */
|
|
return nErr;
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
|
|
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
/*
|
|
** Clear the column names from every VIEW in database idx.
|
|
*/
|
|
static void sqliteViewResetAll(sqlite3 *db, int idx){
|
|
HashElem *i;
|
|
if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
|
|
for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
|
|
Table *pTab = sqliteHashData(i);
|
|
if( pTab->pSelect ){
|
|
sqliteResetColumnNames(pTab);
|
|
}
|
|
}
|
|
DbClearProperty(db, idx, DB_UnresetViews);
|
|
}
|
|
#else
|
|
# define sqliteViewResetAll(A,B)
|
|
#endif /* SQLITE_OMIT_VIEW */
|
|
|
|
/*
|
|
** This function is called by the VDBE to adjust the internal schema
|
|
** used by SQLite when the btree layer moves a table root page. The
|
|
** root-page of a table or index in database iDb has changed from iFrom
|
|
** to iTo.
|
|
**
|
|
** Ticket #1728: The symbol table might still contain information
|
|
** on tables and/or indices that are the process of being deleted.
|
|
** If you are unlucky, one of those deleted indices or tables might
|
|
** have the same rootpage number as the real table or index that is
|
|
** being moved. So we cannot stop searching after the first match
|
|
** because the first match might be for one of the deleted indices
|
|
** or tables and not the table/index that is actually being moved.
|
|
** We must continue looping until all tables and indices with
|
|
** rootpage==iFrom have been converted to have a rootpage of iTo
|
|
** in order to be certain that we got the right one.
|
|
*/
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
|
|
HashElem *pElem;
|
|
Hash *pHash;
|
|
|
|
pHash = &pDb->pSchema->tblHash;
|
|
for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
|
|
Table *pTab = sqliteHashData(pElem);
|
|
if( pTab->tnum==iFrom ){
|
|
pTab->tnum = iTo;
|
|
}
|
|
}
|
|
pHash = &pDb->pSchema->idxHash;
|
|
for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
|
|
Index *pIdx = sqliteHashData(pElem);
|
|
if( pIdx->tnum==iFrom ){
|
|
pIdx->tnum = iTo;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Write code to erase the table with root-page iTable from database iDb.
|
|
** Also write code to modify the sqlite_master table and internal schema
|
|
** if a root-page of another table is moved by the btree-layer whilst
|
|
** erasing iTable (this can happen with an auto-vacuum database).
|
|
*/
|
|
static void destroyRootPage(Parse *pParse, int iTable, int iDb){
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
sqlite3VdbeAddOp(v, OP_Destroy, iTable, iDb);
|
|
#ifndef SQLITE_OMIT_AUTOVACUUM
|
|
/* OP_Destroy pushes an integer onto the stack. If this integer
|
|
** is non-zero, then it is the root page number of a table moved to
|
|
** location iTable. The following code modifies the sqlite_master table to
|
|
** reflect this.
|
|
**
|
|
** The "#0" in the SQL is a special constant that means whatever value
|
|
** is on the top of the stack. See sqlite3RegisterExpr().
|
|
*/
|
|
sqlite3NestedParse(pParse,
|
|
"UPDATE %Q.%s SET rootpage=%d WHERE #0 AND rootpage=#0",
|
|
pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Write VDBE code to erase table pTab and all associated indices on disk.
|
|
** Code to update the sqlite_master tables and internal schema definitions
|
|
** in case a root-page belonging to another table is moved by the btree layer
|
|
** is also added (this can happen with an auto-vacuum database).
|
|
*/
|
|
static void destroyTable(Parse *pParse, Table *pTab){
|
|
#ifdef SQLITE_OMIT_AUTOVACUUM
|
|
Index *pIdx;
|
|
int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
destroyRootPage(pParse, pTab->tnum, iDb);
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
destroyRootPage(pParse, pIdx->tnum, iDb);
|
|
}
|
|
#else
|
|
/* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
|
|
** is not defined), then it is important to call OP_Destroy on the
|
|
** table and index root-pages in order, starting with the numerically
|
|
** largest root-page number. This guarantees that none of the root-pages
|
|
** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
|
|
** following were coded:
|
|
**
|
|
** OP_Destroy 4 0
|
|
** ...
|
|
** OP_Destroy 5 0
|
|
**
|
|
** and root page 5 happened to be the largest root-page number in the
|
|
** database, then root page 5 would be moved to page 4 by the
|
|
** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
|
|
** a free-list page.
|
|
*/
|
|
int iTab = pTab->tnum;
|
|
int iDestroyed = 0;
|
|
|
|
while( 1 ){
|
|
Index *pIdx;
|
|
int iLargest = 0;
|
|
|
|
if( iDestroyed==0 || iTab<iDestroyed ){
|
|
iLargest = iTab;
|
|
}
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
int iIdx = pIdx->tnum;
|
|
assert( pIdx->pSchema==pTab->pSchema );
|
|
if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
|
|
iLargest = iIdx;
|
|
}
|
|
}
|
|
if( iLargest==0 ){
|
|
return;
|
|
}else{
|
|
int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
destroyRootPage(pParse, iLargest, iDb);
|
|
iDestroyed = iLargest;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** This routine is called to do the work of a DROP TABLE statement.
|
|
** pName is the name of the table to be dropped.
|
|
*/
|
|
void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
|
|
Table *pTab;
|
|
Vdbe *v;
|
|
sqlite3 *db = pParse->db;
|
|
int iDb;
|
|
|
|
if( pParse->nErr || sqlite3MallocFailed() ){
|
|
goto exit_drop_table;
|
|
}
|
|
assert( pName->nSrc==1 );
|
|
pTab = sqlite3LocateTable(pParse, pName->a[0].zName, pName->a[0].zDatabase);
|
|
|
|
if( pTab==0 ){
|
|
if( noErr ){
|
|
sqlite3ErrorClear(pParse);
|
|
}
|
|
goto exit_drop_table;
|
|
}
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
{
|
|
int code;
|
|
const char *zTab = SCHEMA_TABLE(iDb);
|
|
const char *zDb = db->aDb[iDb].zName;
|
|
const char *zArg2 = 0;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
|
|
goto exit_drop_table;
|
|
}
|
|
if( isView ){
|
|
if( !OMIT_TEMPDB && iDb==1 ){
|
|
code = SQLITE_DROP_TEMP_VIEW;
|
|
}else{
|
|
code = SQLITE_DROP_VIEW;
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
}else if( IsVirtual(pTab) ){
|
|
if( sqlite3ViewGetColumnNames(pParse, pTab) ){
|
|
goto exit_drop_table;
|
|
}
|
|
code = SQLITE_DROP_VTABLE;
|
|
zArg2 = pTab->pMod->zName;
|
|
#endif
|
|
}else{
|
|
if( !OMIT_TEMPDB && iDb==1 ){
|
|
code = SQLITE_DROP_TEMP_TABLE;
|
|
}else{
|
|
code = SQLITE_DROP_TABLE;
|
|
}
|
|
}
|
|
if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
|
|
goto exit_drop_table;
|
|
}
|
|
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
|
|
goto exit_drop_table;
|
|
}
|
|
}
|
|
#endif
|
|
if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){
|
|
sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
|
|
goto exit_drop_table;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
/* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
|
|
** on a table.
|
|
*/
|
|
if( isView && pTab->pSelect==0 ){
|
|
sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
|
|
goto exit_drop_table;
|
|
}
|
|
if( !isView && pTab->pSelect ){
|
|
sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
|
|
goto exit_drop_table;
|
|
}
|
|
#endif
|
|
|
|
/* Generate code to remove the table from the master table
|
|
** on disk.
|
|
*/
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
Trigger *pTrigger;
|
|
Db *pDb = &db->aDb[iDb];
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( IsVirtual(pTab) ){
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
sqlite3VdbeAddOp(v, OP_VBegin, 0, 0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Drop all triggers associated with the table being dropped. Code
|
|
** is generated to remove entries from sqlite_master and/or
|
|
** sqlite_temp_master if required.
|
|
*/
|
|
pTrigger = pTab->pTrigger;
|
|
while( pTrigger ){
|
|
assert( pTrigger->pSchema==pTab->pSchema ||
|
|
pTrigger->pSchema==db->aDb[1].pSchema );
|
|
sqlite3DropTriggerPtr(pParse, pTrigger);
|
|
pTrigger = pTrigger->pNext;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
/* Remove any entries of the sqlite_sequence table associated with
|
|
** the table being dropped. This is done before the table is dropped
|
|
** at the btree level, in case the sqlite_sequence table needs to
|
|
** move as a result of the drop (can happen in auto-vacuum mode).
|
|
*/
|
|
if( pTab->autoInc ){
|
|
sqlite3NestedParse(pParse,
|
|
"DELETE FROM %s.sqlite_sequence WHERE name=%Q",
|
|
pDb->zName, pTab->zName
|
|
);
|
|
}
|
|
#endif
|
|
|
|
/* Drop all SQLITE_MASTER table and index entries that refer to the
|
|
** table. The program name loops through the master table and deletes
|
|
** every row that refers to a table of the same name as the one being
|
|
** dropped. Triggers are handled seperately because a trigger can be
|
|
** created in the temp database that refers to a table in another
|
|
** database.
|
|
*/
|
|
sqlite3NestedParse(pParse,
|
|
"DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
|
|
pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
|
|
if( !isView && !IsVirtual(pTab) ){
|
|
destroyTable(pParse, pTab);
|
|
}
|
|
|
|
/* Remove the table entry from SQLite's internal schema and modify
|
|
** the schema cookie.
|
|
*/
|
|
if( IsVirtual(pTab) ){
|
|
sqlite3VdbeOp3(v, OP_VDestroy, iDb, 0, pTab->zName, 0);
|
|
}
|
|
sqlite3VdbeOp3(v, OP_DropTable, iDb, 0, pTab->zName, 0);
|
|
sqlite3ChangeCookie(db, v, iDb);
|
|
}
|
|
sqliteViewResetAll(db, iDb);
|
|
|
|
exit_drop_table:
|
|
sqlite3SrcListDelete(pName);
|
|
}
|
|
|
|
/*
|
|
** This routine is called to create a new foreign key on the table
|
|
** currently under construction. pFromCol determines which columns
|
|
** in the current table point to the foreign key. If pFromCol==0 then
|
|
** connect the key to the last column inserted. pTo is the name of
|
|
** the table referred to. pToCol is a list of tables in the other
|
|
** pTo table that the foreign key points to. flags contains all
|
|
** information about the conflict resolution algorithms specified
|
|
** in the ON DELETE, ON UPDATE and ON INSERT clauses.
|
|
**
|
|
** An FKey structure is created and added to the table currently
|
|
** under construction in the pParse->pNewTable field. The new FKey
|
|
** is not linked into db->aFKey at this point - that does not happen
|
|
** until sqlite3EndTable().
|
|
**
|
|
** The foreign key is set for IMMEDIATE processing. A subsequent call
|
|
** to sqlite3DeferForeignKey() might change this to DEFERRED.
|
|
*/
|
|
void sqlite3CreateForeignKey(
|
|
Parse *pParse, /* Parsing context */
|
|
ExprList *pFromCol, /* Columns in this table that point to other table */
|
|
Token *pTo, /* Name of the other table */
|
|
ExprList *pToCol, /* Columns in the other table */
|
|
int flags /* Conflict resolution algorithms. */
|
|
){
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
FKey *pFKey = 0;
|
|
Table *p = pParse->pNewTable;
|
|
int nByte;
|
|
int i;
|
|
int nCol;
|
|
char *z;
|
|
|
|
assert( pTo!=0 );
|
|
if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end;
|
|
if( pFromCol==0 ){
|
|
int iCol = p->nCol-1;
|
|
if( iCol<0 ) goto fk_end;
|
|
if( pToCol && pToCol->nExpr!=1 ){
|
|
sqlite3ErrorMsg(pParse, "foreign key on %s"
|
|
" should reference only one column of table %T",
|
|
p->aCol[iCol].zName, pTo);
|
|
goto fk_end;
|
|
}
|
|
nCol = 1;
|
|
}else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"number of columns in foreign key does not match the number of "
|
|
"columns in the referenced table");
|
|
goto fk_end;
|
|
}else{
|
|
nCol = pFromCol->nExpr;
|
|
}
|
|
nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
|
|
if( pToCol ){
|
|
for(i=0; i<pToCol->nExpr; i++){
|
|
nByte += strlen(pToCol->a[i].zName) + 1;
|
|
}
|
|
}
|
|
pFKey = sqliteMalloc( nByte );
|
|
if( pFKey==0 ) goto fk_end;
|
|
pFKey->pFrom = p;
|
|
pFKey->pNextFrom = p->pFKey;
|
|
z = (char*)&pFKey[1];
|
|
pFKey->aCol = (struct sColMap*)z;
|
|
z += sizeof(struct sColMap)*nCol;
|
|
pFKey->zTo = z;
|
|
memcpy(z, pTo->z, pTo->n);
|
|
z[pTo->n] = 0;
|
|
z += pTo->n+1;
|
|
pFKey->pNextTo = 0;
|
|
pFKey->nCol = nCol;
|
|
if( pFromCol==0 ){
|
|
pFKey->aCol[0].iFrom = p->nCol-1;
|
|
}else{
|
|
for(i=0; i<nCol; i++){
|
|
int j;
|
|
for(j=0; j<p->nCol; j++){
|
|
if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
|
|
pFKey->aCol[i].iFrom = j;
|
|
break;
|
|
}
|
|
}
|
|
if( j>=p->nCol ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"unknown column \"%s\" in foreign key definition",
|
|
pFromCol->a[i].zName);
|
|
goto fk_end;
|
|
}
|
|
}
|
|
}
|
|
if( pToCol ){
|
|
for(i=0; i<nCol; i++){
|
|
int n = strlen(pToCol->a[i].zName);
|
|
pFKey->aCol[i].zCol = z;
|
|
memcpy(z, pToCol->a[i].zName, n);
|
|
z[n] = 0;
|
|
z += n+1;
|
|
}
|
|
}
|
|
pFKey->isDeferred = 0;
|
|
pFKey->deleteConf = flags & 0xff;
|
|
pFKey->updateConf = (flags >> 8 ) & 0xff;
|
|
pFKey->insertConf = (flags >> 16 ) & 0xff;
|
|
|
|
/* Link the foreign key to the table as the last step.
|
|
*/
|
|
p->pFKey = pFKey;
|
|
pFKey = 0;
|
|
|
|
fk_end:
|
|
sqliteFree(pFKey);
|
|
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
|
|
sqlite3ExprListDelete(pFromCol);
|
|
sqlite3ExprListDelete(pToCol);
|
|
}
|
|
|
|
/*
|
|
** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
|
|
** clause is seen as part of a foreign key definition. The isDeferred
|
|
** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
|
|
** The behavior of the most recently created foreign key is adjusted
|
|
** accordingly.
|
|
*/
|
|
void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
Table *pTab;
|
|
FKey *pFKey;
|
|
if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
|
|
pFKey->isDeferred = isDeferred;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Generate code that will erase and refill index *pIdx. This is
|
|
** used to initialize a newly created index or to recompute the
|
|
** content of an index in response to a REINDEX command.
|
|
**
|
|
** if memRootPage is not negative, it means that the index is newly
|
|
** created. The memory cell specified by memRootPage contains the
|
|
** root page number of the index. If memRootPage is negative, then
|
|
** the index already exists and must be cleared before being refilled and
|
|
** the root page number of the index is taken from pIndex->tnum.
|
|
*/
|
|
static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
|
|
Table *pTab = pIndex->pTable; /* The table that is indexed */
|
|
int iTab = pParse->nTab; /* Btree cursor used for pTab */
|
|
int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */
|
|
int addr1; /* Address of top of loop */
|
|
int tnum; /* Root page of index */
|
|
Vdbe *v; /* Generate code into this virtual machine */
|
|
KeyInfo *pKey; /* KeyInfo for index */
|
|
int iDb = sqlite3SchemaToIndex(pParse->db, pIndex->pSchema);
|
|
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
|
|
pParse->db->aDb[iDb].zName ) ){
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* Require a write-lock on the table to perform this operation */
|
|
sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) return;
|
|
if( memRootPage>=0 ){
|
|
sqlite3VdbeAddOp(v, OP_MemLoad, memRootPage, 0);
|
|
tnum = 0;
|
|
}else{
|
|
tnum = pIndex->tnum;
|
|
sqlite3VdbeAddOp(v, OP_Clear, tnum, iDb);
|
|
}
|
|
sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
|
|
pKey = sqlite3IndexKeyinfo(pParse, pIndex);
|
|
sqlite3VdbeOp3(v, OP_OpenWrite, iIdx, tnum, (char *)pKey, P3_KEYINFO_HANDOFF);
|
|
sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
|
|
addr1 = sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
|
|
sqlite3GenerateIndexKey(v, pIndex, iTab);
|
|
if( pIndex->onError!=OE_None ){
|
|
int curaddr = sqlite3VdbeCurrentAddr(v);
|
|
int addr2 = curaddr+4;
|
|
sqlite3VdbeChangeP2(v, curaddr-1, addr2);
|
|
sqlite3VdbeAddOp(v, OP_Rowid, iTab, 0);
|
|
sqlite3VdbeAddOp(v, OP_AddImm, 1, 0);
|
|
sqlite3VdbeAddOp(v, OP_IsUnique, iIdx, addr2);
|
|
sqlite3VdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort,
|
|
"indexed columns are not unique", P3_STATIC);
|
|
assert( addr2==sqlite3VdbeCurrentAddr(v) );
|
|
}
|
|
sqlite3VdbeAddOp(v, OP_IdxInsert, iIdx, 0);
|
|
sqlite3VdbeAddOp(v, OP_Next, iTab, addr1+1);
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
sqlite3VdbeAddOp(v, OP_Close, iTab, 0);
|
|
sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
|
|
}
|
|
|
|
/*
|
|
** Create a new index for an SQL table. pName1.pName2 is the name of the index
|
|
** and pTblList is the name of the table that is to be indexed. Both will
|
|
** be NULL for a primary key or an index that is created to satisfy a
|
|
** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
|
|
** as the table to be indexed. pParse->pNewTable is a table that is
|
|
** currently being constructed by a CREATE TABLE statement.
|
|
**
|
|
** pList is a list of columns to be indexed. pList will be NULL if this
|
|
** is a primary key or unique-constraint on the most recent column added
|
|
** to the table currently under construction.
|
|
*/
|
|
void sqlite3CreateIndex(
|
|
Parse *pParse, /* All information about this parse */
|
|
Token *pName1, /* First part of index name. May be NULL */
|
|
Token *pName2, /* Second part of index name. May be NULL */
|
|
SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
|
|
ExprList *pList, /* A list of columns to be indexed */
|
|
int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
|
|
Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */
|
|
Token *pEnd, /* The ")" that closes the CREATE INDEX statement */
|
|
int sortOrder, /* Sort order of primary key when pList==NULL */
|
|
int ifNotExist /* Omit error if index already exists */
|
|
){
|
|
Table *pTab = 0; /* Table to be indexed */
|
|
Index *pIndex = 0; /* The index to be created */
|
|
char *zName = 0; /* Name of the index */
|
|
int nName; /* Number of characters in zName */
|
|
int i, j;
|
|
Token nullId; /* Fake token for an empty ID list */
|
|
DbFixer sFix; /* For assigning database names to pTable */
|
|
int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
|
|
sqlite3 *db = pParse->db;
|
|
Db *pDb; /* The specific table containing the indexed database */
|
|
int iDb; /* Index of the database that is being written */
|
|
Token *pName = 0; /* Unqualified name of the index to create */
|
|
struct ExprList_item *pListItem; /* For looping over pList */
|
|
int nCol;
|
|
int nExtra = 0;
|
|
char *zExtra;
|
|
|
|
if( pParse->nErr || sqlite3MallocFailed() || IN_DECLARE_VTAB ){
|
|
goto exit_create_index;
|
|
}
|
|
|
|
/*
|
|
** Find the table that is to be indexed. Return early if not found.
|
|
*/
|
|
if( pTblName!=0 ){
|
|
|
|
/* Use the two-part index name to determine the database
|
|
** to search for the table. 'Fix' the table name to this db
|
|
** before looking up the table.
|
|
*/
|
|
assert( pName1 && pName2 );
|
|
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
|
if( iDb<0 ) goto exit_create_index;
|
|
|
|
#ifndef SQLITE_OMIT_TEMPDB
|
|
/* If the index name was unqualified, check if the the table
|
|
** is a temp table. If so, set the database to 1.
|
|
*/
|
|
pTab = sqlite3SrcListLookup(pParse, pTblName);
|
|
if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
|
|
iDb = 1;
|
|
}
|
|
#endif
|
|
|
|
if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
|
|
sqlite3FixSrcList(&sFix, pTblName)
|
|
){
|
|
/* Because the parser constructs pTblName from a single identifier,
|
|
** sqlite3FixSrcList can never fail. */
|
|
assert(0);
|
|
}
|
|
pTab = sqlite3LocateTable(pParse, pTblName->a[0].zName,
|
|
pTblName->a[0].zDatabase);
|
|
if( !pTab ) goto exit_create_index;
|
|
assert( db->aDb[iDb].pSchema==pTab->pSchema );
|
|
}else{
|
|
assert( pName==0 );
|
|
pTab = pParse->pNewTable;
|
|
if( !pTab ) goto exit_create_index;
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
}
|
|
pDb = &db->aDb[iDb];
|
|
|
|
if( pTab==0 || pParse->nErr ) goto exit_create_index;
|
|
if( pTab->readOnly ){
|
|
sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
|
|
goto exit_create_index;
|
|
}
|
|
#ifndef SQLITE_OMIT_VIEW
|
|
if( pTab->pSelect ){
|
|
sqlite3ErrorMsg(pParse, "views may not be indexed");
|
|
goto exit_create_index;
|
|
}
|
|
#endif
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( IsVirtual(pTab) ){
|
|
sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
|
|
goto exit_create_index;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Find the name of the index. Make sure there is not already another
|
|
** index or table with the same name.
|
|
**
|
|
** Exception: If we are reading the names of permanent indices from the
|
|
** sqlite_master table (because some other process changed the schema) and
|
|
** one of the index names collides with the name of a temporary table or
|
|
** index, then we will continue to process this index.
|
|
**
|
|
** If pName==0 it means that we are
|
|
** dealing with a primary key or UNIQUE constraint. We have to invent our
|
|
** own name.
|
|
*/
|
|
if( pName ){
|
|
zName = sqlite3NameFromToken(pName);
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
|
|
if( zName==0 ) goto exit_create_index;
|
|
if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
|
|
goto exit_create_index;
|
|
}
|
|
if( !db->init.busy ){
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
|
|
if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
|
|
if( !ifNotExist ){
|
|
sqlite3ErrorMsg(pParse, "index %s already exists", zName);
|
|
}
|
|
goto exit_create_index;
|
|
}
|
|
if( sqlite3FindTable(db, zName, 0)!=0 ){
|
|
sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
|
|
goto exit_create_index;
|
|
}
|
|
}
|
|
}else{
|
|
char zBuf[30];
|
|
int n;
|
|
Index *pLoop;
|
|
for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
|
|
sprintf(zBuf,"_%d",n);
|
|
zName = 0;
|
|
sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0);
|
|
if( zName==0 ) goto exit_create_index;
|
|
}
|
|
|
|
/* Check for authorization to create an index.
|
|
*/
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
{
|
|
const char *zDb = pDb->zName;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
|
|
goto exit_create_index;
|
|
}
|
|
i = SQLITE_CREATE_INDEX;
|
|
if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
|
|
if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
|
|
goto exit_create_index;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* If pList==0, it means this routine was called to make a primary
|
|
** key out of the last column added to the table under construction.
|
|
** So create a fake list to simulate this.
|
|
*/
|
|
if( pList==0 ){
|
|
nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName;
|
|
nullId.n = strlen((char*)nullId.z);
|
|
pList = sqlite3ExprListAppend(0, 0, &nullId);
|
|
if( pList==0 ) goto exit_create_index;
|
|
pList->a[0].sortOrder = sortOrder;
|
|
}
|
|
|
|
/* Figure out how many bytes of space are required to store explicitly
|
|
** specified collation sequence names.
|
|
*/
|
|
for(i=0; i<pList->nExpr; i++){
|
|
Expr *pExpr = pList->a[i].pExpr;
|
|
if( pExpr ){
|
|
nExtra += (1 + strlen(pExpr->pColl->zName));
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Allocate the index structure.
|
|
*/
|
|
nName = strlen(zName);
|
|
nCol = pList->nExpr;
|
|
pIndex = sqliteMalloc(
|
|
sizeof(Index) + /* Index structure */
|
|
sizeof(int)*nCol + /* Index.aiColumn */
|
|
sizeof(int)*(nCol+1) + /* Index.aiRowEst */
|
|
sizeof(char *)*nCol + /* Index.azColl */
|
|
sizeof(u8)*nCol + /* Index.aSortOrder */
|
|
nName + 1 + /* Index.zName */
|
|
nExtra /* Collation sequence names */
|
|
);
|
|
if( sqlite3MallocFailed() ) goto exit_create_index;
|
|
pIndex->azColl = (char**)(&pIndex[1]);
|
|
pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
|
|
pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
|
|
pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
|
|
pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
|
|
zExtra = (char *)(&pIndex->zName[nName+1]);
|
|
strcpy(pIndex->zName, zName);
|
|
pIndex->pTable = pTab;
|
|
pIndex->nColumn = pList->nExpr;
|
|
pIndex->onError = onError;
|
|
pIndex->autoIndex = pName==0;
|
|
pIndex->pSchema = db->aDb[iDb].pSchema;
|
|
|
|
/* Check to see if we should honor DESC requests on index columns
|
|
*/
|
|
if( pDb->pSchema->file_format>=4 ){
|
|
sortOrderMask = -1; /* Honor DESC */
|
|
}else{
|
|
sortOrderMask = 0; /* Ignore DESC */
|
|
}
|
|
|
|
/* Scan the names of the columns of the table to be indexed and
|
|
** load the column indices into the Index structure. Report an error
|
|
** if any column is not found.
|
|
*/
|
|
for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
|
|
const char *zColName = pListItem->zName;
|
|
Column *pTabCol;
|
|
int requestedSortOrder;
|
|
char *zColl; /* Collation sequence name */
|
|
|
|
for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
|
|
if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
|
|
}
|
|
if( j>=pTab->nCol ){
|
|
sqlite3ErrorMsg(pParse, "table %s has no column named %s",
|
|
pTab->zName, zColName);
|
|
goto exit_create_index;
|
|
}
|
|
/* TODO: Add a test to make sure that the same column is not named
|
|
** more than once within the same index. Only the first instance of
|
|
** the column will ever be used by the optimizer. Note that using the
|
|
** same column more than once cannot be an error because that would
|
|
** break backwards compatibility - it needs to be a warning.
|
|
*/
|
|
pIndex->aiColumn[i] = j;
|
|
if( pListItem->pExpr ){
|
|
assert( pListItem->pExpr->pColl );
|
|
zColl = zExtra;
|
|
strcpy(zExtra, pListItem->pExpr->pColl->zName);
|
|
zExtra += (strlen(zColl) + 1);
|
|
}else{
|
|
zColl = pTab->aCol[j].zColl;
|
|
if( !zColl ){
|
|
zColl = db->pDfltColl->zName;
|
|
}
|
|
}
|
|
if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){
|
|
goto exit_create_index;
|
|
}
|
|
pIndex->azColl[i] = zColl;
|
|
requestedSortOrder = pListItem->sortOrder & sortOrderMask;
|
|
pIndex->aSortOrder[i] = requestedSortOrder;
|
|
}
|
|
sqlite3DefaultRowEst(pIndex);
|
|
|
|
if( pTab==pParse->pNewTable ){
|
|
/* This routine has been called to create an automatic index as a
|
|
** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
|
|
** a PRIMARY KEY or UNIQUE clause following the column definitions.
|
|
** i.e. one of:
|
|
**
|
|
** CREATE TABLE t(x PRIMARY KEY, y);
|
|
** CREATE TABLE t(x, y, UNIQUE(x, y));
|
|
**
|
|
** Either way, check to see if the table already has such an index. If
|
|
** so, don't bother creating this one. This only applies to
|
|
** automatically created indices. Users can do as they wish with
|
|
** explicit indices.
|
|
*/
|
|
Index *pIdx;
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
int k;
|
|
assert( pIdx->onError!=OE_None );
|
|
assert( pIdx->autoIndex );
|
|
assert( pIndex->onError!=OE_None );
|
|
|
|
if( pIdx->nColumn!=pIndex->nColumn ) continue;
|
|
for(k=0; k<pIdx->nColumn; k++){
|
|
const char *z1 = pIdx->azColl[k];
|
|
const char *z2 = pIndex->azColl[k];
|
|
if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
|
|
if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break;
|
|
if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
|
|
}
|
|
if( k==pIdx->nColumn ){
|
|
if( pIdx->onError!=pIndex->onError ){
|
|
/* This constraint creates the same index as a previous
|
|
** constraint specified somewhere in the CREATE TABLE statement.
|
|
** However the ON CONFLICT clauses are different. If both this
|
|
** constraint and the previous equivalent constraint have explicit
|
|
** ON CONFLICT clauses this is an error. Otherwise, use the
|
|
** explicitly specified behaviour for the index.
|
|
*/
|
|
if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"conflicting ON CONFLICT clauses specified", 0);
|
|
}
|
|
if( pIdx->onError==OE_Default ){
|
|
pIdx->onError = pIndex->onError;
|
|
}
|
|
}
|
|
goto exit_create_index;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Link the new Index structure to its table and to the other
|
|
** in-memory database structures.
|
|
*/
|
|
if( db->init.busy ){
|
|
Index *p;
|
|
p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
|
|
pIndex->zName, strlen(pIndex->zName)+1, pIndex);
|
|
if( p ){
|
|
assert( p==pIndex ); /* Malloc must have failed */
|
|
goto exit_create_index;
|
|
}
|
|
db->flags |= SQLITE_InternChanges;
|
|
if( pTblName!=0 ){
|
|
pIndex->tnum = db->init.newTnum;
|
|
}
|
|
}
|
|
|
|
/* If the db->init.busy is 0 then create the index on disk. This
|
|
** involves writing the index into the master table and filling in the
|
|
** index with the current table contents.
|
|
**
|
|
** The db->init.busy is 0 when the user first enters a CREATE INDEX
|
|
** command. db->init.busy is 1 when a database is opened and
|
|
** CREATE INDEX statements are read out of the master table. In
|
|
** the latter case the index already exists on disk, which is why
|
|
** we don't want to recreate it.
|
|
**
|
|
** If pTblName==0 it means this index is generated as a primary key
|
|
** or UNIQUE constraint of a CREATE TABLE statement. Since the table
|
|
** has just been created, it contains no data and the index initialization
|
|
** step can be skipped.
|
|
*/
|
|
else if( db->init.busy==0 ){
|
|
Vdbe *v;
|
|
char *zStmt;
|
|
int iMem = pParse->nMem++;
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) goto exit_create_index;
|
|
|
|
|
|
/* Create the rootpage for the index
|
|
*/
|
|
sqlite3BeginWriteOperation(pParse, 1, iDb);
|
|
sqlite3VdbeAddOp(v, OP_CreateIndex, iDb, 0);
|
|
sqlite3VdbeAddOp(v, OP_MemStore, iMem, 0);
|
|
|
|
/* Gather the complete text of the CREATE INDEX statement into
|
|
** the zStmt variable
|
|
*/
|
|
if( pStart && pEnd ){
|
|
/* A named index with an explicit CREATE INDEX statement */
|
|
zStmt = sqlite3MPrintf("CREATE%s INDEX %.*s",
|
|
onError==OE_None ? "" : " UNIQUE",
|
|
pEnd->z - pName->z + 1,
|
|
pName->z);
|
|
}else{
|
|
/* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
|
|
/* zStmt = sqlite3MPrintf(""); */
|
|
zStmt = 0;
|
|
}
|
|
|
|
/* Add an entry in sqlite_master for this index
|
|
*/
|
|
sqlite3NestedParse(pParse,
|
|
"INSERT INTO %Q.%s VALUES('index',%Q,%Q,#0,%Q);",
|
|
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
|
|
pIndex->zName,
|
|
pTab->zName,
|
|
zStmt
|
|
);
|
|
sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
|
|
sqliteFree(zStmt);
|
|
|
|
/* Fill the index with data and reparse the schema. Code an OP_Expire
|
|
** to invalidate all pre-compiled statements.
|
|
*/
|
|
if( pTblName ){
|
|
sqlite3RefillIndex(pParse, pIndex, iMem);
|
|
sqlite3ChangeCookie(db, v, iDb);
|
|
sqlite3VdbeOp3(v, OP_ParseSchema, iDb, 0,
|
|
sqlite3MPrintf("name='%q'", pIndex->zName), P3_DYNAMIC);
|
|
sqlite3VdbeAddOp(v, OP_Expire, 0, 0);
|
|
}
|
|
}
|
|
|
|
/* When adding an index to the list of indices for a table, make
|
|
** sure all indices labeled OE_Replace come after all those labeled
|
|
** OE_Ignore. This is necessary for the correct operation of UPDATE
|
|
** and INSERT.
|
|
*/
|
|
if( db->init.busy || pTblName==0 ){
|
|
if( onError!=OE_Replace || pTab->pIndex==0
|
|
|| pTab->pIndex->onError==OE_Replace){
|
|
pIndex->pNext = pTab->pIndex;
|
|
pTab->pIndex = pIndex;
|
|
}else{
|
|
Index *pOther = pTab->pIndex;
|
|
while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
|
|
pOther = pOther->pNext;
|
|
}
|
|
pIndex->pNext = pOther->pNext;
|
|
pOther->pNext = pIndex;
|
|
}
|
|
pIndex = 0;
|
|
}
|
|
|
|
/* Clean up before exiting */
|
|
exit_create_index:
|
|
if( pIndex ){
|
|
freeIndex(pIndex);
|
|
}
|
|
sqlite3ExprListDelete(pList);
|
|
sqlite3SrcListDelete(pTblName);
|
|
sqliteFree(zName);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** Generate code to make sure the file format number is at least minFormat.
|
|
** The generated code will increase the file format number if necessary.
|
|
*/
|
|
void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
|
|
Vdbe *v;
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
sqlite3VdbeAddOp(v, OP_ReadCookie, iDb, 1);
|
|
sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0);
|
|
sqlite3VdbeAddOp(v, OP_Ge, 0, sqlite3VdbeCurrentAddr(v)+3);
|
|
sqlite3VdbeAddOp(v, OP_Integer, minFormat, 0);
|
|
sqlite3VdbeAddOp(v, OP_SetCookie, iDb, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Fill the Index.aiRowEst[] array with default information - information
|
|
** to be used when we have not run the ANALYZE command.
|
|
**
|
|
** aiRowEst[0] is suppose to contain the number of elements in the index.
|
|
** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
|
|
** number of rows in the table that match any particular value of the
|
|
** first column of the index. aiRowEst[2] is an estimate of the number
|
|
** of rows that match any particular combiniation of the first 2 columns
|
|
** of the index. And so forth. It must always be the case that
|
|
*
|
|
** aiRowEst[N]<=aiRowEst[N-1]
|
|
** aiRowEst[N]>=1
|
|
**
|
|
** Apart from that, we have little to go on besides intuition as to
|
|
** how aiRowEst[] should be initialized. The numbers generated here
|
|
** are based on typical values found in actual indices.
|
|
*/
|
|
void sqlite3DefaultRowEst(Index *pIdx){
|
|
unsigned *a = pIdx->aiRowEst;
|
|
int i;
|
|
assert( a!=0 );
|
|
a[0] = 1000000;
|
|
for(i=pIdx->nColumn; i>=5; i--){
|
|
a[i] = 5;
|
|
}
|
|
while( i>=1 ){
|
|
a[i] = 11 - i;
|
|
i--;
|
|
}
|
|
if( pIdx->onError!=OE_None ){
|
|
a[pIdx->nColumn] = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine will drop an existing named index. This routine
|
|
** implements the DROP INDEX statement.
|
|
*/
|
|
void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
|
|
Index *pIndex;
|
|
Vdbe *v;
|
|
sqlite3 *db = pParse->db;
|
|
int iDb;
|
|
|
|
if( pParse->nErr || sqlite3MallocFailed() ){
|
|
goto exit_drop_index;
|
|
}
|
|
assert( pName->nSrc==1 );
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
goto exit_drop_index;
|
|
}
|
|
pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
|
|
if( pIndex==0 ){
|
|
if( !ifExists ){
|
|
sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
|
|
}
|
|
pParse->checkSchema = 1;
|
|
goto exit_drop_index;
|
|
}
|
|
if( pIndex->autoIndex ){
|
|
sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
|
|
"or PRIMARY KEY constraint cannot be dropped", 0);
|
|
goto exit_drop_index;
|
|
}
|
|
iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
{
|
|
int code = SQLITE_DROP_INDEX;
|
|
Table *pTab = pIndex->pTable;
|
|
const char *zDb = db->aDb[iDb].zName;
|
|
const char *zTab = SCHEMA_TABLE(iDb);
|
|
if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
|
|
goto exit_drop_index;
|
|
}
|
|
if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
|
|
if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
|
|
goto exit_drop_index;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Generate code to remove the index and from the master table */
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
sqlite3NestedParse(pParse,
|
|
"DELETE FROM %Q.%s WHERE name=%Q",
|
|
db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
|
|
pIndex->zName
|
|
);
|
|
sqlite3ChangeCookie(db, v, iDb);
|
|
destroyRootPage(pParse, pIndex->tnum, iDb);
|
|
sqlite3VdbeOp3(v, OP_DropIndex, iDb, 0, pIndex->zName, 0);
|
|
}
|
|
|
|
exit_drop_index:
|
|
sqlite3SrcListDelete(pName);
|
|
}
|
|
|
|
/*
|
|
** ppArray points into a structure where there is an array pointer
|
|
** followed by two integers. The first integer is the
|
|
** number of elements in the structure array. The second integer
|
|
** is the number of allocated slots in the array.
|
|
**
|
|
** In other words, the structure looks something like this:
|
|
**
|
|
** struct Example1 {
|
|
** struct subElem *aEntry;
|
|
** int nEntry;
|
|
** int nAlloc;
|
|
** }
|
|
**
|
|
** The pnEntry parameter points to the equivalent of Example1.nEntry.
|
|
**
|
|
** This routine allocates a new slot in the array, zeros it out,
|
|
** and returns its index. If malloc fails a negative number is returned.
|
|
**
|
|
** szEntry is the sizeof of a single array entry. initSize is the
|
|
** number of array entries allocated on the initial allocation.
|
|
*/
|
|
int sqlite3ArrayAllocate(void **ppArray, int szEntry, int initSize){
|
|
char *p;
|
|
int *an = (int*)&ppArray[1];
|
|
if( an[0]>=an[1] ){
|
|
void *pNew;
|
|
int newSize;
|
|
newSize = an[1]*2 + initSize;
|
|
pNew = sqliteRealloc(*ppArray, newSize*szEntry);
|
|
if( pNew==0 ){
|
|
return -1;
|
|
}
|
|
an[1] = newSize;
|
|
*ppArray = pNew;
|
|
}
|
|
p = *ppArray;
|
|
memset(&p[an[0]*szEntry], 0, szEntry);
|
|
return an[0]++;
|
|
}
|
|
|
|
/*
|
|
** Append a new element to the given IdList. Create a new IdList if
|
|
** need be.
|
|
**
|
|
** A new IdList is returned, or NULL if malloc() fails.
|
|
*/
|
|
IdList *sqlite3IdListAppend(IdList *pList, Token *pToken){
|
|
int i;
|
|
if( pList==0 ){
|
|
pList = sqliteMalloc( sizeof(IdList) );
|
|
if( pList==0 ) return 0;
|
|
pList->nAlloc = 0;
|
|
}
|
|
i = sqlite3ArrayAllocate((void**)&pList->a, sizeof(pList->a[0]), 5);
|
|
if( i<0 ){
|
|
sqlite3IdListDelete(pList);
|
|
return 0;
|
|
}
|
|
pList->a[i].zName = sqlite3NameFromToken(pToken);
|
|
return pList;
|
|
}
|
|
|
|
/*
|
|
** Delete an IdList.
|
|
*/
|
|
void sqlite3IdListDelete(IdList *pList){
|
|
int i;
|
|
if( pList==0 ) return;
|
|
for(i=0; i<pList->nId; i++){
|
|
sqliteFree(pList->a[i].zName);
|
|
}
|
|
sqliteFree(pList->a);
|
|
sqliteFree(pList);
|
|
}
|
|
|
|
/*
|
|
** Return the index in pList of the identifier named zId. Return -1
|
|
** if not found.
|
|
*/
|
|
int sqlite3IdListIndex(IdList *pList, const char *zName){
|
|
int i;
|
|
if( pList==0 ) return -1;
|
|
for(i=0; i<pList->nId; i++){
|
|
if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
** Append a new table name to the given SrcList. Create a new SrcList if
|
|
** need be. A new entry is created in the SrcList even if pToken is NULL.
|
|
**
|
|
** A new SrcList is returned, or NULL if malloc() fails.
|
|
**
|
|
** If pDatabase is not null, it means that the table has an optional
|
|
** database name prefix. Like this: "database.table". The pDatabase
|
|
** points to the table name and the pTable points to the database name.
|
|
** The SrcList.a[].zName field is filled with the table name which might
|
|
** come from pTable (if pDatabase is NULL) or from pDatabase.
|
|
** SrcList.a[].zDatabase is filled with the database name from pTable,
|
|
** or with NULL if no database is specified.
|
|
**
|
|
** In other words, if call like this:
|
|
**
|
|
** sqlite3SrcListAppend(A,B,0);
|
|
**
|
|
** Then B is a table name and the database name is unspecified. If called
|
|
** like this:
|
|
**
|
|
** sqlite3SrcListAppend(A,B,C);
|
|
**
|
|
** Then C is the table name and B is the database name.
|
|
*/
|
|
SrcList *sqlite3SrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){
|
|
struct SrcList_item *pItem;
|
|
if( pList==0 ){
|
|
pList = sqliteMalloc( sizeof(SrcList) );
|
|
if( pList==0 ) return 0;
|
|
pList->nAlloc = 1;
|
|
}
|
|
if( pList->nSrc>=pList->nAlloc ){
|
|
SrcList *pNew;
|
|
pList->nAlloc *= 2;
|
|
pNew = sqliteRealloc(pList,
|
|
sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
|
|
if( pNew==0 ){
|
|
sqlite3SrcListDelete(pList);
|
|
return 0;
|
|
}
|
|
pList = pNew;
|
|
}
|
|
pItem = &pList->a[pList->nSrc];
|
|
memset(pItem, 0, sizeof(pList->a[0]));
|
|
if( pDatabase && pDatabase->z==0 ){
|
|
pDatabase = 0;
|
|
}
|
|
if( pDatabase && pTable ){
|
|
Token *pTemp = pDatabase;
|
|
pDatabase = pTable;
|
|
pTable = pTemp;
|
|
}
|
|
pItem->zName = sqlite3NameFromToken(pTable);
|
|
pItem->zDatabase = sqlite3NameFromToken(pDatabase);
|
|
pItem->iCursor = -1;
|
|
pItem->isPopulated = 0;
|
|
pList->nSrc++;
|
|
return pList;
|
|
}
|
|
|
|
/*
|
|
** Assign cursors to all tables in a SrcList
|
|
*/
|
|
void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
|
|
int i;
|
|
struct SrcList_item *pItem;
|
|
assert(pList || sqlite3MallocFailed() );
|
|
if( pList ){
|
|
for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
|
|
if( pItem->iCursor>=0 ) break;
|
|
pItem->iCursor = pParse->nTab++;
|
|
if( pItem->pSelect ){
|
|
sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Delete an entire SrcList including all its substructure.
|
|
*/
|
|
void sqlite3SrcListDelete(SrcList *pList){
|
|
int i;
|
|
struct SrcList_item *pItem;
|
|
if( pList==0 ) return;
|
|
for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
|
|
sqliteFree(pItem->zDatabase);
|
|
sqliteFree(pItem->zName);
|
|
sqliteFree(pItem->zAlias);
|
|
sqlite3DeleteTable(0, pItem->pTab);
|
|
sqlite3SelectDelete(pItem->pSelect);
|
|
sqlite3ExprDelete(pItem->pOn);
|
|
sqlite3IdListDelete(pItem->pUsing);
|
|
}
|
|
sqliteFree(pList);
|
|
}
|
|
|
|
/*
|
|
** This routine is called by the parser to add a new term to the
|
|
** end of a growing FROM clause. The "p" parameter is the part of
|
|
** the FROM clause that has already been constructed. "p" is NULL
|
|
** if this is the first term of the FROM clause. pTable and pDatabase
|
|
** are the name of the table and database named in the FROM clause term.
|
|
** pDatabase is NULL if the database name qualifier is missing - the
|
|
** usual case. If the term has a alias, then pAlias points to the
|
|
** alias token. If the term is a subquery, then pSubquery is the
|
|
** SELECT statement that the subquery encodes. The pTable and
|
|
** pDatabase parameters are NULL for subqueries. The pOn and pUsing
|
|
** parameters are the content of the ON and USING clauses.
|
|
**
|
|
** Return a new SrcList which encodes is the FROM with the new
|
|
** term added.
|
|
*/
|
|
SrcList *sqlite3SrcListAppendFromTerm(
|
|
SrcList *p, /* The left part of the FROM clause already seen */
|
|
Token *pTable, /* Name of the table to add to the FROM clause */
|
|
Token *pDatabase, /* Name of the database containing pTable */
|
|
Token *pAlias, /* The right-hand side of the AS subexpression */
|
|
Select *pSubquery, /* A subquery used in place of a table name */
|
|
Expr *pOn, /* The ON clause of a join */
|
|
IdList *pUsing /* The USING clause of a join */
|
|
){
|
|
struct SrcList_item *pItem;
|
|
p = sqlite3SrcListAppend(p, pTable, pDatabase);
|
|
if( p==0 || p->nSrc==0 ){
|
|
sqlite3ExprDelete(pOn);
|
|
sqlite3IdListDelete(pUsing);
|
|
sqlite3SelectDelete(pSubquery);
|
|
return p;
|
|
}
|
|
pItem = &p->a[p->nSrc-1];
|
|
if( pAlias && pAlias->n ){
|
|
pItem->zAlias = sqlite3NameFromToken(pAlias);
|
|
}
|
|
pItem->pSelect = pSubquery;
|
|
pItem->pOn = pOn;
|
|
pItem->pUsing = pUsing;
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** When building up a FROM clause in the parser, the join operator
|
|
** is initially attached to the left operand. But the code generator
|
|
** expects the join operator to be on the right operand. This routine
|
|
** Shifts all join operators from left to right for an entire FROM
|
|
** clause.
|
|
**
|
|
** Example: Suppose the join is like this:
|
|
**
|
|
** A natural cross join B
|
|
**
|
|
** The operator is "natural cross join". The A and B operands are stored
|
|
** in p->a[0] and p->a[1], respectively. The parser initially stores the
|
|
** operator with A. This routine shifts that operator over to B.
|
|
*/
|
|
void sqlite3SrcListShiftJoinType(SrcList *p){
|
|
if( p && p->a ){
|
|
int i;
|
|
for(i=p->nSrc-1; i>0; i--){
|
|
p->a[i].jointype = p->a[i-1].jointype;
|
|
}
|
|
p->a[0].jointype = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Begin a transaction
|
|
*/
|
|
void sqlite3BeginTransaction(Parse *pParse, int type){
|
|
sqlite3 *db;
|
|
Vdbe *v;
|
|
int i;
|
|
|
|
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
|
if( pParse->nErr || sqlite3MallocFailed() ) return;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( !v ) return;
|
|
if( type!=TK_DEFERRED ){
|
|
for(i=0; i<db->nDb; i++){
|
|
sqlite3VdbeAddOp(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
|
|
}
|
|
}
|
|
sqlite3VdbeAddOp(v, OP_AutoCommit, 0, 0);
|
|
}
|
|
|
|
/*
|
|
** Commit a transaction
|
|
*/
|
|
void sqlite3CommitTransaction(Parse *pParse){
|
|
sqlite3 *db;
|
|
Vdbe *v;
|
|
|
|
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
|
if( pParse->nErr || sqlite3MallocFailed() ) return;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Rollback a transaction
|
|
*/
|
|
void sqlite3RollbackTransaction(Parse *pParse){
|
|
sqlite3 *db;
|
|
Vdbe *v;
|
|
|
|
if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
|
|
if( pParse->nErr || sqlite3MallocFailed() ) return;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
sqlite3VdbeAddOp(v, OP_AutoCommit, 1, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Make sure the TEMP database is open and available for use. Return
|
|
** the number of errors. Leave any error messages in the pParse structure.
|
|
*/
|
|
int sqlite3OpenTempDatabase(Parse *pParse){
|
|
sqlite3 *db = pParse->db;
|
|
if( db->aDb[1].pBt==0 && !pParse->explain ){
|
|
int rc = sqlite3BtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3ErrorMsg(pParse, "unable to open a temporary database "
|
|
"file for storing temporary tables");
|
|
pParse->rc = rc;
|
|
return 1;
|
|
}
|
|
if( db->flags & !db->autoCommit ){
|
|
rc = sqlite3BtreeBeginTrans(db->aDb[1].pBt, 1);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3ErrorMsg(pParse, "unable to get a write lock on "
|
|
"the temporary database file");
|
|
pParse->rc = rc;
|
|
return 1;
|
|
}
|
|
}
|
|
assert( db->aDb[1].pSchema );
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Generate VDBE code that will verify the schema cookie and start
|
|
** a read-transaction for all named database files.
|
|
**
|
|
** It is important that all schema cookies be verified and all
|
|
** read transactions be started before anything else happens in
|
|
** the VDBE program. But this routine can be called after much other
|
|
** code has been generated. So here is what we do:
|
|
**
|
|
** The first time this routine is called, we code an OP_Goto that
|
|
** will jump to a subroutine at the end of the program. Then we
|
|
** record every database that needs its schema verified in the
|
|
** pParse->cookieMask field. Later, after all other code has been
|
|
** generated, the subroutine that does the cookie verifications and
|
|
** starts the transactions will be coded and the OP_Goto P2 value
|
|
** will be made to point to that subroutine. The generation of the
|
|
** cookie verification subroutine code happens in sqlite3FinishCoding().
|
|
**
|
|
** If iDb<0 then code the OP_Goto only - don't set flag to verify the
|
|
** schema on any databases. This can be used to position the OP_Goto
|
|
** early in the code, before we know if any database tables will be used.
|
|
*/
|
|
void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
|
|
sqlite3 *db;
|
|
Vdbe *v;
|
|
int mask;
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) return; /* This only happens if there was a prior error */
|
|
db = pParse->db;
|
|
if( pParse->cookieGoto==0 ){
|
|
pParse->cookieGoto = sqlite3VdbeAddOp(v, OP_Goto, 0, 0)+1;
|
|
}
|
|
if( iDb>=0 ){
|
|
assert( iDb<db->nDb );
|
|
assert( db->aDb[iDb].pBt!=0 || iDb==1 );
|
|
assert( iDb<MAX_ATTACHED+2 );
|
|
mask = 1<<iDb;
|
|
if( (pParse->cookieMask & mask)==0 ){
|
|
pParse->cookieMask |= mask;
|
|
pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
|
|
if( !OMIT_TEMPDB && iDb==1 ){
|
|
sqlite3OpenTempDatabase(pParse);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate VDBE code that prepares for doing an operation that
|
|
** might change the database.
|
|
**
|
|
** This routine starts a new transaction if we are not already within
|
|
** a transaction. If we are already within a transaction, then a checkpoint
|
|
** is set if the setStatement parameter is true. A checkpoint should
|
|
** be set for operations that might fail (due to a constraint) part of
|
|
** the way through and which will need to undo some writes without having to
|
|
** rollback the whole transaction. For operations where all constraints
|
|
** can be checked before any changes are made to the database, it is never
|
|
** necessary to undo a write and the checkpoint should not be set.
|
|
**
|
|
** Only database iDb and the temp database are made writable by this call.
|
|
** If iDb==0, then the main and temp databases are made writable. If
|
|
** iDb==1 then only the temp database is made writable. If iDb>1 then the
|
|
** specified auxiliary database and the temp database are made writable.
|
|
*/
|
|
void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) return;
|
|
sqlite3CodeVerifySchema(pParse, iDb);
|
|
pParse->writeMask |= 1<<iDb;
|
|
if( setStatement && pParse->nested==0 ){
|
|
sqlite3VdbeAddOp(v, OP_Statement, iDb, 0);
|
|
}
|
|
if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
|
|
sqlite3BeginWriteOperation(pParse, setStatement, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Check to see if pIndex uses the collating sequence pColl. Return
|
|
** true if it does and false if it does not.
|
|
*/
|
|
#ifndef SQLITE_OMIT_REINDEX
|
|
static int collationMatch(const char *zColl, Index *pIndex){
|
|
int i;
|
|
for(i=0; i<pIndex->nColumn; i++){
|
|
const char *z = pIndex->azColl[i];
|
|
if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Recompute all indices of pTab that use the collating sequence pColl.
|
|
** If pColl==0 then recompute all indices of pTab.
|
|
*/
|
|
#ifndef SQLITE_OMIT_REINDEX
|
|
static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
|
|
Index *pIndex; /* An index associated with pTab */
|
|
|
|
for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
|
|
if( zColl==0 || collationMatch(zColl, pIndex) ){
|
|
int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
sqlite3RefillIndex(pParse, pIndex, -1);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Recompute all indices of all tables in all databases where the
|
|
** indices use the collating sequence pColl. If pColl==0 then recompute
|
|
** all indices everywhere.
|
|
*/
|
|
#ifndef SQLITE_OMIT_REINDEX
|
|
static void reindexDatabases(Parse *pParse, char const *zColl){
|
|
Db *pDb; /* A single database */
|
|
int iDb; /* The database index number */
|
|
sqlite3 *db = pParse->db; /* The database connection */
|
|
HashElem *k; /* For looping over tables in pDb */
|
|
Table *pTab; /* A table in the database */
|
|
|
|
for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
|
|
assert( pDb!=0 );
|
|
for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
|
|
pTab = (Table*)sqliteHashData(k);
|
|
reindexTable(pParse, pTab, zColl);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Generate code for the REINDEX command.
|
|
**
|
|
** REINDEX -- 1
|
|
** REINDEX <collation> -- 2
|
|
** REINDEX ?<database>.?<tablename> -- 3
|
|
** REINDEX ?<database>.?<indexname> -- 4
|
|
**
|
|
** Form 1 causes all indices in all attached databases to be rebuilt.
|
|
** Form 2 rebuilds all indices in all databases that use the named
|
|
** collating function. Forms 3 and 4 rebuild the named index or all
|
|
** indices associated with the named table.
|
|
*/
|
|
#ifndef SQLITE_OMIT_REINDEX
|
|
void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
|
|
CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
|
|
char *z; /* Name of a table or index */
|
|
const char *zDb; /* Name of the database */
|
|
Table *pTab; /* A table in the database */
|
|
Index *pIndex; /* An index associated with pTab */
|
|
int iDb; /* The database index number */
|
|
sqlite3 *db = pParse->db; /* The database connection */
|
|
Token *pObjName; /* Name of the table or index to be reindexed */
|
|
|
|
/* Read the database schema. If an error occurs, leave an error message
|
|
** and code in pParse and return NULL. */
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
return;
|
|
}
|
|
|
|
if( pName1==0 || pName1->z==0 ){
|
|
reindexDatabases(pParse, 0);
|
|
return;
|
|
}else if( pName2==0 || pName2->z==0 ){
|
|
assert( pName1->z );
|
|
pColl = sqlite3FindCollSeq(db, ENC(db), (char*)pName1->z, pName1->n, 0);
|
|
if( pColl ){
|
|
char *zColl = sqliteStrNDup((const char *)pName1->z, pName1->n);
|
|
if( zColl ){
|
|
reindexDatabases(pParse, zColl);
|
|
sqliteFree(zColl);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
|
|
if( iDb<0 ) return;
|
|
z = sqlite3NameFromToken(pObjName);
|
|
zDb = db->aDb[iDb].zName;
|
|
pTab = sqlite3FindTable(db, z, zDb);
|
|
if( pTab ){
|
|
reindexTable(pParse, pTab, 0);
|
|
sqliteFree(z);
|
|
return;
|
|
}
|
|
pIndex = sqlite3FindIndex(db, z, zDb);
|
|
sqliteFree(z);
|
|
if( pIndex ){
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
sqlite3RefillIndex(pParse, pIndex, -1);
|
|
return;
|
|
}
|
|
sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Return a dynamicly allocated KeyInfo structure that can be used
|
|
** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
|
|
**
|
|
** If successful, a pointer to the new structure is returned. In this case
|
|
** the caller is responsible for calling sqliteFree() on the returned
|
|
** pointer. If an error occurs (out of memory or missing collation
|
|
** sequence), NULL is returned and the state of pParse updated to reflect
|
|
** the error.
|
|
*/
|
|
KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
|
|
int i;
|
|
int nCol = pIdx->nColumn;
|
|
int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
|
|
KeyInfo *pKey = (KeyInfo *)sqliteMalloc(nBytes);
|
|
|
|
if( pKey ){
|
|
pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
|
|
assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
|
|
for(i=0; i<nCol; i++){
|
|
char *zColl = pIdx->azColl[i];
|
|
assert( zColl );
|
|
pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1);
|
|
pKey->aSortOrder[i] = pIdx->aSortOrder[i];
|
|
}
|
|
pKey->nField = nCol;
|
|
}
|
|
|
|
if( pParse->nErr ){
|
|
sqliteFree(pKey);
|
|
pKey = 0;
|
|
}
|
|
return pKey;
|
|
}
|