2013-12-02 19:46:31 -08:00

1760 lines
53 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================//
#include "vrad.h"
#include "utlvector.h"
#include "cmodel.h"
#include "BSPTreeData.h"
#include "VRAD_DispColl.h"
#include "CollisionUtils.h"
#include "lightmap.h"
#include "Radial.h"
#include "CollisionUtils.h"
#include "mathlib/bumpvects.h"
#include "utlrbtree.h"
#include "tier0/fasttimer.h"
#include "disp_vrad.h"
class CBSPDispRayDistanceEnumerator;
//=============================================================================
//
// Displacement/Face List
//
class CBSPDispFaceListEnumerator : public ISpatialLeafEnumerator, public IBSPTreeDataEnumerator
{
public:
//=========================================================================
//
// Construction/Deconstruction
//
CBSPDispFaceListEnumerator() {};
virtual ~CBSPDispFaceListEnumerator()
{
m_DispList.Purge();
m_FaceList.Purge();
}
// ISpatialLeafEnumerator
bool EnumerateLeaf( int ndxLeaf, int context );
// IBSPTreeDataEnumerator
bool FASTCALL EnumerateElement( int userId, int context );
public:
CUtlVector<CVRADDispColl*> m_DispList;
CUtlVector<int> m_FaceList;
};
//=============================================================================
//
// RayEnumerator
//
class CBSPDispRayEnumerator : public ISpatialLeafEnumerator, public IBSPTreeDataEnumerator
{
public:
// ISpatialLeafEnumerator
bool EnumerateLeaf( int ndxLeaf, int context );
// IBSPTreeDataEnumerator
bool FASTCALL EnumerateElement( int userId, int context );
};
//=============================================================================
//
// VRad Displacement Manager
//
class CVRadDispMgr : public IVRadDispMgr
{
public:
//=========================================================================
//
// Construction/Deconstruction
//
CVRadDispMgr();
virtual ~CVRadDispMgr();
// creation/destruction
void Init( void );
void Shutdown( void );
// "CalcPoints"
bool BuildDispSamples( lightinfo_t *pLightInfo, facelight_t *pFaceLight, int ndxFace );
bool BuildDispLuxels( lightinfo_t *pLightInfo, facelight_t *pFaceLight, int ndxFace );
bool BuildDispSamplesAndLuxels_DoFast( lightinfo_t *pLightInfo, facelight_t *pFaceLight, int ndxFace );
// patching functions
void MakePatches( void );
void SubdividePatch( int iPatch );
// pre "FinalLightFace"
void InsertSamplesDataIntoHashTable( void );
void InsertPatchSampleDataIntoHashTable( void );
// "FinalLightFace"
radial_t *BuildLuxelRadial( int ndxFace, int ndxStyle, bool bBump );
bool SampleRadial( int ndxFace, radial_t *pRadial, Vector const &vPos, int ndxLxl, LightingValue_t *pLightSample, int sampleCount, bool bPatch );
radial_t *BuildPatchRadial( int ndxFace, bool bBump );
// utility
void GetDispSurfNormal( int ndxFace, Vector &pt, Vector &ptNormal, bool bInside );
void GetDispSurf( int ndxFace, CVRADDispColl **ppDispTree );
// bsp tree functions
bool ClipRayToDisp( DispTested_t &dispTested, Ray_t const &ray );
bool ClipRayToDispInLeaf( DispTested_t &dispTested, Ray_t const &ray, int ndxLeaf );
void ClipRayToDispInLeaf( DispTested_t &dispTested, Ray_t const &ray, int ndxLeaf,
float& dist, dface_t*& pFace, Vector2D& luxelCoord );
void ClipRayToDispInLeaf( DispTested_t &dispTested, Ray_t const &ray,
int ndxLeaf, float& dist, Vector *pNormal );
void StartRayTest( DispTested_t &dispTested );
void AddPolysForRayTrace( void );
// general timing -- should be moved!!
void StartTimer( const char *name );
void EndTimer( void );
//=========================================================================
//
// Enumeration Methods
//
bool DispRay_EnumerateLeaf( int ndxLeaf, int context );
bool DispRay_EnumerateElement( int userId, int context );
bool DispRayDistance_EnumerateElement( int userId, CBSPDispRayDistanceEnumerator* pEnum );
bool DispFaceList_EnumerateLeaf( int ndxLeaf, int context );
bool DispFaceList_EnumerateElement( int userId, int context );
private:
//=========================================================================
//
// BSP Tree Helpers
//
void InsertDispIntoTree( int ndxDisp );
void RemoveDispFromTree( int ndxDisp );
//=========================================================================
//
// Displacement Data Loader (from .bsp)
//
void UnserializeDisps( void );
void DispBuilderInit( CCoreDispInfo *pBuilderDisp, dface_t *pFace, int ndxFace );
//=========================================================================
//
// Sampling Helpers
//
void RadialLuxelBuild( CVRADDispColl *pDispTree, radial_t *pRadial, int ndxStyle, bool bBump );
void RadialLuxelAddSamples( int ndxFace, Vector const &luxelPt, Vector const &luxelNormal, float radius,
radial_t *pRadial, int ndxRadial, bool bBump, int lightStyle );
void RadialPatchBuild( CVRADDispColl *pDispTree, radial_t *pRadial, bool bBump );
void RadialLuxelAddPatch( int ndxFace, Vector const &luxelPt,
Vector const &luxelNormal, float radius,
radial_t *pRadial, int ndxRadial, bool bBump,
CUtlVector<CPatch*> &interestingPatches );
bool IsNeighbor( int iDispFace, int iNeighborFace );
void GetInterestingPatchesForLuxels(
int ndxFace,
CUtlVector<CPatch*> &interestingPatches,
float patchSampleRadius );
private:
struct DispCollTree_t
{
CVRADDispColl *m_pDispTree;
BSPTreeDataHandle_t m_Handle;
};
struct EnumContext_t
{
DispTested_t *m_pDispTested;
Ray_t const *m_pRay;
};
CUtlVector<DispCollTree_t> m_DispTrees;
IBSPTreeData *m_pBSPTreeData;
CBSPDispRayEnumerator m_EnumDispRay;
CBSPDispFaceListEnumerator m_EnumDispFaceList;
int sampleCount;
Vector *m_pSamplePos;
CFastTimer m_Timer;
};
//-----------------------------------------------------------------------------
// Purpose: expose IVRadDispMgr to vrad
//-----------------------------------------------------------------------------
static CVRadDispMgr s_DispMgr;
IVRadDispMgr *StaticDispMgr( void )
{
return &s_DispMgr;
}
//=============================================================================
//
// Displacement/Face List
//
// ISpatialLeafEnumerator
bool CBSPDispFaceListEnumerator::EnumerateLeaf( int ndxLeaf, int context )
{
return s_DispMgr.DispFaceList_EnumerateLeaf( ndxLeaf, context );
}
// IBSPTreeDataEnumerator
bool FASTCALL CBSPDispFaceListEnumerator::EnumerateElement( int userId, int context )
{
return s_DispMgr.DispFaceList_EnumerateElement( userId, context );
}
//=============================================================================
//
// RayEnumerator
//
bool CBSPDispRayEnumerator::EnumerateLeaf( int ndxLeaf, int context )
{
return s_DispMgr.DispRay_EnumerateLeaf( ndxLeaf, context );
}
bool FASTCALL CBSPDispRayEnumerator::EnumerateElement( int userId, int context )
{
return s_DispMgr.DispRay_EnumerateElement( userId, context );
}
//-----------------------------------------------------------------------------
// Here's an enumerator that we use for testing against disps in a leaf...
//-----------------------------------------------------------------------------
class CBSPDispRayDistanceEnumerator : public IBSPTreeDataEnumerator
{
public:
CBSPDispRayDistanceEnumerator() : m_Distance(1.0f), m_pSurface(0) {}
// IBSPTreeDataEnumerator
bool FASTCALL EnumerateElement( int userId, int context )
{
return s_DispMgr.DispRayDistance_EnumerateElement( userId, this );
}
float m_Distance;
dface_t* m_pSurface;
DispTested_t *m_pDispTested;
Ray_t const *m_pRay;
Vector2D m_LuxelCoord;
Vector m_Normal;
};
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
CVRadDispMgr::CVRadDispMgr()
{
m_pBSPTreeData = CreateBSPTreeData();
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
CVRadDispMgr::~CVRadDispMgr()
{
DestroyBSPTreeData( m_pBSPTreeData );
}
//-----------------------------------------------------------------------------
// Insert a displacement into the tree for collision
//-----------------------------------------------------------------------------
void CVRadDispMgr::InsertDispIntoTree( int ndxDisp )
{
DispCollTree_t &dispTree = m_DispTrees[ndxDisp];
CDispCollTree *pDispTree = dispTree.m_pDispTree;
// get the bounding box of the tree
Vector boxMin, boxMax;
pDispTree->GetBounds( boxMin, boxMax );
// add the displacement to the tree so we will collide against it
dispTree.m_Handle = m_pBSPTreeData->Insert( ndxDisp, boxMin, boxMax );
}
//-----------------------------------------------------------------------------
// Remove a displacement from the tree for collision
//-----------------------------------------------------------------------------
void CVRadDispMgr::RemoveDispFromTree( int ndxDisp )
{
// release the tree handle
if( m_DispTrees[ndxDisp].m_Handle != TREEDATA_INVALID_HANDLE )
{
m_pBSPTreeData->Remove( m_DispTrees[ndxDisp].m_Handle );
m_DispTrees[ndxDisp].m_Handle = TREEDATA_INVALID_HANDLE;
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::Init( void )
{
// initialize the bsp tree
m_pBSPTreeData->Init( ToolBSPTree() );
// read in displacements that have been compiled into the bsp file
UnserializeDisps();
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::Shutdown( void )
{
// remove all displacements from the tree
for( int ndxDisp = m_DispTrees.Size(); ndxDisp >= 0; ndxDisp-- )
{
RemoveDispFromTree( ndxDisp );
}
// shutdown the bsp tree
m_pBSPTreeData->Shutdown();
// purge the displacement collision tree list
m_DispTrees.Purge();
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::DispBuilderInit( CCoreDispInfo *pBuilderDisp, dface_t *pFace, int ndxFace )
{
// get the .bsp displacement
ddispinfo_t *pDisp = &g_dispinfo[pFace->dispinfo];
if( !pDisp )
return;
//
// initlialize the displacement base surface
//
CCoreDispSurface *pSurf = pBuilderDisp->GetSurface();
pSurf->SetPointCount( 4 );
pSurf->SetHandle( ndxFace );
pSurf->SetContents( pDisp->contents );
Vector pt[4];
int ndxPt;
for( ndxPt = 0; ndxPt < 4; ndxPt++ )
{
int eIndex = dsurfedges[pFace->firstedge+ndxPt];
if( eIndex < 0 )
{
pSurf->SetPoint( ndxPt, dvertexes[dedges[-eIndex].v[1]].point );
}
else
{
pSurf->SetPoint( ndxPt, dvertexes[dedges[eIndex].v[0]].point );
}
VectorCopy( pSurf->GetPoint(ndxPt), pt[ndxPt] );
}
//
// calculate the displacement surface normal
//
Vector vFaceNormal;
pSurf->GetNormal( vFaceNormal );
for( ndxPt = 0; ndxPt < 4; ndxPt++ )
{
pSurf->SetPointNormal( ndxPt, vFaceNormal );
}
// set the surface initial point info
pSurf->SetPointStart( pDisp->startPosition );
pSurf->FindSurfPointStartIndex();
pSurf->AdjustSurfPointData();
Vector vecTmp( texinfo[pFace->texinfo].lightmapVecsLuxelsPerWorldUnits[0][0],
texinfo[pFace->texinfo].lightmapVecsLuxelsPerWorldUnits[0][1],
texinfo[pFace->texinfo].lightmapVecsLuxelsPerWorldUnits[0][2] );
int nLuxelsPerWorldUnit = static_cast<int>( 1.0f / VectorLength( vecTmp ) );
Vector vecU( texinfo[pFace->texinfo].lightmapVecsLuxelsPerWorldUnits[0][0],
texinfo[pFace->texinfo].lightmapVecsLuxelsPerWorldUnits[0][1],
texinfo[pFace->texinfo].lightmapVecsLuxelsPerWorldUnits[0][2] );
Vector vecV( texinfo[pFace->texinfo].lightmapVecsLuxelsPerWorldUnits[1][0],
texinfo[pFace->texinfo].lightmapVecsLuxelsPerWorldUnits[1][1],
texinfo[pFace->texinfo].lightmapVecsLuxelsPerWorldUnits[1][2] );
pSurf->CalcLuxelCoords( nLuxelsPerWorldUnit, false, vecU, vecV );
pBuilderDisp->SetNeighborData( pDisp->m_EdgeNeighbors, pDisp->m_CornerNeighbors );
CDispVert *pVerts = &g_DispVerts[ pDisp->m_iDispVertStart ];
CDispTri *pTris = &g_DispTris[pDisp->m_iDispTriStart];
//
// initialize the displacement data
//
pBuilderDisp->InitDispInfo(
pDisp->power,
pDisp->minTess,
pDisp->smoothingAngle,
pVerts,
pTris );
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::UnserializeDisps( void )
{
// temporarily create the "builder" displacements
CUtlVector<CCoreDispInfo*> builderDisps;
for ( int iDisp = 0; iDisp < g_dispinfo.Count(); ++iDisp )
{
CCoreDispInfo *pDisp = new CCoreDispInfo;
if ( !pDisp )
{
builderDisps.Purge();
return;
}
int nIndex = builderDisps.AddToTail();
pDisp->SetListIndex( nIndex );
builderDisps[nIndex] = pDisp;
}
// Set them up as CDispUtilsHelpers.
for ( int iDisp = 0; iDisp < g_dispinfo.Count(); ++iDisp )
{
builderDisps[iDisp]->SetDispUtilsHelperInfo( builderDisps.Base(), g_dispinfo.Count() );
}
//
// find all faces with displacement data and initialize
//
for( int ndxFace = 0; ndxFace < numfaces; ndxFace++ )
{
dface_t *pFace = &g_pFaces[ndxFace];
if( ValidDispFace( pFace ) )
{
DispBuilderInit( builderDisps[pFace->dispinfo], pFace, ndxFace );
}
}
// generate the displacement surfaces
for( int iDisp = 0; iDisp < g_dispinfo.Count(); ++iDisp )
{
builderDisps[iDisp]->Create();
}
// smooth edge normals
SmoothNeighboringDispSurfNormals( builderDisps.Base(), g_dispinfo.Count() );
//
// create the displacement collision tree and add it to the bsp tree
//
CVRADDispColl *pDispTrees = new CVRADDispColl[g_dispinfo.Count()];
if( !pDispTrees )
return;
m_DispTrees.AddMultipleToTail( g_dispinfo.Count() );
for( int iDisp = 0; iDisp < g_dispinfo.Count(); iDisp++ )
{
pDispTrees[iDisp].Create( builderDisps[iDisp] );
m_DispTrees[iDisp].m_pDispTree = &pDispTrees[iDisp];
m_DispTrees[iDisp].m_Handle = TREEDATA_INVALID_HANDLE;
InsertDispIntoTree( iDisp );
}
// free "builder" disps
builderDisps.Purge();
}
//-----------------------------------------------------------------------------
// Purpose: create a set of patches for each displacement surface to transfer
// bounced light around with
//-----------------------------------------------------------------------------
void CVRadDispMgr::MakePatches( void )
{
// Collect stats - keep track of the total displacement surface area.
float flTotalArea = 0.0f;
// Create patches for all of the displacements.
int nTreeCount = m_DispTrees.Size();
for( int iTree = 0; iTree < nTreeCount; ++iTree )
{
// Get the current displacement collision tree.
CVRADDispColl *pDispTree = m_DispTrees[iTree].m_pDispTree;
if( !pDispTree )
continue;
flTotalArea += pDispTree->CreateParentPatches();
}
// Print stats.
qprintf( "%i Displacements\n", nTreeCount );
qprintf( "%i Square Feet [%.2f Square Inches]\n", ( int )( flTotalArea / 144.0f ), flTotalArea );
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::SubdividePatch( int iPatch )
{
// Get the current patch to subdivide.
CPatch *pPatch = &g_Patches[iPatch];
if ( !pPatch )
return;
// Create children patches.
DispCollTree_t &dispTree = m_DispTrees[g_pFaces[pPatch->faceNumber].dispinfo];
CVRADDispColl *pTree = dispTree.m_pDispTree;
if( pTree )
{
pTree->CreateChildPatches( iPatch, 0 );
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::StartRayTest( DispTested_t &dispTested )
{
if( m_DispTrees.Size() > 0 )
{
if( dispTested.m_pTested == 0 )
{
dispTested.m_pTested = new int[m_DispTrees.Size()];
memset( dispTested.m_pTested, 0, m_DispTrees.Size() * sizeof( int ) );
dispTested.m_Enum = 0;
}
++dispTested.m_Enum;
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::ClipRayToDisp( DispTested_t &dispTested, Ray_t const &ray )
{
StartRayTest( dispTested );
EnumContext_t ctx;
ctx.m_pRay = &ray;
ctx.m_pDispTested = &dispTested;
// If it got through without a hit, it returns true
return !m_pBSPTreeData->EnumerateLeavesAlongRay( ray, &m_EnumDispRay, ( int )&ctx );
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::ClipRayToDispInLeaf( DispTested_t &dispTested, Ray_t const &ray,
int ndxLeaf )
{
EnumContext_t ctx;
ctx.m_pRay = &ray;
ctx.m_pDispTested = &dispTested;
return !m_pBSPTreeData->EnumerateElementsInLeaf( ndxLeaf, &m_EnumDispRay, ( int )&ctx );
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::ClipRayToDispInLeaf( DispTested_t &dispTested, Ray_t const &ray,
int ndxLeaf, float& dist, dface_t*& pFace, Vector2D& luxelCoord )
{
CBSPDispRayDistanceEnumerator rayTestEnum;
rayTestEnum.m_pRay = &ray;
rayTestEnum.m_pDispTested = &dispTested;
m_pBSPTreeData->EnumerateElementsInLeaf( ndxLeaf, &rayTestEnum, 0 );
dist = rayTestEnum.m_Distance;
pFace = rayTestEnum.m_pSurface;
if (pFace)
{
Vector2DCopy( rayTestEnum.m_LuxelCoord, luxelCoord );
}
}
void CVRadDispMgr::ClipRayToDispInLeaf( DispTested_t &dispTested, Ray_t const &ray,
int ndxLeaf, float& dist, Vector *pNormal )
{
CBSPDispRayDistanceEnumerator rayTestEnum;
rayTestEnum.m_pRay = &ray;
rayTestEnum.m_pDispTested = &dispTested;
m_pBSPTreeData->EnumerateElementsInLeaf( ndxLeaf, &rayTestEnum, 0 );
dist = rayTestEnum.m_Distance;
if ( rayTestEnum.m_pSurface )
{
*pNormal = rayTestEnum.m_Normal;
}
}
void CVRadDispMgr::AddPolysForRayTrace( void )
{
int nTreeCount = m_DispTrees.Size();
for( int iTree = 0; iTree < nTreeCount; ++iTree )
{
// Get the current displacement collision tree.
CVRADDispColl *pDispTree = m_DispTrees[iTree].m_pDispTree;
// Add the triangles of the tree to the RT environment
pDispTree->AddPolysForRayTrace();
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::GetDispSurfNormal( int ndxFace, Vector &pt, Vector &ptNormal,
bool bInside )
{
// get the displacement surface data
DispCollTree_t &dispTree = m_DispTrees[g_pFaces[ndxFace].dispinfo];
CVRADDispColl *pDispTree = dispTree.m_pDispTree;
// find the parameterized displacement indices
Vector2D uv;
pDispTree->BaseFacePlaneToDispUV( pt, uv );
if( bInside )
{
if( uv[0] < 0.0f || uv[0] > 1.0f ) { Msg( "Disp UV (%f) outside bounds!\n", uv[0] ); }
if( uv[1] < 0.0f || uv[1] > 1.0f ) { Msg( "Disp UV (%f) outside bounds!\n", uv[1] ); }
}
if( uv[0] < 0.0f ) { uv[0] = 0.0f; }
if( uv[0] > 1.0f ) { uv[0] = 1.0f; }
if( uv[1] < 0.0f ) { uv[1] = 0.0f; }
if( uv[1] > 1.0f ) { uv[1] = 1.0f; }
// get the normal at "pt"
pDispTree->DispUVToSurfNormal( uv, ptNormal );
// get the new "pt"
pDispTree->DispUVToSurfPoint( uv, pt, 1.0f );
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::GetDispSurf( int ndxFace, CVRADDispColl **ppDispTree )
{
DispCollTree_t &dispTree = m_DispTrees[g_pFaces[ndxFace].dispinfo];
*ppDispTree = dispTree.m_pDispTree;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::DispRay_EnumerateLeaf( int ndxLeaf, int context )
{
return m_pBSPTreeData->EnumerateElementsInLeaf( ndxLeaf, &m_EnumDispRay, context );
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::DispRay_EnumerateElement( int userId, int context )
{
DispCollTree_t &dispTree = m_DispTrees[userId];
EnumContext_t *pCtx = ( EnumContext_t* )context;
// don't test twice (check tested value)
if( pCtx->m_pDispTested->m_pTested[userId] == pCtx->m_pDispTested->m_Enum )
return true;
// set the tested value
pCtx->m_pDispTested->m_pTested[userId] = pCtx->m_pDispTested->m_Enum;
// false mean stop iterating -- return false if we hit! (NOTE: opposite return
// result of the collision tree's ray test, thus the !)
CBaseTrace trace;
trace.fraction = 1.0f;
return ( !dispTree.m_pDispTree->AABBTree_Ray( *pCtx->m_pRay, pCtx->m_pRay->InvDelta(), &trace, true ) );
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::DispRayDistance_EnumerateElement( int userId, CBSPDispRayDistanceEnumerator* pCtx )
{
DispCollTree_t &dispTree = m_DispTrees[userId];
// don't test twice (check tested value)
if( pCtx->m_pDispTested->m_pTested[userId] == pCtx->m_pDispTested->m_Enum )
return true;
// set the tested value
pCtx->m_pDispTested->m_pTested[userId] = pCtx->m_pDispTested->m_Enum;
// Test the ray, if it's closer than previous tests, use it!
RayDispOutput_t output;
output.ndxVerts[0] = -1;
output.ndxVerts[1] = -1;
output.ndxVerts[2] = -1;
output.ndxVerts[3] = -1;
output.u = -1.0f;
output.v = -1.0f;
output.dist = FLT_MAX;
if (dispTree.m_pDispTree->AABBTree_Ray( *pCtx->m_pRay, output ))
{
if (output.dist < pCtx->m_Distance)
{
pCtx->m_Distance = output.dist;
pCtx->m_pSurface = &g_pFaces[dispTree.m_pDispTree->GetParentIndex()];
// Get the luxel coordinate
ComputePointFromBarycentric(
dispTree.m_pDispTree->GetLuxelCoord(output.ndxVerts[0]),
dispTree.m_pDispTree->GetLuxelCoord(output.ndxVerts[1]),
dispTree.m_pDispTree->GetLuxelCoord(output.ndxVerts[2]),
output.u, output.v, pCtx->m_LuxelCoord );
Vector v0,v1,v2;
dispTree.m_pDispTree->GetVert( output.ndxVerts[0], v0 );
dispTree.m_pDispTree->GetVert( output.ndxVerts[1], v1 );
dispTree.m_pDispTree->GetVert( output.ndxVerts[2], v2 );
Vector e0 = v1-v0;
Vector e1 = v2-v0;
pCtx->m_Normal = CrossProduct( e0, e1 );
VectorNormalize(pCtx->m_Normal);
}
}
return true;
}
//-----------------------------------------------------------------------------
// Test a ray against a particular dispinfo
//-----------------------------------------------------------------------------
/*
float CVRadDispMgr::ClipRayToDisp( Ray_t const &ray, int dispinfo )
{
assert( m_DispTrees.IsValidIndex(dispinfo) );
RayDispOutput_t output;
if (!m_DispTrees[dispinfo].m_pDispTree->AABBTree_Ray( ray, output ))
return 1.0f;
return output.dist;
}
*/
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::DispFaceList_EnumerateLeaf( int ndxLeaf, int context )
{
//
// add the faces found in this leaf to the face list
//
dleaf_t *pLeaf = &dleafs[ndxLeaf];
for( int ndxFace = 0; ndxFace < pLeaf->numleaffaces; ndxFace++ )
{
// get the current face index
int ndxLeafFace = pLeaf->firstleafface + ndxFace;
// check to see if the face already lives in the list
int ndx;
int size = m_EnumDispFaceList.m_FaceList.Size();
for( ndx = 0; ndx < size; ndx++ )
{
if( m_EnumDispFaceList.m_FaceList[ndx] == ndxLeafFace )
break;
}
if( ndx == size )
{
int ndxList = m_EnumDispFaceList.m_FaceList.AddToTail();
m_EnumDispFaceList.m_FaceList[ndxList] = ndxLeafFace;
}
}
return m_pBSPTreeData->EnumerateElementsInLeaf( ndxLeaf, &m_EnumDispFaceList, context );
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::DispFaceList_EnumerateElement( int userId, int context )
{
DispCollTree_t &dispTree = m_DispTrees[userId];
CVRADDispColl *pDispTree = dispTree.m_pDispTree;
if( !pDispTree )
return false;
// check to see if the displacement already lives in the list
int ndx;
int size = m_EnumDispFaceList.m_DispList.Size();
for( ndx = 0; ndx < size; ndx++ )
{
if( m_EnumDispFaceList.m_DispList[ndx] == pDispTree )
break;
}
if( ndx == size )
{
int ndxList = m_EnumDispFaceList.m_DispList.AddToTail();
m_EnumDispFaceList.m_DispList[ndxList] = pDispTree;
}
return true;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
inline void GetSampleLight( facelight_t *pFaceLight, int ndxStyle, bool bBumped,
int ndxSample, LightingValue_t *pSampleLight )
{
// SampleLight[0].Init( 20.0f, 10.0f, 10.0f );
// return;
// get sample from bumped lighting data
if( bBumped )
{
for( int ndxBump = 0; ndxBump < ( NUM_BUMP_VECTS+1 ); ndxBump++ )
{
pSampleLight[ndxBump] = pFaceLight->light[ndxStyle][ndxBump][ndxSample];
}
}
// just a generally lit surface
else
{
pSampleLight[0] = pFaceLight->light[ndxStyle][0][ndxSample];
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void AddSampleLightToRadial( Vector const &samplePos, Vector const &sampleNormal,
LightingValue_t *pSampleLight, float sampleRadius2,
Vector const &luxelPos, Vector const &luxelNormal,
radial_t *pRadial, int ndxRadial, bool bBumped,
bool bNeighborBumped )
{
// check normals to see if sample contributes any light at all
float angle = sampleNormal.Dot( luxelNormal );
if ( angle < 0.15f )
return;
// calculate the light vector
Vector vSegment = samplePos - luxelPos;
// get the distance to the light
float dist = vSegment.Length();
float dist2 = dist * dist;
// Check to see if the light is within the influence.
float influence = 1.0f - ( dist2 / ( sampleRadius2 ) );
if( influence <= 0.0f )
return;
influence *= angle;
if( bBumped )
{
if( bNeighborBumped )
{
for( int ndxBump = 0; ndxBump < ( NUM_BUMP_VECTS+1 ); ndxBump++ )
{
pRadial->light[ndxBump][ndxRadial].AddWeighted( pSampleLight[ndxBump], influence );
}
pRadial->weight[ndxRadial] += influence;
}
else
{
influence *= 0.05f;
for( int ndxBump = 0; ndxBump < ( NUM_BUMP_VECTS+1 ); ndxBump++ )
{
pRadial->light[ndxBump][ndxRadial].AddWeighted( pSampleLight[0], influence );
}
pRadial->weight[ndxRadial] += influence;
}
}
else
{
pRadial->light[0][ndxRadial].AddWeighted( pSampleLight[0], influence );
pRadial->weight[ndxRadial] += influence;
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::IsNeighbor( int iFace, int iNeighborFace )
{
if ( iFace == iNeighborFace )
return true;
faceneighbor_t *pFaceNeighbor = &faceneighbor[iFace];
for ( int iNeighbor = 0; iNeighbor < pFaceNeighbor->numneighbors; iNeighbor++ )
{
if ( pFaceNeighbor->neighbor[iNeighbor] == iNeighborFace )
return true;
}
return false;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::RadialLuxelAddSamples( int ndxFace, Vector const &luxelPt, Vector const &luxelNormal, float radius,
radial_t *pRadial, int ndxRadial, bool bBump, int lightStyle )
{
// calculate one over the voxel size
float ooVoxelSize = 1.0f / SAMPLEHASH_VOXEL_SIZE;
//
// find voxel info
//
int voxelMin[3], voxelMax[3];
for( int axis = 0; axis < 3; axis++ )
{
voxelMin[axis] = ( int )( ( luxelPt[axis] - radius ) * ooVoxelSize );
voxelMax[axis] = ( int )( ( luxelPt[axis] + radius ) * ooVoxelSize ) + 1;
}
SampleData_t sampleData;
for( int ndxZ = voxelMin[2]; ndxZ < voxelMax[2] + 1; ndxZ++ )
{
for( int ndxY = voxelMin[1]; ndxY < voxelMax[1] + 1; ndxY++ )
{
for( int ndxX = voxelMin[0]; ndxX < voxelMax[0] + 1; ndxX++ )
{
sampleData.x = ndxX * 100;
sampleData.y = ndxY * 10;
sampleData.z = ndxZ;
UtlHashHandle_t handle = g_SampleHashTable.Find( sampleData );
if( handle != g_SampleHashTable.InvalidHandle() )
{
SampleData_t *pSampleData = &g_SampleHashTable.Element( handle );
int count = pSampleData->m_Samples.Count();
for( int ndx = 0; ndx < count; ndx++ )
{
SampleHandle_t sampleHandle = pSampleData->m_Samples.Element( ndx );
int ndxSample = ( sampleHandle & 0x0000ffff );
int ndxFaceLight = ( ( sampleHandle >> 16 ) & 0x0000ffff );
facelight_t *pFaceLight = &facelight[ndxFaceLight];
if( pFaceLight && IsNeighbor( ndxFace, ndxFaceLight ) )
{
//
// check for similar lightstyles
//
dface_t *pFace = &g_pFaces[ndxFaceLight];
if( pFace )
{
int ndxNeighborStyle = -1;
for( int ndxLightStyle = 0; ndxLightStyle < MAXLIGHTMAPS; ndxLightStyle++ )
{
if( pFace->styles[ndxLightStyle] == lightStyle )
{
ndxNeighborStyle = ndxLightStyle;
break;
}
}
if( ndxNeighborStyle == -1 )
continue;
// is this surface bumped???
bool bNeighborBump = texinfo[pFace->texinfo].flags & SURF_BUMPLIGHT ? true : false;
LightingValue_t sampleLight[NUM_BUMP_VECTS+1];
GetSampleLight( pFaceLight, ndxNeighborStyle, bNeighborBump, ndxSample, sampleLight );
AddSampleLightToRadial( pFaceLight->sample[ndxSample].pos, pFaceLight->sample[ndxSample].normal,
sampleLight, radius*radius, luxelPt, luxelNormal, pRadial, ndxRadial,
bBump, bNeighborBump );
}
}
}
}
}
}
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::RadialLuxelBuild( CVRADDispColl *pDispTree, radial_t *pRadial,
int ndxStyle, bool bBump )
{
//
// get data lighting data
//
int ndxFace = pDispTree->GetParentIndex();
dface_t *pFace = &g_pFaces[ndxFace];
facelight_t *pFaceLight = &facelight[ndxFace];
// get the influence radius
float radius2 = pDispTree->GetSampleRadius2();
float radius = ( float )sqrt( radius2 );
int radialSize = pRadial->w * pRadial->h;
for( int ndxRadial = 0; ndxRadial < radialSize; ndxRadial++ )
{
RadialLuxelAddSamples( ndxFace, pFaceLight->luxel[ndxRadial], pFaceLight->luxelNormals[ndxRadial],
radius, pRadial, ndxRadial, bBump, pFace->styles[ndxStyle] );
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
radial_t *CVRadDispMgr::BuildLuxelRadial( int ndxFace, int ndxStyle, bool bBump )
{
// allocate the radial
radial_t *pRadial = AllocateRadial( ndxFace );
if( !pRadial )
return NULL;
//
// step 1: get the displacement surface to be lit
//
DispCollTree_t &dispTree = m_DispTrees[g_pFaces[ndxFace].dispinfo];
CVRADDispColl *pDispTree = dispTree.m_pDispTree;
if( !pDispTree )
return NULL;
// step 2: build radial luxels
RadialLuxelBuild( pDispTree, pRadial, ndxStyle, bBump );
// step 3: return the built radial
return pRadial;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::SampleRadial( int ndxFace, radial_t *pRadial, Vector const &vPos, int ndxLxl,
LightingValue_t *pLightSample, int sampleCount, bool bPatch )
{
bool bGoodSample = true;
for ( int count = 0; count < sampleCount; count++ )
{
pLightSample[count].Zero();
if ( pRadial->weight[ndxLxl] > 0.0f )
{
pLightSample[count].AddWeighted( pRadial->light[count][ndxLxl], ( 1.0f / pRadial->weight[ndxLxl] ) );
}
else
{
// error, luxel has no samples (not for patches)
if ( !bPatch )
{
// Yes, 2550 is correct!
// pLightSample[count].Init( 2550.0f, 0.0f, 2550.0f );
if( count == 0 )
bGoodSample = false;
}
}
}
return bGoodSample;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void GetPatchLight( CPatch *pPatch, bool bBump, Vector *pPatchLight )
{
VectorCopy( pPatch->totallight.light[0], pPatchLight[0] );
if( bBump )
{
for( int ndxBump = 1; ndxBump < ( NUM_BUMP_VECTS + 1 ); ndxBump++ )
{
VectorCopy( pPatch->totallight.light[ndxBump], pPatchLight[ndxBump] );
}
}
}
extern void GetBumpNormals( const float* sVect, const float* tVect, const Vector& flatNormal,
const Vector& phongNormal, Vector bumpNormals[NUM_BUMP_VECTS] );
extern void PreGetBumpNormalsForDisp( texinfo_t *pTexinfo, Vector &vecU, Vector &vecV, Vector &vecNormal );
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void AddPatchLightToRadial( Vector const &patchOrigin, Vector const &patchNormal,
Vector *pPatchLight, float patchRadius2,
Vector const &luxelPos, Vector const &luxelNormal,
radial_t *pRadial, int ndxRadial, bool bBump,
bool bNeighborBump )
{
// calculate the light vector
Vector vSegment = patchOrigin - luxelPos;
// get the distance to the light
float dist = vSegment.Length();
float dist2 = dist * dist;
// Check to see if the light is within the sample influence.
float influence = 1.0f - ( dist2 / ( patchRadius2 ) );
if ( influence <= 0.0f )
return;
if( bBump )
{
Vector normals[NUM_BUMP_VECTS+1];
normals[0] = luxelNormal;
texinfo_t *pTexinfo = &texinfo[g_pFaces[pRadial->facenum].texinfo];
Vector vecTexU, vecTexV;
PreGetBumpNormalsForDisp( pTexinfo, vecTexU, vecTexV, normals[0] );
GetBumpNormals( vecTexU, vecTexV, normals[0], normals[0], &normals[1] );
if( bNeighborBump )
{
float flScale = patchNormal.Dot( normals[0] );
flScale = max( 0.0f, flScale );
float flBumpInfluence = influence * flScale;
for( int ndxBump = 0; ndxBump < ( NUM_BUMP_VECTS+1 ); ndxBump++ )
{
pRadial->light[ndxBump][ndxRadial].AddWeighted( pPatchLight[ndxBump], flBumpInfluence );
}
pRadial->weight[ndxRadial] += flBumpInfluence;
}
else
{
float flScale = patchNormal.Dot( normals[0] );
flScale = max( 0.0f, flScale );
float flBumpInfluence = influence * flScale * 0.05f;
for( int ndxBump = 0; ndxBump < ( NUM_BUMP_VECTS+1 ); ndxBump++ )
{
pRadial->light[ndxBump][ndxRadial].AddWeighted( pPatchLight[0], flBumpInfluence );
}
pRadial->weight[ndxRadial] += flBumpInfluence;
}
}
else
{
float flScale = patchNormal.Dot( luxelNormal );
flScale = max( 0.0f, flScale );
influence *= flScale;
pRadial->light[0][ndxRadial].AddWeighted( pPatchLight[0], influence );
// add the weight value
pRadial->weight[ndxRadial] += influence;
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::RadialLuxelAddPatch( int ndxFace, Vector const &luxelPt,
Vector const &luxelNormal, float radius,
radial_t *pRadial, int ndxRadial, bool bBump,
CUtlVector<CPatch*> &interestingPatches )
{
#ifdef SAMPLEHASH_QUERY_ONCE
for ( int i=0; i < interestingPatches.Count(); i++ )
{
CPatch *pPatch = interestingPatches[i];
bool bNeighborBump = texinfo[g_pFaces[pPatch->faceNumber].texinfo].flags & SURF_BUMPLIGHT ? true : false;
Vector patchLight[NUM_BUMP_VECTS+1];
GetPatchLight( pPatch, bBump, patchLight );
AddPatchLightToRadial( pPatch->origin, pPatch->normal, patchLight, radius*radius,
luxelPt, luxelNormal, pRadial, ndxRadial, bBump, bNeighborBump );
}
#else
// calculate one over the voxel size
float ooVoxelSize = 1.0f / SAMPLEHASH_VOXEL_SIZE;
//
// find voxel info
//
int voxelMin[3], voxelMax[3];
for ( int axis = 0; axis < 3; axis++ )
{
voxelMin[axis] = ( int )( ( luxelPt[axis] - radius ) * ooVoxelSize );
voxelMax[axis] = ( int )( ( luxelPt[axis] + radius ) * ooVoxelSize ) + 1;
}
unsigned short curIterationKey = IncrementPatchIterationKey();
PatchSampleData_t patchData;
for ( int ndxZ = voxelMin[2]; ndxZ < voxelMax[2] + 1; ndxZ++ )
{
for ( int ndxY = voxelMin[1]; ndxY < voxelMax[1] + 1; ndxY++ )
{
for ( int ndxX = voxelMin[0]; ndxX < voxelMax[0] + 1; ndxX++ )
{
patchData.x = ndxX * 100;
patchData.y = ndxY * 10;
patchData.z = ndxZ;
UtlHashHandle_t handle = g_PatchSampleHashTable.Find( patchData );
if ( handle != g_PatchSampleHashTable.InvalidHandle() )
{
PatchSampleData_t *pPatchData = &g_PatchSampleHashTable.Element( handle );
int count = pPatchData->m_ndxPatches.Count();
for ( int ndx = 0; ndx < count; ndx++ )
{
int ndxPatch = pPatchData->m_ndxPatches.Element( ndx );
CPatch *pPatch = &g_Patches.Element( ndxPatch );
if ( pPatch && pPatch->m_IterationKey != curIterationKey )
{
pPatch->m_IterationKey = curIterationKey;
if ( IsNeighbor( ndxFace, pPatch->faceNumber ) )
{
bool bNeighborBump = texinfo[g_pFaces[pPatch->faceNumber].texinfo].flags & SURF_BUMPLIGHT ? true : false;
Vector patchLight[NUM_BUMP_VECTS+1];
GetPatchLight( pPatch, bBump, patchLight );
AddPatchLightToRadial( pPatch->origin, pPatch->normal, patchLight, radius*radius,
luxelPt, luxelNormal, pRadial, ndxRadial, bBump, bNeighborBump );
}
}
}
}
}
}
}
#endif
}
void CVRadDispMgr::GetInterestingPatchesForLuxels(
int ndxFace,
CUtlVector<CPatch*> &interestingPatches,
float patchSampleRadius )
{
facelight_t *pFaceLight = &facelight[ndxFace];
// Get the max bounds of all voxels that these luxels touch.
Vector vLuxelMin( FLT_MAX, FLT_MAX, FLT_MAX );
Vector vLuxelMax( -FLT_MAX, -FLT_MAX, -FLT_MAX );
for ( int i=0; i < pFaceLight->numluxels; i++ )
{
VectorMin( pFaceLight->luxel[i], vLuxelMin, vLuxelMin );
VectorMax( pFaceLight->luxel[i], vLuxelMax, vLuxelMax );
}
int allVoxelMin[3], allVoxelMax[3];
for ( int axis = 0; axis < 3; axis++ )
{
allVoxelMin[axis] = ( int )( ( vLuxelMin[axis] - patchSampleRadius ) / SAMPLEHASH_VOXEL_SIZE );
allVoxelMax[axis] = ( int )( ( vLuxelMax[axis] + patchSampleRadius ) / SAMPLEHASH_VOXEL_SIZE ) + 1;
}
int allVoxelSize[3] = { allVoxelMax[0] - allVoxelMin[0], allVoxelMax[1] - allVoxelMin[1], allVoxelMax[2] - allVoxelMin[2] };
// Now figure out exactly which voxels these luxels touch.
CUtlVector<unsigned char> voxelBits;
voxelBits.SetSize( ((allVoxelSize[0] * allVoxelSize[1] * allVoxelSize[2]) + 7) / 8 );
memset( voxelBits.Base(), 0, voxelBits.Count() );
for ( int i=0; i < pFaceLight->numluxels; i++ )
{
int voxelMin[3], voxelMax[3];
for ( int axis=0; axis < 3; axis++ )
{
voxelMin[axis] = ( int )( ( pFaceLight->luxel[i][axis] - patchSampleRadius ) / SAMPLEHASH_VOXEL_SIZE );
voxelMax[axis] = ( int )( ( pFaceLight->luxel[i][axis] + patchSampleRadius ) / SAMPLEHASH_VOXEL_SIZE ) + 1;
}
for ( int x=voxelMin[0]; x < voxelMax[0]; x++ )
{
for ( int y=voxelMin[1]; y < voxelMax[1]; y++ )
{
for ( int z=voxelMin[2]; z < voxelMax[2]; z++ )
{
int iBit = (z - allVoxelMin[2])*(allVoxelSize[0]*allVoxelSize[1]) +
(y-allVoxelMin[1])*allVoxelSize[0] +
(x-allVoxelMin[0]);
voxelBits[iBit>>3] |= (1 << (iBit & 7));
}
}
}
}
// Now get the list of patches that touch those voxels.
unsigned short curIterationKey = IncrementPatchIterationKey();
for ( int x=0; x < allVoxelSize[0]; x++ )
{
for ( int y=0; y < allVoxelSize[1]; y++ )
{
for ( int z=0; z < allVoxelSize[2]; z++ )
{
// Make sure this voxel has any luxels that care about it.
int iBit = z*(allVoxelSize[0]*allVoxelSize[1]) + y*allVoxelSize[0] + x;
unsigned char val = voxelBits[iBit>>3] & (1 << (iBit & 7));
if ( !val )
continue;
PatchSampleData_t patchData;
patchData.x = (x + allVoxelMin[0]) * 100;
patchData.y = (y + allVoxelMin[1]) * 10;
patchData.z = (z + allVoxelMin[2]);
UtlHashHandle_t handle = g_PatchSampleHashTable.Find( patchData );
if ( handle != g_PatchSampleHashTable.InvalidHandle() )
{
PatchSampleData_t *pPatchData = &g_PatchSampleHashTable.Element( handle );
// For all patches that touch this hash table element..
for ( int ndx = 0; ndx < pPatchData->m_ndxPatches.Count(); ndx++ )
{
int ndxPatch = pPatchData->m_ndxPatches.Element( ndx );
CPatch *pPatch = &g_Patches.Element( ndxPatch );
// If we haven't touched the patch already and it's a valid neighbor, then we want to use it.
if ( pPatch && pPatch->m_IterationKey != curIterationKey )
{
pPatch->m_IterationKey = curIterationKey;
if ( IsNeighbor( ndxFace, pPatch->faceNumber ) )
{
interestingPatches.AddToTail( pPatch );
}
}
}
}
}
}
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::RadialPatchBuild( CVRADDispColl *pDispTree, radial_t *pRadial,
bool bBump )
{
//
// get data lighting data
//
int ndxFace = pDispTree->GetParentIndex();
facelight_t *pFaceLight = &facelight[ndxFace];
// get the influence radius
float radius2 = pDispTree->GetPatchSampleRadius2();
float radius = ( float )sqrt( radius2 );
CUtlVector<CPatch*> interestingPatches;
#ifdef SAMPLEHASH_QUERY_ONCE
GetInterestingPatchesForLuxels( ndxFace, interestingPatches, radius );
#endif
int radialSize = pRadial->w * pRadial->h;
for( int ndxRadial = 0; ndxRadial < radialSize; ndxRadial++ )
{
RadialLuxelAddPatch(
ndxFace,
pFaceLight->luxel[ndxRadial],
pFaceLight->luxelNormals[ndxRadial],
radius,
pRadial,
ndxRadial,
bBump,
interestingPatches );
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
radial_t *CVRadDispMgr::BuildPatchRadial( int ndxFace, bool bBump )
{
// allocate the radial
radial_t *pRadial = AllocateRadial( ndxFace );
if( !pRadial )
return NULL;
//
// step 1: get the displacement surface to be lit
//
DispCollTree_t &dispTree = m_DispTrees[g_pFaces[ndxFace].dispinfo];
CVRADDispColl *pDispTree = dispTree.m_pDispTree;
if( !pDispTree )
return NULL;
// step 2: build radial of patch light
RadialPatchBuild( pDispTree, pRadial, bBump );
// step 3: return the built radial
return pRadial;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool SampleInSolid( sample_t *pSample )
{
int ndxLeaf = PointLeafnum( pSample->pos );
return ( dleafs[ndxLeaf].contents == CONTENTS_SOLID );
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::InsertSamplesDataIntoHashTable( void )
{
int totalSamples = 0;
#if 0
int totalSamplesInSolid = 0;
#endif
for( int ndxFace = 0; ndxFace < numfaces; ndxFace++ )
{
dface_t *pFace = &g_pFaces[ndxFace];
facelight_t *pFaceLight = &facelight[ndxFace];
if( !pFace || !pFaceLight )
continue;
if( texinfo[pFace->texinfo].flags & TEX_SPECIAL )
continue;
#if 0
bool bDisp = ( pFace->dispinfo != -1 );
#endif
//
// for each sample
//
for( int ndxSample = 0; ndxSample < pFaceLight->numsamples; ndxSample++ )
{
sample_t *pSample = &pFaceLight->sample[ndxSample];
if( pSample )
{
#if 0
if( bDisp )
{
// test sample to see if the displacement samples resides in solid
if( SampleInSolid( pSample ) )
{
totalSamplesInSolid++;
continue;
}
}
#endif
// create the sample handle
SampleHandle_t sampleHandle = ndxSample;
sampleHandle |= ( ndxFace << 16 );
SampleData_AddSample( pSample, sampleHandle );
}
}
totalSamples += pFaceLight->numsamples;
}
#if 0
// not implemented yet!!!
Msg( "%d samples in solid\n", totalSamplesInSolid );
#endif
// log the distribution
SampleData_Log();
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::InsertPatchSampleDataIntoHashTable( void )
{
// don't insert patch samples if we are not bouncing light
if( numbounce <= 0 )
return;
int totalPatchSamples = 0;
for( int ndxFace = 0; ndxFace < numfaces; ndxFace++ )
{
dface_t *pFace = &g_pFaces[ndxFace];
facelight_t *pFaceLight = &facelight[ndxFace];
if( !pFace || !pFaceLight )
continue;
if( texinfo[pFace->texinfo].flags & TEX_SPECIAL )
continue;
//
// for each patch
//
CPatch *pNextPatch = NULL;
if( g_FacePatches.Element( ndxFace ) != g_FacePatches.InvalidIndex() )
{
for( CPatch *pPatch = &g_Patches.Element( g_FacePatches.Element( ndxFace ) ); pPatch; pPatch = pNextPatch )
{
// next patch
pNextPatch = NULL;
if( pPatch->ndxNext != g_Patches.InvalidIndex() )
{
pNextPatch = &g_Patches.Element( pPatch->ndxNext );
}
// skip patches with children
if( pPatch->child1 != g_Patches.InvalidIndex() )
continue;
int ndxPatch = pPatch - g_Patches.Base();
PatchSampleData_AddSample( pPatch, ndxPatch );
totalPatchSamples++;
}
}
}
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::StartTimer( const char *name )
{
Msg( name );
m_Timer.Start();
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
void CVRadDispMgr::EndTimer( void )
{
m_Timer.End();
CCycleCount duration = m_Timer.GetDuration();
double seconds = duration.GetSeconds();
Msg( "Done<%1.4lf sec>\n", seconds );
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::BuildDispSamples( lightinfo_t *pLightInfo, facelight_t *pFaceLight, int ndxFace )
{
// get the tree assosciated with the face
DispCollTree_t &dispTree = m_DispTrees[g_pFaces[ndxFace].dispinfo];
CVRADDispColl *pDispTree = dispTree.m_pDispTree;
if( !pDispTree )
return false;
// lightmap size
int width = pLightInfo->face->m_LightmapTextureSizeInLuxels[0]+1;
int height = pLightInfo->face->m_LightmapTextureSizeInLuxels[1]+1;
// calculate the steps in uv space
float stepU = 1.0f / ( float )width;
float stepV = 1.0f / ( float )height;
float halfStepU = stepU * 0.5f;
float halfStepV = stepV * 0.5f;
//
// build the winding points (used to generate world space winding and
// calculate the area of the "sample")
//
int ndxU, ndxV;
CUtlVector<sample_t> samples;
samples.SetCount( SINGLEMAP );
sample_t *pSamples = samples.Base();
CUtlVector<Vector> worldPoints;
worldPoints.SetCount( SINGLEMAP );
Vector *pWorldPoints = worldPoints.Base();
for( ndxV = 0; ndxV < ( height + 1 ); ndxV++ )
{
for( ndxU = 0; ndxU < ( width + 1 ); ndxU++ )
{
int ndx = ( ndxV * ( width + 1 ) ) + ndxU;
Vector2D uv( ndxU * stepU, ndxV * stepV );
pDispTree->DispUVToSurfPoint( uv, pWorldPoints[ndx], 0.0f );
}
}
for( ndxV = 0; ndxV < height; ndxV++ )
{
for( ndxU = 0; ndxU < width; ndxU++ )
{
// build the winding
winding_t *pWinding = AllocWinding( 4 );
if( pWinding )
{
pWinding->numpoints = 4;
pWinding->p[0] = pWorldPoints[(ndxV*(width+1))+ndxU];
pWinding->p[1] = pWorldPoints[((ndxV+1)*(width+1))+ndxU];
pWinding->p[2] = pWorldPoints[((ndxV+1)*(width+1))+(ndxU+1)];
pWinding->p[3] = pWorldPoints[(ndxV*(width+1))+(ndxU+1)];
// calculate the area
float area = WindingArea( pWinding );
int ndxSample = ( ndxV * width ) + ndxU;
pSamples[ndxSample].w = pWinding;
pSamples[ndxSample].area = area;
}
else
{
Msg( "BuildDispSamples: WARNING - failed winding allocation\n" );
}
}
}
//
// build the samples points (based on s, t and sampleoffset (center of samples);
// generates world space position and normal)
//
for( ndxV = 0; ndxV < height; ndxV++ )
{
for( ndxU = 0; ndxU < width; ndxU++ )
{
int ndxSample = ( ndxV * width ) + ndxU;
pSamples[ndxSample].s = ndxU;
pSamples[ndxSample].t = ndxV;
pSamples[ndxSample].coord[0] = ( ndxU * stepU ) + halfStepU;
pSamples[ndxSample].coord[1] = ( ndxV * stepV ) + halfStepV;
pDispTree->DispUVToSurfPoint( pSamples[ndxSample].coord, pSamples[ndxSample].pos, 1.0f );
pDispTree->DispUVToSurfNormal( pSamples[ndxSample].coord, pSamples[ndxSample].normal );
}
}
//
// copy over samples
//
pFaceLight->numsamples = width * height;
pFaceLight->sample = ( sample_t* )calloc( pFaceLight->numsamples, sizeof( *pFaceLight->sample ) );
if( !pFaceLight->sample )
return false;
memcpy( pFaceLight->sample, pSamples, pFaceLight->numsamples * sizeof( *pFaceLight->sample ) );
// statistics - warning?!
if( pFaceLight->numsamples == 0 )
{
Msg( "BuildDispSamples: WARNING - no samples %d\n", pLightInfo->face - g_pFaces );
}
return true;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::BuildDispLuxels( lightinfo_t *pLightInfo, facelight_t *pFaceLight, int ndxFace )
{
// get the tree assosciated with the face
DispCollTree_t &dispTree = m_DispTrees[g_pFaces[ndxFace].dispinfo];
CVRADDispColl *pDispTree = dispTree.m_pDispTree;
if( !pDispTree )
return false;
// lightmap size
int width = pLightInfo->face->m_LightmapTextureSizeInLuxels[0]+1;
int height = pLightInfo->face->m_LightmapTextureSizeInLuxels[1]+1;
// calcuate actual luxel points
pFaceLight->numluxels = width * height;
pFaceLight->luxel = ( Vector* )calloc( pFaceLight->numluxels, sizeof( *pFaceLight->luxel ) );
pFaceLight->luxelNormals = ( Vector* )calloc( pFaceLight->numluxels, sizeof( Vector ) );
if( !pFaceLight->luxel || !pFaceLight->luxelNormals )
return false;
float stepU = 1.0f / ( float )( width - 1 );
float stepV = 1.0f / ( float )( height - 1 );
for( int ndxV = 0; ndxV < height; ndxV++ )
{
for( int ndxU = 0; ndxU < width; ndxU++ )
{
int ndxLuxel = ( ndxV * width ) + ndxU;
Vector2D uv( ndxU * stepU, ndxV * stepV );
pDispTree->DispUVToSurfPoint( uv, pFaceLight->luxel[ndxLuxel], 1.0f );
pDispTree->DispUVToSurfNormal( uv, pFaceLight->luxelNormals[ndxLuxel] );
}
}
return true;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
bool CVRadDispMgr::BuildDispSamplesAndLuxels_DoFast( lightinfo_t *pLightInfo, facelight_t *pFaceLight, int ndxFace )
{
// get the tree assosciated with the face
DispCollTree_t &dispTree = m_DispTrees[g_pFaces[ndxFace].dispinfo];
CVRADDispColl *pDispTree = dispTree.m_pDispTree;
if( !pDispTree )
return false;
// lightmap size
int width = pLightInfo->face->m_LightmapTextureSizeInLuxels[0]+1;
int height = pLightInfo->face->m_LightmapTextureSizeInLuxels[1]+1;
// calcuate actual luxel points
pFaceLight->numsamples = width * height;
pFaceLight->sample = ( sample_t* )calloc( pFaceLight->numsamples, sizeof( *pFaceLight->sample ) );
if( !pFaceLight->sample )
return false;
pFaceLight->numluxels = width * height;
pFaceLight->luxel = ( Vector* )calloc( pFaceLight->numluxels, sizeof( *pFaceLight->luxel ) );
pFaceLight->luxelNormals = ( Vector* )calloc( pFaceLight->numluxels, sizeof( Vector ) );
if( !pFaceLight->luxel || !pFaceLight->luxelNormals )
return false;
float stepU = 1.0f / ( float )( width - 1 );
float stepV = 1.0f / ( float )( height - 1 );
float halfStepU = stepU * 0.5f;
float halfStepV = stepV * 0.5f;
for( int ndxV = 0; ndxV < height; ndxV++ )
{
for( int ndxU = 0; ndxU < width; ndxU++ )
{
int ndx = ( ndxV * width ) + ndxU;
pFaceLight->sample[ndx].s = ndxU;
pFaceLight->sample[ndx].t = ndxV;
pFaceLight->sample[ndx].coord[0] = ( ndxU * stepU ) + halfStepU;
pFaceLight->sample[ndx].coord[1] = ( ndxV * stepV ) + halfStepV;
pDispTree->DispUVToSurfPoint( pFaceLight->sample[ndx].coord, pFaceLight->sample[ndx].pos, 1.0f );
pDispTree->DispUVToSurfNormal( pFaceLight->sample[ndx].coord, pFaceLight->sample[ndx].normal );
pFaceLight->luxel[ndx] = pFaceLight->sample[ndx].pos;
pFaceLight->luxelNormals[ndx] = pFaceLight->sample[ndx].normal;
}
}
return true;
}