An actual memory implementation

This commit is contained in:
Ryan Teal 2019-06-30 15:39:56 +01:00
parent 64f2f90087
commit 2f24f28084
No known key found for this signature in database
GPG Key ID: 8DBEE0F12C7E2D23
4 changed files with 84 additions and 23 deletions

View File

@ -9,7 +9,8 @@ include_directories(${source_DIR}/include)
add_library(lightswitch SHARED add_library(lightswitch SHARED
${source_DIR}/lightswitch.cpp ${source_DIR}/lightswitch.cpp
${source_DIR}/core/arm/cpu.cpp ${source_DIR}/core/arm/cpu.cpp
${source_DIR}/core/arm/memory.cpp
${source_DIR}/core/hos/loaders/nro.cpp ${source_DIR}/core/hos/loaders/nro.cpp
) )
target_link_libraries(lightswitch ${source_DIR}/lib/${ANDROID_ABI}/libunicorn.a) target_link_libraries(lightswitch ${source_DIR}/lib/${ANDROID_ABI}/libunicorn.a)

View File

@ -0,0 +1,43 @@
#include <sys/mman.h>
#include <syslog.h>
#include <vector>
#include "memory.h"
std::vector<mem::MemoryRegion> memRegions;
namespace mem {
bool Map(uc_engine* uc, uint64_t address, size_t size, std::string label) {
void* ptr = mmap((void*)(address), size, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, 0, 0);
if(!ptr)
return false;
// Skipping this until the CPU implementation is working
if(uc) {
uc_err err = uc_mem_map_ptr(uc, address, size, UC_PROT_ALL, ptr);
if(err)
{
syslog(LOG_ERR, "Memory map failed: %s", uc_strerror(err));
return false;
}
}
syslog(LOG_INFO, "Successfully mapped region '%s' to 0x%x", label.c_str(), address);
memRegions.push_back({label, address, size, ptr});
return true;
}
// TODO: Boundary checks
void Write(void* data, uint64_t offset, size_t size) { std::memcpy((void*)(offset), data, size); }
void WriteU8(uint8_t value, uint64_t offset) { Write(reinterpret_cast<void*>(&value), offset, 1); }
void WriteU16(uint16_t value, uint64_t offset) { Write(reinterpret_cast<void*>(&value), offset, 2); }
void WriteU32(uint32_t value, uint64_t offset) { Write(reinterpret_cast<void*>(&value), offset, 4); }
void WriteU64(uint64_t value, uint64_t offset) { Write(reinterpret_cast<void*>(&value), offset, 8); }
void Read(void* destination, uint64_t offset, size_t size) { std::memcpy(destination, (void*)(offset), size); }
uint8_t ReadU8(uint64_t offset) { uint8_t value; Read(reinterpret_cast<void*>(&value), offset, 1); return value; }
uint16_t ReadU16(uint64_t offset) { uint16_t value; Read(reinterpret_cast<void*>(&value), offset, 2); return value; }
uint32_t ReadU32(uint64_t offset) { uint32_t value; Read(reinterpret_cast<void*>(&value), offset, 4); return value; }
uint64_t ReadU64(uint64_t offset) { uint64_t value; Read(reinterpret_cast<void*>(&value), offset, 8); return value; }
}

View File

@ -0,0 +1,28 @@
#pragma once
#include <string>
#include <unicorn/unicorn.h>
#define MEM_BASE 0x80000000
namespace mem {
struct MemoryRegion {
std::string label;
uint64_t address;
size_t size;
void* ptr;
};
bool Map(uc_engine* uc, uint64_t address, size_t size, std::string label="");
void Write(void* data, uint64_t offset, size_t size);
void WriteU8(uint8_t value, uint64_t offset);
void WriteU16(uint16_t value, uint64_t offset);
void WriteU32(uint32_t value, uint64_t offset);
void WriteU64(uint64_t value, uint64_t offset);
void Read(void* destination, uint64_t offset, size_t size);
uint8_t ReadU8(uint64_t offset);
uint16_t ReadU16(uint64_t offset);
uint32_t ReadU32(uint64_t offset);
uint64_t ReadU64(uint64_t offset);
}

View File

@ -1,13 +1,10 @@
#include <fstream> #include <fstream>
#include <string>
#include <syslog.h> #include <syslog.h>
#include <sys/mman.h> #include <sys/mman.h>
#include <vector> #include <vector>
#include "../../arm/memory.h"
#include "nro.h" #include "nro.h"
// TODO: Move memory to it's own file
#define MEM_BASE 0x80000000
void ReadDataFromFile(std::string file, char* output, uint32_t offset, size_t size) void ReadDataFromFile(std::string file, char* output, uint32_t offset, size_t size)
{ {
std::ifstream f(file, std::ios::binary | std::ios::beg); std::ifstream f(file, std::ios::binary | std::ios::beg);
@ -34,30 +31,22 @@ namespace loader {
ro.resize(h.segments[1].size); ro.resize(h.segments[1].size);
data.resize(h.segments[2].size); data.resize(h.segments[2].size);
ReadDataFromFile(file, reinterpret_cast<char *>(text.data()), ReadDataFromFile(file, reinterpret_cast<char *>(text.data()), h.segments[0].fileOffset, h.segments[0].size);
h.segments[0].fileOffset, h.segments[0].size); ReadDataFromFile(file, reinterpret_cast<char *>(ro.data()), h.segments[1].fileOffset, h.segments[1].size);
ReadDataFromFile(file, reinterpret_cast<char *>(ro.data()), ReadDataFromFile(file, reinterpret_cast<char *>(data.data()), h.segments[2].fileOffset, h.segments[2].size);
h.segments[1].fileOffset, h.segments[1].size);
ReadDataFromFile(file, reinterpret_cast<char *>(data.data()),
h.segments[2].fileOffset, h.segments[2].size);
if( !mem::Map(nullptr, MEM_BASE, h.segments[0].size, ".text") ||
if(!mmap((void*)(MEM_BASE), !mem::Map(nullptr, MEM_BASE + h.segments[0].size, h.segments[1].size, ".ro") ||
h.segments[0].size, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, 0, 0) || !mem::Map(nullptr, MEM_BASE + h.segments[0].size + h.segments[1].size, h.segments[2].size, ".data") ||
!mmap((void*)(MEM_BASE + h.segments[0].size), !mem::Map(nullptr, MEM_BASE + h.segments[0].size + h.segments[1].size + h.segments[2].size, h.bssSize, ".bss")) {
h.segments[1].size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, 0, 0) ||
!mmap((void*)(MEM_BASE + h.segments[0].size + h.segments[1].size),
h.segments[2].size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, 0, 0) ||
!mmap((void*)(MEM_BASE + h.segments[0].size + h.segments[1].size + h.segments[2].size),
h.bssSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, 0, 0)) {
syslog(LOG_ERR, "Failed mapping regions for executable"); syslog(LOG_ERR, "Failed mapping regions for executable");
return false; return false;
} }
std::memcpy((void*)(MEM_BASE), text.data(), text.size()); mem::Write(text.data(), MEM_BASE, text.size());
std::memcpy((void*)(MEM_BASE + h.segments[0].size), ro.data(), ro.size()); mem::Write(ro.data(), MEM_BASE + h.segments[0].size, ro.size());
std::memcpy((void*)(MEM_BASE + h.segments[0].size + h.segments[1].size), data.data(), data.size()); mem::Write(data.data(), MEM_BASE + h.segments[0].size + h.segments[1].size, data.size());
return true; return true;
} }