// openvr.h //========= Copyright Valve Corporation ============// // Dynamically generated file. Do not modify this file directly. #ifndef _OPENVR_API #define _OPENVR_API #include <stdint.h> // vrtypes.h namespace vr { #if defined(__linux__) || defined(__APPLE__) // The 32-bit version of gcc has the alignment requirement for uint64 and double set to // 4 meaning that even with #pragma pack(8) these types will only be four-byte aligned. // The 64-bit version of gcc has the alignment requirement for these types set to // 8 meaning that unless we use #pragma pack(4) our structures will get bigger. // The 64-bit structure packing has to match the 32-bit structure packing for each platform. #pragma pack( push, 4 ) #else #pragma pack( push, 8 ) #endif // right-handed system // +y is up // +x is to the right // -z is going away from you // Distance unit is meters struct HmdMatrix34_t { float m[3][4]; }; struct HmdMatrix44_t { float m[4][4]; }; struct HmdVector3_t { float v[3]; }; struct HmdVector3d_t { double v[3]; }; struct HmdVector2_t { float v[2]; }; struct HmdQuaternion_t { double w, x, y, z; }; struct HmdQuad_t { HmdVector3_t vCorners[ 4 ]; }; /** Used to return the post-distortion UVs for each color channel. * UVs range from 0 to 1 with 0,0 in the upper left corner of the * source render target. The 0,0 to 1,1 range covers a single eye. */ struct DistortionCoordinates_t { float rfRed[2]; float rfGreen[2]; float rfBlue[2]; }; enum Hmd_Eye { Eye_Left = 0, Eye_Right = 1 }; enum GraphicsAPIConvention { API_DirectX = 0, // Normalized Z goes from 0 at the viewer to 1 at the far clip plane API_OpenGL = 1, // Normalized Z goes from 1 at the viewer to -1 at the far clip plane }; enum HmdTrackingResult { TrackingResult_Uninitialized = 1, TrackingResult_Calibrating_InProgress = 100, TrackingResult_Calibrating_OutOfRange = 101, TrackingResult_Running_OK = 200, TrackingResult_Running_OutOfRange = 201, }; static const uint32_t k_unTrackingStringSize = 32; static const uint32_t k_unMaxTrackedDeviceCount = 16; static const uint32_t k_unTrackedDeviceIndex_Hmd = 0; /** Describes what kind of object is being tracked at a given ID */ enum TrackedDeviceClass { TrackedDeviceClass_Invalid = 0, // the ID was not valid. TrackedDeviceClass_HMD = 1, // Head-Mounted Displays TrackedDeviceClass_Controller = 2, // Tracked controllers TrackedDeviceClass_TrackingReference = 4, // Camera and base stations that serve as tracking reference points TrackedDeviceClass_Other = 1000, }; /** describes a single pose for a tracked object */ struct TrackedDevicePose_t { HmdMatrix34_t mDeviceToAbsoluteTracking; HmdVector3_t vVelocity; // velocity in tracker space in m/s HmdVector3_t vAngularVelocity; // angular velocity in radians/s (?) HmdTrackingResult eTrackingResult; bool bPoseIsValid; // This indicates that there is a device connected for this spot in the pose array. // It could go from true to false if the user unplugs the device. bool bDeviceIsConnected; }; /** Identifies which style of tracking origin the application wants to use * for the poses it is requesting */ enum TrackingUniverseOrigin { TrackingUniverseSeated = 0, // Poses are provided relative to the seated zero pose TrackingUniverseStanding = 1, // Poses are provided relative to the safe bounds configured by the user TrackingUniverseRawAndUncalibrated = 2, // Poses are provided in the coordinate system defined by the driver. You probably don't want this one. }; /** Each entry in this enum represents a property that can be retrieved about a * tracked device. Many fields are only valid for one TrackedDeviceClass. */ enum TrackedDeviceProperty { // general properties that apply to all device classes Prop_TrackingSystemName_String = 1000, Prop_ModelNumber_String = 1001, Prop_SerialNumber_String = 1002, Prop_RenderModelName_String = 1003, Prop_WillDriftInYaw_Bool = 1004, Prop_ManufacturerName_String = 1005, Prop_TrackingFirmwareVersion_String = 1006, Prop_HardwareRevision_String = 1007, // Properties that are unique to TrackedDeviceClass_HMD Prop_ReportsTimeSinceVSync_Bool = 2000, Prop_SecondsFromVsyncToPhotons_Float = 2001, Prop_DisplayFrequency_Float = 2002, Prop_UserIpdMeters_Float = 2003, Prop_CurrentUniverseId_Uint64 = 2004, Prop_PreviousUniverseId_Uint64 = 2005, Prop_DisplayFirmwareVersion_String = 2006, // Properties that are unique to TrackedDeviceClass_Controller Prop_AttachedDeviceId_String = 3000, Prop_SupportedButtons_Uint64 = 3001, Prop_Axis0Type_Int32 = 3002, // Return value is of type EVRControllerAxisType Prop_Axis1Type_Int32 = 3003, // Return value is of type EVRControllerAxisType Prop_Axis2Type_Int32 = 3004, // Return value is of type EVRControllerAxisType Prop_Axis3Type_Int32 = 3005, // Return value is of type EVRControllerAxisType Prop_Axis4Type_Int32 = 3006, // Return value is of type EVRControllerAxisType // Properties that are unique to TrackedDeviceClass_TrackingReference Prop_FieldOfViewLeftDegrees_Float = 4000, Prop_FieldOfViewRightDegrees_Float = 4001, Prop_FieldOfViewTopDegrees_Float = 4002, Prop_FieldOfViewBottomDegrees_Float = 4003, Prop_TrackingRangeMinimumMeters_Float = 4004, Prop_TrackingRangeMaximumMeters_Float = 4005, }; /** Used to pass device IDs to API calls */ typedef uint32_t TrackedDeviceIndex_t; static const uint32_t k_unTrackedDeviceIndexInvalid = 0xFFFFFFFF; /** No string property will ever be longer than this length */ static const uint32_t k_unMaxPropertyStringSize = 32 * 1024; /** Used to return errors that occur when reading properties. */ enum TrackedPropertyError { TrackedProp_Success = 0, TrackedProp_WrongDataType = 1, TrackedProp_WrongDeviceClass = 2, TrackedProp_BufferTooSmall = 3, TrackedProp_UnknownProperty = 4, TrackedProp_InvalidDevice = 5, TrackedProp_CouldNotContactServer = 6, TrackedProp_ValueNotProvidedByDevice = 7, TrackedProp_StringExceedsMaximumLength = 8, }; /** a single vertex in a render model */ struct RenderModel_Vertex_t { HmdVector3_t vPosition; // position in meters in device space HmdVector3_t vNormal; float rfTextureCoord[ 2 ]; }; /** A texture map for use on a render model */ struct RenderModel_TextureMap_t { uint16_t unWidth, unHeight; // width and height of the texture map in pixels const uint8_t *rubTextureMapData; // Map texture data. All textures are RGBA with 8 bits per channel per pixel. Data size is width * height * 4ub }; /** Contains everything a game needs to render a single tracked or static object for the user. */ struct RenderModel_t { uint64_t ulInternalHandle; // Used internally by SteamVR const RenderModel_Vertex_t *rVertexData; // Vertex data for the mesh uint32_t unVertexCount; // Number of vertices in the vertex data const uint16_t *rIndexData; // Indices into the vertex data for each triangle uint32_t unTriangleCount; // Number of triangles in the mesh. Index count is 3 * TriangleCount RenderModel_TextureMap_t diffuseTexture; // RGBA diffuse texture for the model }; /** The types of events that could be posted (and what the parameters mean for each event type) */ enum EVREventType { VREvent_None = 0, VREvent_TrackedDeviceActivated = 100, VREvent_TrackedDeviceDeactivated = 101, VREvent_TrackedDeviceUpdated = 102, VREvent_ButtonPress = 200, // data is controller VREvent_ButtonUnpress = 201, // data is controller VREvent_ButtonTouch = 202, // data is controller VREvent_ButtonUntouch = 203, // data is controller VREvent_MouseMove = 300, // data is mouse VREvent_MouseButtonDown = 301, // data is mouse VREvent_MouseButtonUp = 302, // data is mouse VREvent_InputFocusCaptured = 400, // data is process VREvent_InputFocusReleased = 401, // data is process }; /** VR controller button and axis IDs */ enum EVRButtonId { k_EButton_System = 0, k_EButton_ApplicationMenu = 1, k_EButton_Grip = 2, k_EButton_Axis0 = 32, k_EButton_Axis1 = 33, k_EButton_Axis2 = 34, k_EButton_Axis3 = 35, k_EButton_Axis4 = 36, // aliases for well known controllers k_EButton_SteamVR_Touchpad = k_EButton_Axis0, k_EButton_SteamVR_Trigger = k_EButton_Axis1, k_EButton_Max = 64 }; inline uint64_t ButtonMaskFromId( EVRButtonId id ) { return 1ull << id; } /** used for controller button events */ struct VREvent_Controller_t { EVRButtonId button; }; /** used for simulated mouse events in overlay space */ enum EVRMouseButton { VRMouseButton_Left = 0x0001, VRMouseButton_Right = 0x0002, VRMouseButton_Middle = 0x0004, }; /** used for simulated mouse events in overlay space */ struct VREvent_Mouse_t { float x, y; EVRMouseButton button; }; /** Used for events about processes */ struct VREvent_Process_t { uint32_t pid; uint32_t oldPid; }; /** Not actually used for any events. It is just used to reserve * space in the union for future event types */ struct VREvent_Reserved_t { uint64_t reserved0; uint64_t reserved1; }; /** If you change this you must manually update openvr_interop.cs.py */ typedef union { VREvent_Reserved_t reserved; VREvent_Controller_t controller; VREvent_Mouse_t mouse; VREvent_Process_t process; } VREvent_Data_t; /** An event posted by the server to all running applications */ struct VREvent_t { EVREventType eventType; TrackedDeviceIndex_t trackedDeviceIndex; VREvent_Data_t data; float eventAgeSeconds; }; /** The mesh to draw into the stencil (or depth) buffer to perform * early stencil (or depth) kills of pixels that will never appear on the HMD. * This mesh draws on all the pixels that will be hidden after distortion. * * If the HMD does not provide a visible area mesh pVertexData will be * NULL and unTriangleCount will be 0. */ struct HiddenAreaMesh_t { const HmdVector2_t *pVertexData; uint32_t unTriangleCount; }; /** Identifies what kind of axis is on the controller at index n. Read this type * with pVRSystem->Get( nControllerDeviceIndex, Prop_Axis0Type_Int32 + n ); */ enum EVRControllerAxisType { k_eControllerAxis_None = 0, k_eControllerAxis_TrackPad = 1, k_eControllerAxis_Joystick = 2, k_eControllerAxis_Trigger = 3, // Analog trigger data is in the X axis }; /** contains information about one axis on the controller */ struct VRControllerAxis_t { float x; // Ranges from -1.0 to 1.0 for joysticks and track pads. Ranges from 0.0 to 1.0 for triggers were 0 is fully released. float y; // Ranges from -1.0 to 1.0 for joysticks and track pads. Is always 0.0 for triggers. }; /** the number of axes in the controller state */ static const uint32_t k_unControllerStateAxisCount = 5; /** Holds all the state of a controller at one moment in time. */ struct VRControllerState001_t { // If packet num matches that on your prior call, then the controller state hasn't been changed since // your last call and there is no need to process it uint32_t unPacketNum; // bit flags for each of the buttons. Use ButtonMaskFromId to turn an ID into a mask uint64_t ulButtonPressed; uint64_t ulButtonTouched; // Axis data for the controller's analog inputs VRControllerAxis_t rAxis[ k_unControllerStateAxisCount ]; }; typedef VRControllerState001_t VRControllerState_t; /** determines how to provide output to the application of various event processing functions. */ enum EVRControllerEventOutputType { ControllerEventOutput_OSEvents = 0, ControllerEventOutput_VREvents = 1, }; /** Allows the application to customize how the overlay appears in the compositor */ struct Compositor_OverlaySettings { uint32_t size; // sizeof(Compositor_OverlaySettings) bool curved, antialias; float scale, distance, alpha; float uOffset, vOffset, uScale, vScale; float gridDivs, gridWidth, gridScale; HmdMatrix44_t transform; }; /** error codes returned by Vr_Init */ enum HmdError { HmdError_None = 0, HmdError_Unknown = 1, HmdError_Init_InstallationNotFound = 100, HmdError_Init_InstallationCorrupt = 101, HmdError_Init_VRClientDLLNotFound = 102, HmdError_Init_FileNotFound = 103, HmdError_Init_FactoryNotFound = 104, HmdError_Init_InterfaceNotFound = 105, HmdError_Init_InvalidInterface = 106, HmdError_Init_UserConfigDirectoryInvalid = 107, HmdError_Init_HmdNotFound = 108, HmdError_Init_NotInitialized = 109, HmdError_Init_PathRegistryNotFound = 110, HmdError_Init_NoConfigPath = 111, HmdError_Init_NoLogPath = 112, HmdError_Init_PathRegistryNotWritable = 113, HmdError_Driver_Failed = 200, HmdError_Driver_Unknown = 201, HmdError_Driver_HmdUnknown = 202, HmdError_Driver_NotLoaded = 203, HmdError_Driver_RuntimeOutOfDate = 204, HmdError_Driver_HmdInUse = 205, HmdError_IPC_ServerInitFailed = 300, HmdError_IPC_ConnectFailed = 301, HmdError_IPC_SharedStateInitFailed = 302, HmdError_IPC_CompositorInitFailed = 303, HmdError_IPC_MutexInitFailed = 304, HmdError_VendorSpecific_UnableToConnectToOculusRuntime = 1000, HmdError_Steam_SteamInstallationNotFound = 2000, }; #pragma pack( pop ) } // vrannotation.h #ifdef __clang__ # define VR_CLANG_ATTR(ATTR) __attribute__((annotate( ATTR ))) #else # define VR_CLANG_ATTR(ATTR) #endif #define VR_METHOD_DESC(DESC) VR_CLANG_ATTR( "desc:" #DESC ";" ) #define VR_IGNOREATTR() VR_CLANG_ATTR( "ignore" ) #define VR_OUT_STRUCT() VR_CLANG_ATTR( "out_struct: ;" ) #define VR_OUT_STRING() VR_CLANG_ATTR( "out_string: ;" ) #define VR_OUT_ARRAY_CALL(COUNTER,FUNCTION,PARAMS) VR_CLANG_ATTR( "out_array_call:" #COUNTER "," #FUNCTION "," #PARAMS ";" ) #define VR_OUT_ARRAY_COUNT(COUNTER) VR_CLANG_ATTR( "out_array_count:" #COUNTER ";" ) #define VR_ARRAY_COUNT(COUNTER) VR_CLANG_ATTR( "array_count:" #COUNTER ";" ) #define VR_ARRAY_COUNT_D(COUNTER, DESC) VR_CLANG_ATTR( "array_count:" #COUNTER ";desc:" #DESC ) #define VR_BUFFER_COUNT(COUNTER) VR_CLANG_ATTR( "buffer_count:" #COUNTER ";" ) #define VR_OUT_BUFFER_COUNT(COUNTER) VR_CLANG_ATTR( "out_buffer_count:" #COUNTER ";" ) #define VR_OUT_STRING_COUNT(COUNTER) VR_CLANG_ATTR( "out_string_count:" #COUNTER ";" ) // ivrsystem.h namespace vr { class IVRSystem { public: // ------------------------------------ // Display Methods // ------------------------------------ /** Size and position that the window needs to be on the VR display. */ virtual void GetWindowBounds( int32_t *pnX, int32_t *pnY, uint32_t *pnWidth, uint32_t *pnHeight ) = 0; /** Suggested size for the intermediate render target that the distortion pulls from. */ virtual void GetRecommendedRenderTargetSize( uint32_t *pnWidth, uint32_t *pnHeight ) = 0; /** Gets the viewport in the frame buffer to draw the output of the distortion into */ virtual void GetEyeOutputViewport( Hmd_Eye eEye, uint32_t *pnX, uint32_t *pnY, uint32_t *pnWidth, uint32_t *pnHeight ) = 0; /** The projection matrix for the specified eye */ virtual HmdMatrix44_t GetProjectionMatrix( Hmd_Eye eEye, float fNearZ, float fFarZ, GraphicsAPIConvention eProjType ) = 0; /** The components necessary to build your own projection matrix in case your * application is doing something fancy like infinite Z */ virtual void GetProjectionRaw( Hmd_Eye eEye, float *pfLeft, float *pfRight, float *pfTop, float *pfBottom ) = 0; /** Returns the result of the distortion function for the specified eye and input UVs. UVs go from 0,0 in * the upper left of that eye's viewport and 1,1 in the lower right of that eye's viewport. */ virtual DistortionCoordinates_t ComputeDistortion( Hmd_Eye eEye, float fU, float fV ) = 0; /** Returns the transform from eye space to the head space. Eye space is the per-eye flavor of head * space that provides stereo disparity. Instead of Model * View * Projection the sequence is Model * View * Eye^-1 * Projection. * Normally View and Eye^-1 will be multiplied together and treated as View in your application. */ virtual HmdMatrix34_t GetEyeToHeadTransform( Hmd_Eye eEye ) = 0; /** Returns the number of elapsed seconds since the last recorded vsync event. This * will come from a vsync timer event in the timer if possible or from the application-reported * time if that is not available. If no vsync times are available the function will * return zero for vsync time and frame counter and return false from the method. */ virtual bool GetTimeSinceLastVsync( float *pfSecondsSinceLastVsync, uint64_t *pulFrameCounter ) = 0; /** [D3D9 Only] * Returns the adapter index that the user should pass into CreateDevice to set up D3D9 in such * a way that it can go full screen exclusive on the HMD. Returns -1 if there was an error. */ virtual int32_t GetD3D9AdapterIndex() = 0; /** [D3D10/11 Only] * Returns the adapter index and output index that the user should pass into EnumAdapters and EnumOutputs * to create the device and swap chain in DX10 and DX11. If an error occurs both indices will be set to -1. */ virtual void GetDXGIOutputInfo( int32_t *pnAdapterIndex, int32_t *pnAdapterOutputIndex ) = 0; /** [Windows Only] * Notifies the system that the VR output will appear in a particular window. */ virtual bool AttachToWindow( void *hWnd ) = 0; // ------------------------------------ // Tracking Methods // ------------------------------------ /** The pose that the tracker thinks that the HMD will be in at the specified number of seconds into the * future. Pass 0 to get the state at the instant the method is called. Most of the time the application should * calculate the time until the photons will be emitted from the display and pass that time into the method. * * This is roughly analogous to the inverse of the view matrix in most applications, though * many games will need to do some additional rotation or translation on top of the rotation * and translation provided by the head pose. * * For devices where bPoseIsValid is true the application can use the pose to position the device * in question. The provided array can be any size up to k_unMaxTrackedDeviceCount. * * Seated experiences should call this method with TrackingUniverseSeated and receive poses relative * to the seated zero pose. Standing experiences should call this method with TrackingUniverseStanding * and receive poses relative to the chaperone soft bounds. TrackingUniverseRawAndUncalibrated should * probably not be used unless the application is the chaperone calibration tool itself, but will provide * poses relative to the hardware-specific coordinate system in the driver. */ virtual void GetDeviceToAbsoluteTrackingPose( TrackingUniverseOrigin eOrigin, float fPredictedSecondsToPhotonsFromNow, VR_ARRAY_COUNT(unTrackedDevicePoseArrayCount) TrackedDevicePose_t *pTrackedDevicePoseArray, uint32_t unTrackedDevicePoseArrayCount ) = 0; /** Sets the zero pose for the seated tracker coordinate system to the current position and yaw of the HMD. After * ResetSeatedZeroPose all GetDeviceToAbsoluteTrackingPose calls that pass TrackingUniverseSeated as the origin * will be relative to this new zero pose. The new zero coordinate system will not change the fact that the Y axis * is up in the real world, so the next pose returned from GetDeviceToAbsoluteTrackingPose after a call to * ResetSeatedZeroPose may not be exactly an identity matrix. */ virtual void ResetSeatedZeroPose() = 0; /** Returns the transform from the seated zero pose to the standing absolute tracking system. This allows * applications to represent the seated origin to used or transform object positions from one coordinate * system to the other. * * The seated origin may or may not be inside the soft or hard bounds returned by IVRChaperone. Its position * depends on what the user has set in the chaperone calibration tool and previous calls to ResetSeatedZeroPose. */ virtual HmdMatrix34_t GetSeatedZeroPoseToStandingAbsoluteTrackingPose() = 0; // ------------------------------------ // RenderModel methods // ------------------------------------ /** Loads and returns a render model for use in the application. pchRenderModelName should be a render model name * from the Prop_RenderModelName_String property or an absolute path name to a render model on disk. * * The resulting render model is valid until VR_Shutdown() is called or until FreeRenderModel() is called. When the * application is finished with the render model it should call FreeRenderModel() to free the memory associated * with the model. * * The method returns false if the model could not be loaded. * * The API expects that this function will be called at startup or when tracked devices are connected and disconnected. * If it is called every frame it will hurt performance. */ virtual bool LoadRenderModel( const char *pchRenderModelName, RenderModel_t *pRenderModel ) = 0; /** Frees a previously returned render model */ virtual void FreeRenderModel( RenderModel_t *pRenderModel ) = 0; // ------------------------------------ // Property methods // ------------------------------------ /** Returns the device class of a tracked device. If there has not been a device connected in this slot * since the application started this function will return TrackedDevice_Invalid. For previous detected * devices the function will return the previously observed device class. * * To determine which devices exist on the system, just loop from 0 to k_unMaxTrackedDeviceCount and check * the device class. Every device with something other than TrackedDevice_Invalid is associated with an * actual tracked device. */ virtual TrackedDeviceClass GetTrackedDeviceClass( vr::TrackedDeviceIndex_t unDeviceIndex ) = 0; /** Returns true if there is a device connected in this slot. */ virtual bool IsTrackedDeviceConnected( vr::TrackedDeviceIndex_t unDeviceIndex ) = 0; /** Returns a bool property. If the device index is not valid or the property is not a bool type this function will return false. */ virtual bool GetBoolTrackedDeviceProperty( vr::TrackedDeviceIndex_t unDeviceIndex, TrackedDeviceProperty prop, TrackedPropertyError *pError = 0L ) = 0; /** Returns a float property. If the device index is not valid or the property is not a float type this function will return 0. */ virtual float GetFloatTrackedDeviceProperty( vr::TrackedDeviceIndex_t unDeviceIndex, TrackedDeviceProperty prop, TrackedPropertyError *pError = 0L ) = 0; /** Returns an int property. If the device index is not valid or the property is not a int type this function will return 0. */ virtual int32_t GetInt32TrackedDeviceProperty( vr::TrackedDeviceIndex_t unDeviceIndex, TrackedDeviceProperty prop, TrackedPropertyError *pError = 0L ) = 0; /** Returns a uint64 property. If the device index is not valid or the property is not a uint64 type this function will return 0. */ virtual uint64_t GetUint64TrackedDeviceProperty( vr::TrackedDeviceIndex_t unDeviceIndex, TrackedDeviceProperty prop, TrackedPropertyError *pError = 0L ) = 0; /** Returns a matrix property. If the device index is not valid or the property is not a matrix type, this function will return identity. */ virtual HmdMatrix34_t GetMatrix34TrackedDeviceProperty( vr::TrackedDeviceIndex_t unDeviceIndex, TrackedDeviceProperty prop, TrackedPropertyError *pError = 0L ) = 0; /** Returns a string property. If the device index is not valid or the property is not a float type this function will * return 0. Otherwise it returns the length of the number of bytes necessary to hold this string including the trailing * null. Strings will generally fit in buffers of k_unTrackingStringSize characters. */ virtual uint32_t GetStringTrackedDeviceProperty( vr::TrackedDeviceIndex_t unDeviceIndex, TrackedDeviceProperty prop, VR_OUT_STRING() char *pchValue, uint32_t unBufferSize, TrackedPropertyError *pError = 0L ) = 0; /** returns a string that corresponds with the specified property error. The string will be the name * of the error enum value for all valid error codes */ virtual const char *GetPropErrorNameFromEnum( TrackedPropertyError error ) = 0; // ------------------------------------ // Event methods // ------------------------------------ /** Returns true and fills the event with the next event on the queue if there is one. If there are no events * this method returns false */ virtual bool PollNextEvent( VREvent_t *pEvent ) = 0; /** Returns true and fills the event with the next event on the queue if there is one. If there are no events * this method returns false. Fills in the pose of the associated tracked device in the provided pose struct. * This pose will always be older than the call to this function and should not be used to render the device. */ virtual bool PollNextEventWithPose( TrackingUniverseOrigin eOrigin, vr::VREvent_t *pEvent, vr::TrackedDevicePose_t *pTrackedDevicePose ) = 0; /** returns the name of an EVREvent enum value */ virtual const char *GetEventTypeNameFromEnum( EVREventType eType ) = 0; // ------------------------------------ // Rendering helper methods // ------------------------------------ /** Returns the stencil mesh information for the current HMD. If this HMD does not have a stencil mesh the vertex data and count will be * NULL and 0 respectively. This mesh is meant to be rendered into the stencil buffer (or into the depth buffer setting nearz) before rendering * each eye's view. The pixels covered by this mesh will never be seen by the user after the lens distortion is applied and based on visibility to the panels. * This will improve perf by letting the GPU early-reject pixels the user will never see before running the pixel shader. * NOTE: Render this mesh with backface culling disabled since the winding order of the vertices can be different per-HMD or per-eye. */ virtual HiddenAreaMesh_t GetHiddenAreaMesh( Hmd_Eye eEye ) = 0; // ------------------------------------ // Controller methods // ------------------------------------ /** Fills the supplied struct with the current state of the controller. Returns false if the controller index * is invalid. */ virtual bool GetControllerState( vr::TrackedDeviceIndex_t unControllerDeviceIndex, vr::VRControllerState_t *pControllerState ) = 0; /** fills the supplied struct with the current state of the controller and the provided pose with the pose of * the controller when the controller state was updated most recently. Use this form if you need a precise controller * pose as input to your application when the user presses or releases a button. */ virtual bool GetControllerStateWithPose( TrackingUniverseOrigin eOrigin, vr::TrackedDeviceIndex_t unControllerDeviceIndex, vr::VRControllerState_t *pControllerState, TrackedDevicePose_t *pTrackedDevicePose ) = 0; /** Trigger a single haptic pulse on a controller. After this call the application may not trigger another haptic pulse on this controller * and axis combination for 5ms. */ virtual void TriggerHapticPulse( vr::TrackedDeviceIndex_t unControllerDeviceIndex, uint32_t unAxisId, unsigned short usDurationMicroSec ) = 0; /** returns the name of an EVRButtonId enum value */ virtual const char *GetButtonIdNameFromEnum( EVRButtonId eButtonId ) = 0; /** returns the name of an EVRControllerAxisType enum value */ virtual const char *GetControllerAxisTypeNameFromEnum( EVRControllerAxisType eAxisType ) = 0; /** Processes mouse input from the specified controller as though it were a mouse pointed at a compositor overlay with the * specified settings. The controller is treated like a laser pointer on the -z axis. The point where the laser pointer would * intersect with the overlay is the mouse position, the trigger is left mouse, and the track pad is right mouse. When using * system event output the caller should ensure that it has focus so that it receives the system events. * * Return true if the controller is pointed at the overlay and an event was generated. */ virtual bool HandleControllerOverlayInteractionAsMouse( const vr::Compositor_OverlaySettings & overlaySettings, vr::HmdVector2_t vecWindowClientPositionOnScreen, vr::HmdVector2_t vecWindowClientSize, vr::TrackedDeviceIndex_t unControllerDeviceIndex, vr::EVRControllerEventOutputType eOutputType ) = 0; /** Tells OpenVR that this process wants exclusive access to controller button states and button events. Other apps will be notified that * they have lost input focus with a VREvent_InputFocusCaptured event. Returns false if input focus could not be captured for * some reason. */ virtual bool CaptureInputFocus() = 0; /** Tells OpenVR that this process no longer wants exclusive access to button states and button events. Other apps will be notified * that input focus has been released with a VREvent_InputFocusReleased event. */ virtual void ReleaseInputFocus() = 0; /** Returns true if input focus is captured by another process. */ virtual bool IsInputFocusCapturedByAnotherProcess() = 0; }; static const char * const IVRSystem_Version = "IVRSystem_003"; } // ivrchaperone.h namespace vr { #if defined(__linux__) || defined(__APPLE__) // The 32-bit version of gcc has the alignment requirement for uint64 and double set to // 4 meaning that even with #pragma pack(8) these types will only be four-byte aligned. // The 64-bit version of gcc has the alignment requirement for these types set to // 8 meaning that unless we use #pragma pack(4) our structures will get bigger. // The 64-bit structure packing has to match the 32-bit structure packing for each platform. #pragma pack( push, 4 ) #else #pragma pack( push, 8 ) #endif enum ChaperoneCalibrationState { // OK! ChaperoneCalibrationState_OK = 1, // Chaperone is fully calibrated and working correctly // Warnings ChaperoneCalibrationState_Warning = 100, ChaperoneCalibrationState_Warning_BaseStationMayHaveMoved = 101, // A base station thinks that it might have moved ChaperoneCalibrationState_Warning_BaseStationRemoved = 102, // There are less base stations than when calibrated ChaperoneCalibrationState_Warning_SeatedBoundsInvalid = 103, // Seated bounds haven't been calibrated for the current tracking center // Errors ChaperoneCalibrationState_Error = 200, ChaperoneCalibrationState_Error_BaseStationUninitalized = 201, // Tracking center hasn't be calibrated for at least one of the base stations ChaperoneCalibrationState_Error_BaseStationConflict = 202, // Tracking center is calibrated, but base stations disagree on the tracking space ChaperoneCalibrationState_Error_SoftBoundsInvalid = 203, // Soft bounds haven't been calibrated for the current tracking center ChaperoneCalibrationState_Error_HardBoundsInvalid = 204, // Hard bounds haven't been calibrated for the current tracking center }; /** SOFT BOUNDS ASSUMPTIONS * Corners are in clockwise order. * Tracking space center (0,0,0) is contained within the Soft Bounds. * Angles of corners are between 25 and 155 degrees. * Quadrilateral formed is convex. * One side will run parallel to the X axis. * Height of every corner is 0Y (on the floor). */ struct ChaperoneSoftBoundsInfo_t { HmdQuad_t quadCorners; }; struct ChaperoneSeatedBoundsInfo_t { HmdVector3_t vSeatedHeadPosition; HmdVector3_t vDeskEdgePositions[ 2 ]; }; /** HIGH LEVEL TRACKING SPACE ASSUMPTIONS: * 0,0,0 is the preferred standing area center. * 0Y is the floor height. * -Z is the preferred forward facing direction. */ class IVRChaperone { public: /** Get the current state of Chaperone calibration. This state can change at any time during a session due to physical base station changes. */ virtual ChaperoneCalibrationState GetCalibrationState() = 0; /** Returns the 4 corner positions of the Soft Bounds (also know as Safe Zone and Play Space). */ virtual bool GetSoftBoundsInfo( ChaperoneSoftBoundsInfo_t *pInfo ) = 0; /** Returns the quads representing the Hard Bounds (static physical obstacles). */ virtual bool GetHardBoundsInfo( VR_OUT_ARRAY_COUNT(punQuadsCount) HmdQuad_t *pQuadsBuffer, uint32_t* punQuadsCount ) = 0; /** Returns the preferred seated position and front edge of their desk. */ virtual bool GetSeatedBoundsInfo( ChaperoneSeatedBoundsInfo_t *pInfo ) = 0; }; static const char * const IVRChaperone_Version = "IVRChaperone_002"; #pragma pack( pop ) } // ivrcompositor.h namespace vr { #if defined(__linux__) || defined(__APPLE__) // The 32-bit version of gcc has the alignment requirement for uint64 and double set to // 4 meaning that even with #pragma pack(8) these types will only be four-byte aligned. // The 64-bit version of gcc has the alignment requirement for these types set to // 8 meaning that unless we use #pragma pack(4) our structures will get bigger. // The 64-bit structure packing has to match the 32-bit structure packing for each platform. #pragma pack( push, 4 ) #else #pragma pack( push, 8 ) #endif /** Identifies the graphics API for the associated device */ enum Compositor_DeviceType { Compositor_DeviceType_None, Compositor_DeviceType_D3D9, Compositor_DeviceType_D3D9Ex, Compositor_DeviceType_D3D10, Compositor_DeviceType_D3D11, Compositor_DeviceType_OpenGL }; /** Provides a single frame's timing information to the app */ struct Compositor_FrameTiming { uint32_t size; // sizeof(Compositor_FrameTiming) double frameStart; float frameVSync; // seconds from frame start uint32_t droppedFrames; uint32_t frameIndex; vr::TrackedDevicePose_t pose; }; /** Allows the application to control what part of the provided texture will be used in the * frame buffer. */ struct Compositor_TextureBounds { float uMin, vMin; float uMax, vMax; }; #pragma pack( pop ) /** Allows the application to interact with the compositor */ class IVRCompositor { public: /** Returns the last error that occurred in the compositor */ virtual uint32_t GetLastError( VR_OUT_STRING() char* pchBuffer, uint32_t unBufferSize ) = 0; /** Turns vsync on or off on the compositor window */ virtual void SetVSync( bool bVSync ) = 0; /** Returns true if vsync is enabled in the compositor window */ virtual bool GetVSync() = 0; /** Sets gamma for the compositor window */ virtual void SetGamma( float fGamma ) = 0; /** Returns the gamma for the compositor window */ virtual float GetGamma() = 0; /** Sets the graphics device or context for the application that is going to feed * images to the compositor. The type of the pDevice parameter must match the * type that is provided: * Compositor_DeviceType_D3D9 IDirect3DDevice9* * Compositor_DeviceType_D3D9Ex IDirect3DDevice9Ex* * Compositor_DeviceType_D3D10 ID3D10Device* * Compositor_DeviceType_D3D11 ID3D11Device* * Compositor_DeviceType_OpenGL HGLRC * * Note: D3D9 and D3D9Ex are not implemented at this time */ virtual void SetGraphicsDevice( Compositor_DeviceType eType, void* pDevice ) = 0; /** Returns pose(s) to use to render scene. */ virtual void WaitGetPoses( VR_ARRAY_COUNT(unPoseArrayCount) TrackedDevicePose_t* pPoseArray, uint32_t unPoseArrayCount ) = 0; /** Updated scene texture to display. If pBounds is NULL the entire texture will be used. * * OpenGL dirty state: * glBindTexture */ virtual void Submit( Hmd_Eye eEye, void* pTexture, Compositor_TextureBounds* pBounds ) = 0; /** Clears the frame that was sent with the last call to Submit. This will cause the * compositor to show the grid until Submit is called again. */ virtual void ClearLastSubmittedFrame() = 0; /** returns the default settings that will be used for the overlay texture. Fetching these defaults * can be useful if you mostly want the default values but want to change a few settings. */ virtual void GetOverlayDefaults( Compositor_OverlaySettings* pSettings ) = 0; /** Texture to draw over the scene at distortion time. This texture will appear over the world on a quad. * The pSettings parameter controls the size and position of the quad. */ virtual void SetOverlay(void* pTexture, Compositor_OverlaySettings* pSettings ) = 0; /** Separate interface for providing the data as a stream of bytes, but there is an upper bound on data that can be sent */ virtual void SetOverlayRaw(void* buffer, uint32_t width, uint32_t height, uint32_t depth, Compositor_OverlaySettings* pSettings ) = 0; /** Separate interface for providing the image through a filename: * can be png or jpg, and should not be bigger than 1920x1080 */ virtual void SetOverlayFromFile( const char *pchFilePath, Compositor_OverlaySettings* pSettings ) = 0; /** Removes the scene overlay texture. */ virtual void ClearOverlay() = 0; /** Returns true if timing data is filled it. Sets oldest timing info if nFramesAgo is larger than the stored history. * Be sure to set timing.size = sizeof(Compositor_FrameTiming) on struct passed in before calling this function. */ virtual bool GetFrameTiming( Compositor_FrameTiming *pTiming, uint32_t unFramesAgo = 0 ) = 0; /** Fades the view on the HMD to the specified color. The fade will take fSeconds, and the color values are between * 0.0 and 1.0. This color is faded on top of the scene based on the alpha parameter. Removing the fade color instantly * would be FadeToColor( 0.0, 0.0, 0.0, 0.0, 0.0 ). */ virtual void FadeToColor( float fSeconds, float fRed, float fGreen, float fBlue, float fAlpha, bool bBackground = false ) = 0; /** Fading the Grid in or out in fSeconds */ virtual void FadeGrid( float fSeconds, bool bFadeIn ) = 0; /** Brings the compositor window to the front. This is useful for covering any other window that may be on the HMD * and is obscuring the compositor window. */ virtual void CompositorBringToFront() = 0; /** Pushes the compositor window to the back. This is useful for allowing other applications to draw directly to the HMD. */ virtual void CompositorGoToBack() = 0; /** Tells the compositor process to clean up and exit. You do not need to call this function at shutdown. Under normal * circumstances the compositor will manage its own life cycle based on what applications are running. */ virtual void CompositorQuit() = 0; /** Return whether the compositor is fullscreen */ virtual bool IsFullscreen() = 0; /** Computes the overlay-space pixel coordinates of where the ray intersects the overlay with the * specified settings. Returns false if there is no intersection. */ virtual bool ComputeOverlayIntersection( const Compositor_OverlaySettings* pSettings, float fAspectRatio, vr::TrackingUniverseOrigin eOrigin, vr::HmdVector3_t vSource, vr::HmdVector3_t vDirection, vr::HmdVector2_t *pvecIntersectionUV, vr::HmdVector3_t *pvecIntersectionTrackingSpace ) = 0; /** Sets tracking space returned by WaitGetPoses */ virtual void SetTrackingSpace( TrackingUniverseOrigin eOrigin ) = 0; /** Gets current tracking space returned by WaitGetPoses */ virtual TrackingUniverseOrigin GetTrackingSpace() = 0; }; static const char * const IVRCompositor_Version = "IVRCompositor_005"; } // namespace vr // ivrcontrolpanel.h namespace vr { #if 0 class IVRControlPanel { public: // ------------------------------------ // Driver enumeration methods // ------------------------------------ /** the number of active drivers */ virtual uint32_t GetDriverCount() = 0; /** The ID of the specified driver as a UTF-8 string. Returns the length of the ID in bytes. If * the buffer is not large enough to fit the ID an empty string will be returned. In general, 128 bytes * will be enough to fit any ID. */ virtual uint32_t GetDriverId( uint32_t unDriverIndex, char *pchBuffer, uint32_t unBufferLen ) = 0; // ------------------------------------ // Display Enumeration Methods // ------------------------------------ /** the number of active displays on the specified driver */ virtual uint32_t GetDriverDisplayCount( const char *pchDriverId ) = 0; /** The ID of the specified display in the specified driver as a UTF-8 string. Returns the * length of the ID in bytes. If the buffer is not large enough to fit the ID an empty * string will be returned. In general, 128 bytes will be enough to fit any ID. */ virtual uint32_t GetDriverDisplayId( const char *pchDriverId, uint32_t unDisplayIndex, char *pchBuffer, uint32_t unBufferLen ) = 0; // ------------------------------------ // Display Detail Methods // ------------------------------------ /** The model name of the specified driver in the specified driver as a UTF-8 string. Returns the * length of the model name in bytes. If the buffer is not large enough to fit the model name an empty * string will be returned. In general, 128 bytes will be enough to fit any model name. Returns 0 if * the display or driver was not found. */ virtual uint32_t GetDriverDisplayModelNumber( const char *pchDriverId, const char *pchDisplayId, char *pchBuffer, uint32_t unBufferLen ) = 0; /** The serial number of the specified driver in the specified driver as a UTF-8 string. Returns the * length of the serial number in bytes. If the buffer is not large enough to fit the serial number an empty * string will be returned. In general, 128 bytes will be enough to fit any model name. Returns 0 if * the display or driver was not found. */ virtual uint32_t GetDriverDisplaySerialNumber( const char *pchDriverId, const char *pchDisplayId, char *pchBuffer, uint32_t unBufferLen ) = 0; /** Returns the IVRSystem interface for the current display that matches the specified version number. * This is usually unnecessary and the return value of VR_Init can be used without calling this method. */ VR_IGNOREATTR() virtual class IVRSystem *GetCurrentDisplayInterface( const char *pchHmdInterfaceVersion ) = 0; // ------------------------------------ // Shared Resource Methods // ------------------------------------ /** Loads the specified resource into the provided buffer if large enough. * Returns the size in bytes of the buffer required to hold the specified resource. */ virtual uint32_t LoadSharedResource( const char *pchResourceName, char *pchBuffer, uint32_t unBufferLen ) = 0; // ------------------------------------ // IPD Methods // ------------------------------------ /** Gets the current IPD (Interpupillary Distance) in meters. */ virtual float GetIPD() = 0; /** Sets the current IPD (Interpupillary Distance) in meters. */ virtual void SetIPD( float fIPD ) = 0; // ------------------------------------ // Compositor Methods // ------------------------------------ /** Returns the IVRCompositor interface that matches the specified interface version. This will only * return the compositor interface if it has already been initialized by the current process. */ virtual class IVRCompositor *GetCurrentCompositorInterface( const char *pchInterfaceVersion ) = 0; }; static const char * const IVRControlPanel_Version = "IVRControlPanel_001"; #endif }// End #endif // _OPENVR_API namespace vr { // figure out how to import from the VR API dll #if defined(_WIN32) #ifdef VR_API_EXPORT #define VR_INTERFACE extern "C" __declspec( dllexport ) #else #define VR_INTERFACE extern "C" __declspec( dllimport ) #endif #elif defined(GNUC) || defined(COMPILER_GCC) #ifdef VR_API_EXPORT #define VR_INTERFACE extern "C" __attribute__((visibility("default"))) #else #define VR_INTERFACE extern "C" #endif #else #error "Unsupported Platform." #endif #if defined( _WIN32 ) #define VR_CALLTYPE __cdecl #else #define VR_CALLTYPE #endif /** Finds the active installation of the VR API and initializes it. The provided path must be absolute * or relative to the current working directory. These are the local install versions of the equivalent * functions in steamvr.h and will work without a local Steam install. * * This path is to the "root" of the VR API install. That's the directory with * the "drivers" directory and a platform (i.e. "win32") directory in it, not the directory with the DLL itself. */ VR_INTERFACE vr::IVRSystem *VR_CALLTYPE VR_Init( vr::HmdError *peError ); /** unloads vrclient.dll. Any interface pointers from the interface are * invalid after this point */ VR_INTERFACE void VR_CALLTYPE VR_Shutdown(); /** Returns true if there is an HMD attached. This check is as lightweight as possible and * can be called outside of VR_Init/VR_Shutdown. It should be used when an application wants * to know if initializing VR is a possibility but isn't ready to take that step yet. */ VR_INTERFACE bool VR_CALLTYPE VR_IsHmdPresent(); /** Returns the string version of an HMD error. This function may be called outside of VR_Init()/VR_Shutdown(). */ VR_INTERFACE const char *VR_CALLTYPE VR_GetStringForHmdError( vr::HmdError error ); /** Returns the interface of the specified version. This method must be called after VR_Init. The * pointer returned is valid until VR_Shutdown is called. */ VR_INTERFACE void *VR_CALLTYPE VR_GetGenericInterface( const char *pchInterfaceVersion, vr::HmdError *peError ); }