Proton/lsteamclient/steamworks_sdk_160/isteamnetworkingsockets.h
2024-07-01 10:10:26 +03:00

1030 lines
57 KiB
C++

//====== Copyright Valve Corporation, All rights reserved. ====================
#ifndef ISTEAMNETWORKINGSOCKETS
#define ISTEAMNETWORKINGSOCKETS
#include "steamnetworkingtypes.h"
#include "steam_api_common.h"
struct SteamNetAuthenticationStatus_t;
struct SteamNetworkingFakeIPResult_t;
class ISteamNetworkingConnectionSignaling;
class ISteamNetworkingSignalingRecvContext;
class ISteamNetworkingFakeUDPPort;
//-----------------------------------------------------------------------------
/// Lower level networking API.
///
/// - Connection-oriented API (like TCP, not UDP). When sending and receiving
/// messages, a connection handle is used. (For a UDP-style interface, where
/// the peer is identified by their address with each send/recv call, see
/// ISteamNetworkingMessages.) The typical pattern is for a "server" to "listen"
/// on a "listen socket." A "client" will "connect" to the server, and the
/// server will "accept" the connection. If you have a symmetric situation
/// where either peer may initiate the connection and server/client roles are
/// not clearly defined, check out k_ESteamNetworkingConfig_SymmetricConnect.
/// - But unlike TCP, it's message-oriented, not stream-oriented.
/// - Mix of reliable and unreliable messages
/// - Fragmentation and reassembly
/// - Supports connectivity over plain UDP
/// - Also supports SDR ("Steam Datagram Relay") connections, which are
/// addressed by the identity of the peer. There is a "P2P" use case and
/// a "hosted dedicated server" use case.
///
/// Note that neither of the terms "connection" nor "socket" necessarily correspond
/// one-to-one with an underlying UDP socket. An attempt has been made to
/// keep the semantics as similar to the standard socket model when appropriate,
/// but some deviations do exist.
///
/// See also: ISteamNetworkingMessages, the UDP-style interface. This API might be
/// easier to use, especially when porting existing UDP code.
class ISteamNetworkingSockets
{
public:
/// Creates a "server" socket that listens for clients to connect to by
/// calling ConnectByIPAddress, over ordinary UDP (IPv4 or IPv6)
///
/// You must select a specific local port to listen on and set it
/// the port field of the local address.
///
/// Usually you will set the IP portion of the address to zero (SteamNetworkingIPAddr::Clear()).
/// This means that you will not bind to any particular local interface (i.e. the same
/// as INADDR_ANY in plain socket code). Furthermore, if possible the socket will be bound
/// in "dual stack" mode, which means that it can accept both IPv4 and IPv6 client connections.
/// If you really do wish to bind a particular interface, then set the local address to the
/// appropriate IPv4 or IPv6 IP.
///
/// If you need to set any initial config options, pass them here. See
/// SteamNetworkingConfigValue_t for more about why this is preferable to
/// setting the options "immediately" after creation.
///
/// When a client attempts to connect, a SteamNetConnectionStatusChangedCallback_t
/// will be posted. The connection will be in the connecting state.
virtual HSteamListenSocket CreateListenSocketIP( const SteamNetworkingIPAddr &localAddress, int nOptions, const SteamNetworkingConfigValue_t *pOptions ) = 0;
/// Creates a connection and begins talking to a "server" over UDP at the
/// given IPv4 or IPv6 address. The remote host must be listening with a
/// matching call to CreateListenSocketIP on the specified port.
///
/// A SteamNetConnectionStatusChangedCallback_t callback will be triggered when we start
/// connecting, and then another one on either timeout or successful connection.
///
/// If the server does not have any identity configured, then their network address
/// will be the only identity in use. Or, the network host may provide a platform-specific
/// identity with or without a valid certificate to authenticate that identity. (These
/// details will be contained in the SteamNetConnectionStatusChangedCallback_t.) It's
/// up to your application to decide whether to allow the connection.
///
/// By default, all connections will get basic encryption sufficient to prevent
/// casual eavesdropping. But note that without certificates (or a shared secret
/// distributed through some other out-of-band mechanism), you don't have any
/// way of knowing who is actually on the other end, and thus are vulnerable to
/// man-in-the-middle attacks.
///
/// If you need to set any initial config options, pass them here. See
/// SteamNetworkingConfigValue_t for more about why this is preferable to
/// setting the options "immediately" after creation.
virtual HSteamNetConnection ConnectByIPAddress( const SteamNetworkingIPAddr &address, int nOptions, const SteamNetworkingConfigValue_t *pOptions ) = 0;
/// Like CreateListenSocketIP, but clients will connect using ConnectP2P.
///
/// nLocalVirtualPort specifies how clients can connect to this socket using
/// ConnectP2P. It's very common for applications to only have one listening socket;
/// in that case, use zero. If you need to open multiple listen sockets and have clients
/// be able to connect to one or the other, then nLocalVirtualPort should be a small
/// integer (<1000) unique to each listen socket you create.
///
/// If you use this, you probably want to call ISteamNetworkingUtils::InitRelayNetworkAccess()
/// when your app initializes.
///
/// If you are listening on a dedicated servers in known data center,
/// then you can listen using this function instead of CreateHostedDedicatedServerListenSocket,
/// to allow clients to connect without a ticket. Any user that owns
/// the app and is signed into Steam will be able to attempt to connect to
/// your server. Also, a connection attempt may require the client to
/// be connected to Steam, which is one more moving part that may fail. When
/// tickets are used, then once a ticket is obtained, a client can connect to
/// your server even if they got disconnected from Steam or Steam is offline.
///
/// If you need to set any initial config options, pass them here. See
/// SteamNetworkingConfigValue_t for more about why this is preferable to
/// setting the options "immediately" after creation.
virtual HSteamListenSocket CreateListenSocketP2P( int nLocalVirtualPort, int nOptions, const SteamNetworkingConfigValue_t *pOptions ) = 0;
/// Begin connecting to a peer that is identified using a platform-specific identifier.
/// This uses the default rendezvous service, which depends on the platform and library
/// configuration. (E.g. on Steam, it goes through the steam backend.)
///
/// If you need to set any initial config options, pass them here. See
/// SteamNetworkingConfigValue_t for more about why this is preferable to
/// setting the options "immediately" after creation.
///
/// To use your own signaling service, see:
/// - ConnectP2PCustomSignaling
/// - k_ESteamNetworkingConfig_Callback_CreateConnectionSignaling
virtual HSteamNetConnection ConnectP2P( const SteamNetworkingIdentity &identityRemote, int nRemoteVirtualPort, int nOptions, const SteamNetworkingConfigValue_t *pOptions ) = 0;
/// Accept an incoming connection that has been received on a listen socket.
///
/// When a connection attempt is received (perhaps after a few basic handshake
/// packets have been exchanged to prevent trivial spoofing), a connection interface
/// object is created in the k_ESteamNetworkingConnectionState_Connecting state
/// and a SteamNetConnectionStatusChangedCallback_t is posted. At this point, your
/// application MUST either accept or close the connection. (It may not ignore it.)
/// Accepting the connection will transition it either into the connected state,
/// or the finding route state, depending on the connection type.
///
/// You should take action within a second or two, because accepting the connection is
/// what actually sends the reply notifying the client that they are connected. If you
/// delay taking action, from the client's perspective it is the same as the network
/// being unresponsive, and the client may timeout the connection attempt. In other
/// words, the client cannot distinguish between a delay caused by network problems
/// and a delay caused by the application.
///
/// This means that if your application goes for more than a few seconds without
/// processing callbacks (for example, while loading a map), then there is a chance
/// that a client may attempt to connect in that interval and fail due to timeout.
///
/// If the application does not respond to the connection attempt in a timely manner,
/// and we stop receiving communication from the client, the connection attempt will
/// be timed out locally, transitioning the connection to the
/// k_ESteamNetworkingConnectionState_ProblemDetectedLocally state. The client may also
/// close the connection before it is accepted, and a transition to the
/// k_ESteamNetworkingConnectionState_ClosedByPeer is also possible depending the exact
/// sequence of events.
///
/// Returns k_EResultInvalidParam if the handle is invalid.
/// Returns k_EResultInvalidState if the connection is not in the appropriate state.
/// (Remember that the connection state could change in between the time that the
/// notification being posted to the queue and when it is received by the application.)
///
/// A note about connection configuration options. If you need to set any configuration
/// options that are common to all connections accepted through a particular listen
/// socket, consider setting the options on the listen socket, since such options are
/// inherited automatically. If you really do need to set options that are connection
/// specific, it is safe to set them on the connection before accepting the connection.
virtual EResult AcceptConnection( HSteamNetConnection hConn ) = 0;
/// Disconnects from the remote host and invalidates the connection handle.
/// Any unread data on the connection is discarded.
///
/// nReason is an application defined code that will be received on the other
/// end and recorded (when possible) in backend analytics. The value should
/// come from a restricted range. (See ESteamNetConnectionEnd.) If you don't need
/// to communicate any information to the remote host, and do not want analytics to
/// be able to distinguish "normal" connection terminations from "exceptional" ones,
/// You may pass zero, in which case the generic value of
/// k_ESteamNetConnectionEnd_App_Generic will be used.
///
/// pszDebug is an optional human-readable diagnostic string that will be received
/// by the remote host and recorded (when possible) in backend analytics.
///
/// If you wish to put the socket into a "linger" state, where an attempt is made to
/// flush any remaining sent data, use bEnableLinger=true. Otherwise reliable data
/// is not flushed.
///
/// If the connection has already ended and you are just freeing up the
/// connection interface, the reason code, debug string, and linger flag are
/// ignored.
virtual bool CloseConnection( HSteamNetConnection hPeer, int nReason, const char *pszDebug, bool bEnableLinger ) = 0;
/// Destroy a listen socket. All the connections that were accepting on the listen
/// socket are closed ungracefully.
virtual bool CloseListenSocket( HSteamListenSocket hSocket ) = 0;
/// Set connection user data. the data is returned in the following places
/// - You can query it using GetConnectionUserData.
/// - The SteamNetworkingmessage_t structure.
/// - The SteamNetConnectionInfo_t structure.
/// (Which is a member of SteamNetConnectionStatusChangedCallback_t -- but see WARNINGS below!!!!)
///
/// Do you need to set this atomically when the connection is created?
/// See k_ESteamNetworkingConfig_ConnectionUserData.
///
/// WARNING: Be *very careful* when using the value provided in callbacks structs.
/// Callbacks are queued, and the value that you will receive in your
/// callback is the userdata that was effective at the time the callback
/// was queued. There are subtle race conditions that can happen if you
/// don't understand this!
///
/// If any incoming messages for this connection are queued, the userdata
/// field is updated, so that when when you receive messages (e.g. with
/// ReceiveMessagesOnConnection), they will always have the very latest
/// userdata. So the tricky race conditions that can happen with callbacks
/// do not apply to retrieving messages.
///
/// Returns false if the handle is invalid.
virtual bool SetConnectionUserData( HSteamNetConnection hPeer, int64 nUserData ) = 0;
/// Fetch connection user data. Returns -1 if handle is invalid
/// or if you haven't set any userdata on the connection.
virtual int64 GetConnectionUserData( HSteamNetConnection hPeer ) = 0;
/// Set a name for the connection, used mostly for debugging
virtual void SetConnectionName( HSteamNetConnection hPeer, const char *pszName ) = 0;
/// Fetch connection name. Returns false if handle is invalid
virtual bool GetConnectionName( HSteamNetConnection hPeer, char *pszName, int nMaxLen ) = 0;
/// Send a message to the remote host on the specified connection.
///
/// nSendFlags determines the delivery guarantees that will be provided,
/// when data should be buffered, etc. E.g. k_nSteamNetworkingSend_Unreliable
///
/// Note that the semantics we use for messages are not precisely
/// the same as the semantics of a standard "stream" socket.
/// (SOCK_STREAM) For an ordinary stream socket, the boundaries
/// between chunks are not considered relevant, and the sizes of
/// the chunks of data written will not necessarily match up to
/// the sizes of the chunks that are returned by the reads on
/// the other end. The remote host might read a partial chunk,
/// or chunks might be coalesced. For the message semantics
/// used here, however, the sizes WILL match. Each send call
/// will match a successful read call on the remote host
/// one-for-one. If you are porting existing stream-oriented
/// code to the semantics of reliable messages, your code should
/// work the same, since reliable message semantics are more
/// strict than stream semantics. The only caveat is related to
/// performance: there is per-message overhead to retain the
/// message sizes, and so if your code sends many small chunks
/// of data, performance will suffer. Any code based on stream
/// sockets that does not write excessively small chunks will
/// work without any changes.
///
/// The pOutMessageNumber is an optional pointer to receive the
/// message number assigned to the message, if sending was successful.
///
/// Returns:
/// - k_EResultInvalidParam: invalid connection handle, or the individual message is too big.
/// (See k_cbMaxSteamNetworkingSocketsMessageSizeSend)
/// - k_EResultInvalidState: connection is in an invalid state
/// - k_EResultNoConnection: connection has ended
/// - k_EResultIgnored: You used k_nSteamNetworkingSend_NoDelay, and the message was dropped because
/// we were not ready to send it.
/// - k_EResultLimitExceeded: there was already too much data queued to be sent.
/// (See k_ESteamNetworkingConfig_SendBufferSize)
virtual EResult SendMessageToConnection( HSteamNetConnection hConn, const void *pData, uint32 cbData, int nSendFlags, int64 *pOutMessageNumber ) = 0;
/// Send one or more messages without copying the message payload.
/// This is the most efficient way to send messages. To use this
/// function, you must first allocate a message object using
/// ISteamNetworkingUtils::AllocateMessage. (Do not declare one
/// on the stack or allocate your own.)
///
/// You should fill in the message payload. You can either let
/// it allocate the buffer for you and then fill in the payload,
/// or if you already have a buffer allocated, you can just point
/// m_pData at your buffer and set the callback to the appropriate function
/// to free it. Note that if you use your own buffer, it MUST remain valid
/// until the callback is executed. And also note that your callback can be
/// invoked at any time from any thread (perhaps even before SendMessages
/// returns!), so it MUST be fast and threadsafe.
///
/// You MUST also fill in:
/// - m_conn - the handle of the connection to send the message to
/// - m_nFlags - bitmask of k_nSteamNetworkingSend_xxx flags.
///
/// All other fields are currently reserved and should not be modified.
///
/// The library will take ownership of the message structures. They may
/// be modified or become invalid at any time, so you must not read them
/// after passing them to this function.
///
/// pOutMessageNumberOrResult is an optional array that will receive,
/// for each message, the message number that was assigned to the message
/// if sending was successful. If sending failed, then a negative EResult
/// value is placed into the array. For example, the array will hold
/// -k_EResultInvalidState if the connection was in an invalid state.
/// See ISteamNetworkingSockets::SendMessageToConnection for possible
/// failure codes.
virtual void SendMessages( int nMessages, SteamNetworkingMessage_t *const *pMessages, int64 *pOutMessageNumberOrResult ) = 0;
/// Flush any messages waiting on the Nagle timer and send them
/// at the next transmission opportunity (often that means right now).
///
/// If Nagle is enabled (it's on by default) then when calling
/// SendMessageToConnection the message will be buffered, up to the Nagle time
/// before being sent, to merge small messages into the same packet.
/// (See k_ESteamNetworkingConfig_NagleTime)
///
/// Returns:
/// k_EResultInvalidParam: invalid connection handle
/// k_EResultInvalidState: connection is in an invalid state
/// k_EResultNoConnection: connection has ended
/// k_EResultIgnored: We weren't (yet) connected, so this operation has no effect.
virtual EResult FlushMessagesOnConnection( HSteamNetConnection hConn ) = 0;
/// Fetch the next available message(s) from the connection, if any.
/// Returns the number of messages returned into your array, up to nMaxMessages.
/// If the connection handle is invalid, -1 is returned.
///
/// The order of the messages returned in the array is relevant.
/// Reliable messages will be received in the order they were sent (and with the
/// same sizes --- see SendMessageToConnection for on this subtle difference from a stream socket).
///
/// Unreliable messages may be dropped, or delivered out of order with respect to
/// each other or with respect to reliable messages. The same unreliable message
/// may be received multiple times.
///
/// If any messages are returned, you MUST call SteamNetworkingMessage_t::Release() on each
/// of them free up resources after you are done. It is safe to keep the object alive for
/// a little while (put it into some queue, etc), and you may call Release() from any thread.
virtual int ReceiveMessagesOnConnection( HSteamNetConnection hConn, SteamNetworkingMessage_t **ppOutMessages, int nMaxMessages ) = 0;
/// Returns basic information about the high-level state of the connection.
virtual bool GetConnectionInfo( HSteamNetConnection hConn, SteamNetConnectionInfo_t *pInfo ) = 0;
/// Returns a small set of information about the real-time state of the connection
/// and the queue status of each lane.
///
/// - pStatus may be NULL if the information is not desired. (E.g. you are only interested
/// in the lane information.)
/// - On entry, nLanes specifies the length of the pLanes array. This may be 0
/// if you do not wish to receive any lane data. It's OK for this to be smaller than
/// the total number of configured lanes.
/// - pLanes points to an array that will receive lane-specific info. It can be NULL
/// if this is not needed.
///
/// Return value:
/// - k_EResultNoConnection - connection handle is invalid or connection has been closed.
/// - k_EResultInvalidParam - nLanes is bad
virtual EResult GetConnectionRealTimeStatus( HSteamNetConnection hConn, SteamNetConnectionRealTimeStatus_t *pStatus,
int nLanes, SteamNetConnectionRealTimeLaneStatus_t *pLanes ) = 0;
/// Returns detailed connection stats in text format. Useful
/// for dumping to a log, etc.
///
/// Returns:
/// -1 failure (bad connection handle)
/// 0 OK, your buffer was filled in and '\0'-terminated
/// >0 Your buffer was either nullptr, or it was too small and the text got truncated.
/// Try again with a buffer of at least N bytes.
virtual int GetDetailedConnectionStatus( HSteamNetConnection hConn, char *pszBuf, int cbBuf ) = 0;
/// Returns local IP and port that a listen socket created using CreateListenSocketIP is bound to.
///
/// An IPv6 address of ::0 means "any IPv4 or IPv6"
/// An IPv6 address of ::ffff:0000:0000 means "any IPv4"
virtual bool GetListenSocketAddress( HSteamListenSocket hSocket, SteamNetworkingIPAddr *address ) = 0;
/// Create a pair of connections that are talking to each other, e.g. a loopback connection.
/// This is very useful for testing, or so that your client/server code can work the same
/// even when you are running a local "server".
///
/// The two connections will immediately be placed into the connected state, and no callbacks
/// will be posted immediately. After this, if you close either connection, the other connection
/// will receive a callback, exactly as if they were communicating over the network. You must
/// close *both* sides in order to fully clean up the resources!
///
/// By default, internal buffers are used, completely bypassing the network, the chopping up of
/// messages into packets, encryption, copying the payload, etc. This means that loopback
/// packets, by default, will not simulate lag or loss. Passing true for bUseNetworkLoopback will
/// cause the socket pair to send packets through the local network loopback device (127.0.0.1)
/// on ephemeral ports. Fake lag and loss are supported in this case, and CPU time is expended
/// to encrypt and decrypt.
///
/// If you wish to assign a specific identity to either connection, you may pass a particular
/// identity. Otherwise, if you pass nullptr, the respective connection will assume a generic
/// "localhost" identity. If you use real network loopback, this might be translated to the
/// actual bound loopback port. Otherwise, the port will be zero.
virtual bool CreateSocketPair( HSteamNetConnection *pOutConnection1, HSteamNetConnection *pOutConnection2, bool bUseNetworkLoopback, const SteamNetworkingIdentity *pIdentity1, const SteamNetworkingIdentity *pIdentity2 ) = 0;
/// Configure multiple outbound messages streams ("lanes") on a connection, and
/// control head-of-line blocking between them. Messages within a given lane
/// are always sent in the order they are queued, but messages from different
/// lanes may be sent out of order. Each lane has its own message number
/// sequence. The first message sent on each lane will be assigned the number 1.
///
/// Each lane has a "priority". Lanes with higher numeric values will only be processed
/// when all lanes with lower number values are empty. The magnitudes of the priority
/// values are not relevant, only their sort order.
///
/// Each lane also is assigned a weight, which controls the approximate proportion
/// of the bandwidth that will be consumed by the lane, relative to other lanes
/// of the same priority. (This is assuming the lane stays busy. An idle lane
/// does not build up "credits" to be be spent once a message is queued.)
/// This value is only meaningful as a proportion, relative to other lanes with
/// the same priority. For lanes with different priorities, the strict priority
/// order will prevail, and their weights relative to each other are not relevant.
/// Thus, if a lane has a unique priority value, the weight value for that lane is
/// not relevant.
///
/// Example: 3 lanes, with priorities [ 0, 10, 10 ] and weights [ (NA), 20, 5 ].
/// Messages sent on the first will always be sent first, before messages in the
/// other two lanes. Its weight value is irrelevant, since there are no other
/// lanes with priority=0. The other two lanes will share bandwidth, with the second
/// and third lanes sharing bandwidth using a ratio of approximately 4:1.
/// (The weights [ NA, 4, 1 ] would be equivalent.)
///
/// Notes:
/// - At the time of this writing, some code has performance cost that is linear
/// in the number of lanes, so keep the number of lanes to an absolute minimum.
/// 3 or so is fine; >8 is a lot. The max number of lanes on Steam is 255,
/// which is a very large number and not recommended! If you are compiling this
/// library from source, see STEAMNETWORKINGSOCKETS_MAX_LANES.)
/// - Lane priority values may be any int. Their absolute value is not relevant,
/// only the order matters.
/// - Weights must be positive, and due to implementation details, they are restricted
/// to 16-bit values. The absolute magnitudes don't matter, just the proportions.
/// - Messages sent on a lane index other than 0 have a small overhead on the wire,
/// so for maximum wire efficiency, lane 0 should be the "most common" lane, regardless
/// of priorities or weights.
/// - A connection has a single lane by default. Calling this function with
/// nNumLanes=1 is legal, but pointless, since the priority and weight values are
/// irrelevant in that case.
/// - You may reconfigure connection lanes at any time, however reducing the number of
/// lanes is not allowed.
/// - Reconfiguring lanes might restart any bandwidth sharing balancing. Usually you
/// will call this function once, near the start of the connection, perhaps after
/// exchanging a few messages.
/// - To assign all lanes the same priority, you may use pLanePriorities=NULL.
/// - If you wish all lanes with the same priority to share bandwidth equally (or
/// if no two lanes have the same priority value, and thus priority values are
/// irrelevant), you may use pLaneWeights=NULL
/// - Priorities and weights determine the order that messages are SENT on the wire.
/// There are NO GUARANTEES on the order that messages are RECEIVED! Due to packet
/// loss, out-of-order delivery, and subtle details of packet serialization, messages
/// might still be received slightly out-of-order! The *only* strong guarantee is that
/// *reliable* messages on the *same lane* will be delivered in the order they are sent.
/// - Each host configures the lanes for the packets they send; the lanes for the flow
/// in one direction are completely unrelated to the lanes in the opposite direction.
///
/// Return value:
/// - k_EResultNoConnection - bad hConn
/// - k_EResultInvalidParam - Invalid number of lanes, bad weights, or you tried to reduce the number of lanes
/// - k_EResultInvalidState - Connection is already dead, etc
///
/// See also:
/// SteamNetworkingMessage_t::m_idxLane
virtual EResult ConfigureConnectionLanes( HSteamNetConnection hConn, int nNumLanes, const int *pLanePriorities, const uint16 *pLaneWeights ) = 0;
//
// Identity and authentication
//
/// Get the identity assigned to this interface.
/// E.g. on Steam, this is the user's SteamID, or for the gameserver interface, the SteamID assigned
/// to the gameserver. Returns false and sets the result to an invalid identity if we don't know
/// our identity yet. (E.g. GameServer has not logged in. On Steam, the user will know their SteamID
/// even if they are not signed into Steam.)
virtual bool GetIdentity( SteamNetworkingIdentity *pIdentity ) = 0;
/// Indicate our desire to be ready participate in authenticated communications.
/// If we are currently not ready, then steps will be taken to obtain the necessary
/// certificates. (This includes a certificate for us, as well as any CA certificates
/// needed to authenticate peers.)
///
/// You can call this at program init time if you know that you are going to
/// be making authenticated connections, so that we will be ready immediately when
/// those connections are attempted. (Note that essentially all connections require
/// authentication, with the exception of ordinary UDP connections with authentication
/// disabled using k_ESteamNetworkingConfig_IP_AllowWithoutAuth.) If you don't call
/// this function, we will wait until a feature is utilized that that necessitates
/// these resources.
///
/// You can also call this function to force a retry, if failure has occurred.
/// Once we make an attempt and fail, we will not automatically retry.
/// In this respect, the behavior of the system after trying and failing is the same
/// as before the first attempt: attempting authenticated communication or calling
/// this function will call the system to attempt to acquire the necessary resources.
///
/// You can use GetAuthenticationStatus or listen for SteamNetAuthenticationStatus_t
/// to monitor the status.
///
/// Returns the current value that would be returned from GetAuthenticationStatus.
virtual ESteamNetworkingAvailability InitAuthentication() = 0;
/// Query our readiness to participate in authenticated communications. A
/// SteamNetAuthenticationStatus_t callback is posted any time this status changes,
/// but you can use this function to query it at any time.
///
/// The value of SteamNetAuthenticationStatus_t::m_eAvail is returned. If you only
/// want this high level status, you can pass NULL for pDetails. If you want further
/// details, pass non-NULL to receive them.
virtual ESteamNetworkingAvailability GetAuthenticationStatus( SteamNetAuthenticationStatus_t *pDetails ) = 0;
//
// Poll groups. A poll group is a set of connections that can be polled efficiently.
// (In our API, to "poll" a connection means to retrieve all pending messages. We
// actually don't have an API to "poll" the connection *state*, like BSD sockets.)
//
/// Create a new poll group.
///
/// You should destroy the poll group when you are done using DestroyPollGroup
virtual HSteamNetPollGroup CreatePollGroup() = 0;
/// Destroy a poll group created with CreatePollGroup().
///
/// If there are any connections in the poll group, they are removed from the group,
/// and left in a state where they are not part of any poll group.
/// Returns false if passed an invalid poll group handle.
virtual bool DestroyPollGroup( HSteamNetPollGroup hPollGroup ) = 0;
/// Assign a connection to a poll group. Note that a connection may only belong to a
/// single poll group. Adding a connection to a poll group implicitly removes it from
/// any other poll group it is in.
///
/// You can pass k_HSteamNetPollGroup_Invalid to remove a connection from its current
/// poll group without adding it to a new poll group.
///
/// If there are received messages currently pending on the connection, an attempt
/// is made to add them to the queue of messages for the poll group in approximately
/// the order that would have applied if the connection was already part of the poll
/// group at the time that the messages were received.
///
/// Returns false if the connection handle is invalid, or if the poll group handle
/// is invalid (and not k_HSteamNetPollGroup_Invalid).
virtual bool SetConnectionPollGroup( HSteamNetConnection hConn, HSteamNetPollGroup hPollGroup ) = 0;
/// Same as ReceiveMessagesOnConnection, but will return the next messages available
/// on any connection in the poll group. Examine SteamNetworkingMessage_t::m_conn
/// to know which connection. (SteamNetworkingMessage_t::m_nConnUserData might also
/// be useful.)
///
/// Delivery order of messages among different connections will usually match the
/// order that the last packet was received which completed the message. But this
/// is not a strong guarantee, especially for packets received right as a connection
/// is being assigned to poll group.
///
/// Delivery order of messages on the same connection is well defined and the
/// same guarantees are present as mentioned in ReceiveMessagesOnConnection.
/// (But the messages are not grouped by connection, so they will not necessarily
/// appear consecutively in the list; they may be interleaved with messages for
/// other connections.)
virtual int ReceiveMessagesOnPollGroup( HSteamNetPollGroup hPollGroup, SteamNetworkingMessage_t **ppOutMessages, int nMaxMessages ) = 0;
//
// Clients connecting to dedicated servers hosted in a data center,
// using tickets issued by your game coordinator. If you are not
// issuing your own tickets to restrict who can attempt to connect
// to your server, then you won't use these functions.
//
/// Call this when you receive a ticket from your backend / matchmaking system. Puts the
/// ticket into a persistent cache, and optionally returns the parsed ticket.
///
/// See stamdatagram_ticketgen.h for more details.
virtual bool ReceivedRelayAuthTicket( const void *pvTicket, int cbTicket, SteamDatagramRelayAuthTicket *pOutParsedTicket ) = 0;
/// Search cache for a ticket to talk to the server on the specified virtual port.
/// If found, returns the number of seconds until the ticket expires, and optionally
/// the complete cracked ticket. Returns 0 if we don't have a ticket.
///
/// Typically this is useful just to confirm that you have a ticket, before you
/// call ConnectToHostedDedicatedServer to connect to the server.
virtual int FindRelayAuthTicketForServer( const SteamNetworkingIdentity &identityGameServer, int nRemoteVirtualPort, SteamDatagramRelayAuthTicket *pOutParsedTicket ) = 0;
/// Client call to connect to a server hosted in a Valve data center, on the specified virtual
/// port. You must have placed a ticket for this server into the cache, or else this connect
/// attempt will fail! If you are not issuing your own tickets, then to connect to a dedicated
/// server via SDR in auto-ticket mode, use ConnectP2P. (The server must be configured to allow
/// this type of connection by listening using CreateListenSocketP2P.)
///
/// You may wonder why tickets are stored in a cache, instead of simply being passed as an argument
/// here. The reason is to make reconnection to a gameserver robust, even if the client computer loses
/// connection to Steam or the central backend, or the app is restarted or crashes, etc.
///
/// If you use this, you probably want to call ISteamNetworkingUtils::InitRelayNetworkAccess()
/// when your app initializes
///
/// If you need to set any initial config options, pass them here. See
/// SteamNetworkingConfigValue_t for more about why this is preferable to
/// setting the options "immediately" after creation.
virtual HSteamNetConnection ConnectToHostedDedicatedServer( const SteamNetworkingIdentity &identityTarget, int nRemoteVirtualPort, int nOptions, const SteamNetworkingConfigValue_t *pOptions ) = 0;
//
// Servers hosted in data centers known to the Valve relay network
//
/// Returns the value of the SDR_LISTEN_PORT environment variable. This
/// is the UDP server your server will be listening on. This will
/// configured automatically for you in production environments.
///
/// In development, you'll need to set it yourself. See
/// https://partner.steamgames.com/doc/api/ISteamNetworkingSockets
/// for more information on how to configure dev environments.
virtual uint16 GetHostedDedicatedServerPort() = 0;
/// Returns 0 if SDR_LISTEN_PORT is not set. Otherwise, returns the data center the server
/// is running in. This will be k_SteamDatagramPOPID_dev in non-production environment.
virtual SteamNetworkingPOPID GetHostedDedicatedServerPOPID() = 0;
/// Return info about the hosted server. This contains the PoPID of the server,
/// and opaque routing information that can be used by the relays to send traffic
/// to your server.
///
/// You will need to send this information to your backend, and put it in tickets,
/// so that the relays will know how to forward traffic from
/// clients to your server. See SteamDatagramRelayAuthTicket for more info.
///
/// Also, note that the routing information is contained in SteamDatagramGameCoordinatorServerLogin,
/// so if possible, it's preferred to use GetGameCoordinatorServerLogin to send this info
/// to your game coordinator service, and also login securely at the same time.
///
/// On a successful exit, k_EResultOK is returned
///
/// Unsuccessful exit:
/// - Something other than k_EResultOK is returned.
/// - k_EResultInvalidState: We are not configured to listen for SDR (SDR_LISTEN_SOCKET
/// is not set.)
/// - k_EResultPending: we do not (yet) have the authentication information needed.
/// (See GetAuthenticationStatus.) If you use environment variables to pre-fetch
/// the network config, this data should always be available immediately.
/// - A non-localized diagnostic debug message will be placed in m_data that describes
/// the cause of the failure.
///
/// NOTE: The returned blob is not encrypted. Send it to your backend, but don't
/// directly share it with clients.
virtual EResult GetHostedDedicatedServerAddress( SteamDatagramHostedAddress *pRouting ) = 0;
/// Create a listen socket on the specified virtual port. The physical UDP port to use
/// will be determined by the SDR_LISTEN_PORT environment variable. If a UDP port is not
/// configured, this call will fail.
///
/// This call MUST be made through the SteamGameServerNetworkingSockets() interface.
///
/// This function should be used when you are using the ticket generator library
/// to issue your own tickets. Clients connecting to the server on this virtual
/// port will need a ticket, and they must connect using ConnectToHostedDedicatedServer.
///
/// If you need to set any initial config options, pass them here. See
/// SteamNetworkingConfigValue_t for more about why this is preferable to
/// setting the options "immediately" after creation.
virtual HSteamListenSocket CreateHostedDedicatedServerListenSocket( int nLocalVirtualPort, int nOptions, const SteamNetworkingConfigValue_t *pOptions ) = 0;
/// Generate an authentication blob that can be used to securely login with
/// your backend, using SteamDatagram_ParseHostedServerLogin. (See
/// steamdatagram_gamecoordinator.h)
///
/// Before calling the function:
/// - Populate the app data in pLoginInfo (m_cbAppData and m_appData). You can leave
/// all other fields uninitialized.
/// - *pcbSignedBlob contains the size of the buffer at pBlob. (It should be
/// at least k_cbMaxSteamDatagramGameCoordinatorServerLoginSerialized.)
///
/// On a successful exit:
/// - k_EResultOK is returned
/// - All of the remaining fields of pLoginInfo will be filled out.
/// - *pcbSignedBlob contains the size of the serialized blob that has been
/// placed into pBlob.
///
/// Unsuccessful exit:
/// - Something other than k_EResultOK is returned.
/// - k_EResultNotLoggedOn: you are not logged in (yet)
/// - See GetHostedDedicatedServerAddress for more potential failure return values.
/// - A non-localized diagnostic debug message will be placed in pBlob that describes
/// the cause of the failure.
///
/// This works by signing the contents of the SteamDatagramGameCoordinatorServerLogin
/// with the cert that is issued to this server. In dev environments, it's OK if you do
/// not have a cert. (You will need to enable insecure dev login in SteamDatagram_ParseHostedServerLogin.)
/// Otherwise, you will need a signed cert.
///
/// NOTE: The routing blob returned here is not encrypted. Send it to your backend
/// and don't share it directly with clients.
virtual EResult GetGameCoordinatorServerLogin( SteamDatagramGameCoordinatorServerLogin *pLoginInfo, int *pcbSignedBlob, void *pBlob ) = 0;
//
// Relayed connections using custom signaling protocol
//
// This is used if you have your own method of sending out-of-band
// signaling / rendezvous messages through a mutually trusted channel.
//
/// Create a P2P "client" connection that does signaling over a custom
/// rendezvous/signaling channel.
///
/// pSignaling points to a new object that you create just for this connection.
/// It must stay valid until Release() is called. Once you pass the
/// object to this function, it assumes ownership. Release() will be called
/// from within the function call if the call fails. Furthermore, until Release()
/// is called, you should be prepared for methods to be invoked on your
/// object from any thread! You need to make sure your object is threadsafe!
/// Furthermore, you should make sure that dispatching the methods is done
/// as quickly as possible.
///
/// This function will immediately construct a connection in the "connecting"
/// state. Soon after (perhaps before this function returns, perhaps in another thread),
/// the connection will begin sending signaling messages by calling
/// ISteamNetworkingConnectionSignaling::SendSignal.
///
/// When the remote peer accepts the connection (See
/// ISteamNetworkingSignalingRecvContext::OnConnectRequest),
/// it will begin sending signaling messages. When these messages are received,
/// you can pass them to the connection using ReceivedP2PCustomSignal.
///
/// If you know the identity of the peer that you expect to be on the other end,
/// you can pass their identity to improve debug output or just detect bugs.
/// If you don't know their identity yet, you can pass NULL, and their
/// identity will be established in the connection handshake.
///
/// If you use this, you probably want to call ISteamNetworkingUtils::InitRelayNetworkAccess()
/// when your app initializes
///
/// If you need to set any initial config options, pass them here. See
/// SteamNetworkingConfigValue_t for more about why this is preferable to
/// setting the options "immediately" after creation.
virtual HSteamNetConnection ConnectP2PCustomSignaling( ISteamNetworkingConnectionSignaling *pSignaling, const SteamNetworkingIdentity *pPeerIdentity, int nRemoteVirtualPort, int nOptions, const SteamNetworkingConfigValue_t *pOptions ) = 0;
/// Called when custom signaling has received a message. When your
/// signaling channel receives a message, it should save off whatever
/// routing information was in the envelope into the context object,
/// and then pass the payload to this function.
///
/// A few different things can happen next, depending on the message:
///
/// - If the signal is associated with existing connection, it is dealt
/// with immediately. If any replies need to be sent, they will be
/// dispatched using the ISteamNetworkingConnectionSignaling
/// associated with the connection.
/// - If the message represents a connection request (and the request
/// is not redundant for an existing connection), a new connection
/// will be created, and ReceivedConnectRequest will be called on your
/// context object to determine how to proceed.
/// - Otherwise, the message is for a connection that does not
/// exist (anymore). In this case, we *may* call SendRejectionReply
/// on your context object.
///
/// In any case, we will not save off pContext or access it after this
/// function returns.
///
/// Returns true if the message was parsed and dispatched without anything
/// unusual or suspicious happening. Returns false if there was some problem
/// with the message that prevented ordinary handling. (Debug output will
/// usually have more information.)
///
/// If you expect to be using relayed connections, then you probably want
/// to call ISteamNetworkingUtils::InitRelayNetworkAccess() when your app initializes
virtual bool ReceivedP2PCustomSignal( const void *pMsg, int cbMsg, ISteamNetworkingSignalingRecvContext *pContext ) = 0;
//
// Certificate provision by the application. On Steam, we normally handle all this automatically
// and you will not need to use these advanced functions.
//
/// Get blob that describes a certificate request. You can send this to your game coordinator.
/// Upon entry, *pcbBlob should contain the size of the buffer. On successful exit, it will
/// return the number of bytes that were populated. You can pass pBlob=NULL to query for the required
/// size. (512 bytes is a conservative estimate.)
///
/// Pass this blob to your game coordinator and call SteamDatagram_CreateCert.
virtual bool GetCertificateRequest( int *pcbBlob, void *pBlob, SteamNetworkingErrMsg &errMsg ) = 0;
/// Set the certificate. The certificate blob should be the output of
/// SteamDatagram_CreateCert.
virtual bool SetCertificate( const void *pCertificate, int cbCertificate, SteamNetworkingErrMsg &errMsg ) = 0;
/// Reset the identity associated with this instance.
/// Any open connections are closed. Any previous certificates, etc are discarded.
/// You can pass a specific identity that you want to use, or you can pass NULL,
/// in which case the identity will be invalid until you set it using SetCertificate
///
/// NOTE: This function is not actually supported on Steam! It is included
/// for use on other platforms where the active user can sign out and
/// a new user can sign in.
virtual void ResetIdentity( const SteamNetworkingIdentity *pIdentity ) = 0;
//
// Misc
//
/// Invoke all callback functions queued for this interface.
/// See k_ESteamNetworkingConfig_Callback_ConnectionStatusChanged, etc
///
/// You don't need to call this if you are using Steam's callback dispatch
/// mechanism (SteamAPI_RunCallbacks and SteamGameserver_RunCallbacks).
virtual void RunCallbacks() = 0;
//
// "FakeIP" system.
//
// A FakeIP is essentially a temporary, arbitrary identifier that
// happens to be a valid IPv4 address. The purpose of this system is to make it
// easy to integrate with existing code that identifies hosts using IPv4 addresses.
// The FakeIP address will never actually be used to send or receive any packets
// on the Internet, it is strictly an identifier.
//
// FakeIP addresses are designed to (hopefully) pass through existing code as
// transparently as possible, while conflicting with "real" addresses that might
// be in use on networks (both the Internet and LANs) in the same code as little
// as possible. At the time this comment is being written, they come from the
// 169.254.0.0/16 range, and the port number will always be >1024. HOWEVER,
// this is subject to change! Do not make assumptions about these addresses,
// or your code might break in the future. In particular, you should use
// functions such as ISteamNetworkingUtils::IsFakeIP to determine if an IP
// address is a "fake" one used by this system.
//
/// Begin asynchronous process of allocating a fake IPv4 address that other
/// peers can use to contact us via P2P. IP addresses returned by this
/// function are globally unique for a given appid.
///
/// nNumPorts is the numbers of ports you wish to reserve. This is useful
/// for the same reason that listening on multiple UDP ports is useful for
/// different types of traffic. Because these allocations come from a global
/// namespace, there is a relatively strict limit on the maximum number of
/// ports you may request. (At the time of this writing, the limit is 4.)
/// The port assignments are *not* guaranteed to have any particular order
/// or relationship! Do *not* assume they are contiguous, even though that
/// may often occur in practice.
///
/// Returns false if a request was already in progress, true if a new request
/// was started. A SteamNetworkingFakeIPResult_t will be posted when the request
/// completes.
///
/// For gameservers, you *must* call this after initializing the SDK but before
/// beginning login. Steam needs to know in advance that FakeIP will be used.
/// Everywhere your public IP would normally appear (such as the server browser) will be
/// replaced by the FakeIP, and the fake port at index 0. The request is actually queued
/// until the logon completes, so you must not wait until the allocation completes
/// before logging in. Except for trivial failures that can be detected locally
/// (e.g. invalid parameter), a SteamNetworkingFakeIPResult_t callback (whether success or
/// failure) will not be posted until after we have logged in. Furthermore, it is assumed
/// that FakeIP allocation is essential for your application to function, and so failure
/// will not be reported until *several* retries have been attempted. This process may
/// last several minutes. It is *highly* recommended to treat failure as fatal.
///
/// To communicate using a connection-oriented (TCP-style) API:
/// - Server creates a listen socket using CreateListenSocketP2PFakeIP
/// - Client connects using ConnectByIPAddress, passing in the FakeIP address.
/// - The connection will behave mostly like a P2P connection. The identities
/// that appear in SteamNetConnectionInfo_t will be the FakeIP identity until
/// we know the real identity. Then it will be the real identity. If the
/// SteamNetConnectionInfo_t::m_addrRemote is valid, it will be a real IPv4
/// address of a NAT-punched connection. Otherwise, it will not be valid.
///
/// To communicate using an ad-hoc sendto/recv from (UDP-style) API,
/// use CreateFakeUDPPort.
virtual bool BeginAsyncRequestFakeIP( int nNumPorts ) = 0;
/// Return info about the FakeIP and port(s) that we have been assigned,
/// if any. idxFirstPort is currently reserved and must be zero.
/// Make sure and check SteamNetworkingFakeIPResult_t::m_eResult
virtual void GetFakeIP( int idxFirstPort, SteamNetworkingFakeIPResult_t *pInfo ) = 0;
/// Create a listen socket that will listen for P2P connections sent
/// to our FakeIP. A peer can initiate connections to this listen
/// socket by calling ConnectByIPAddress.
///
/// idxFakePort refers to the *index* of the fake port requested,
/// not the actual port number. For example, pass 0 to refer to the
/// first port in the reservation. You must call this only after calling
/// BeginAsyncRequestFakeIP. However, you do not need to wait for the
/// request to complete before creating the listen socket.
virtual HSteamListenSocket CreateListenSocketP2PFakeIP( int idxFakePort, int nOptions, const SteamNetworkingConfigValue_t *pOptions ) = 0;
/// If the connection was initiated using the "FakeIP" system, then we
/// we can get an IP address for the remote host. If the remote host had
/// a global FakeIP at the time the connection was established, this
/// function will return that global IP. Otherwise, a FakeIP that is
/// unique locally will be allocated from the local FakeIP address space,
/// and that will be returned.
///
/// The allocation of local FakeIPs attempts to assign addresses in
/// a consistent manner. If multiple connections are made to the
/// same remote host, they *probably* will return the same FakeIP.
/// However, since the namespace is limited, this cannot be guaranteed.
///
/// On failure, returns:
/// - k_EResultInvalidParam: invalid connection handle
/// - k_EResultIPNotFound: This connection wasn't made using FakeIP system
virtual EResult GetRemoteFakeIPForConnection( HSteamNetConnection hConn, SteamNetworkingIPAddr *pOutAddr ) = 0;
/// Get an interface that can be used like a UDP port to send/receive
/// datagrams to a FakeIP address. This is intended to make it easy
/// to port existing UDP-based code to take advantage of SDR.
///
/// idxFakeServerPort refers to the *index* of the port allocated using
/// BeginAsyncRequestFakeIP and is used to create "server" ports. You may
/// call this before the allocation has completed. However, any attempts
/// to send packets will fail until the allocation has succeeded. When
/// the peer receives packets sent from this interface, the from address
/// of the packet will be the globally-unique FakeIP. If you call this
/// function multiple times and pass the same (nonnegative) fake port index,
/// the same object will be returned, and this object is not reference counted.
///
/// To create a "client" port (e.g. the equivalent of an ephemeral UDP port)
/// pass -1. In this case, a distinct object will be returned for each call.
/// When the peer receives packets sent from this interface, the peer will
/// assign a FakeIP from its own locally-controlled namespace.
virtual ISteamNetworkingFakeUDPPort *CreateFakeUDPPort( int idxFakeServerPort ) = 0;
protected:
~ISteamNetworkingSockets(); // Silence some warnings
};
#define STEAMNETWORKINGSOCKETS_INTERFACE_VERSION "SteamNetworkingSockets012"
// Global accessors
// Using standalone lib
#ifdef STEAMNETWORKINGSOCKETS_STANDALONELIB
static_assert( STEAMNETWORKINGSOCKETS_INTERFACE_VERSION[24] == '2', "Version mismatch" );
STEAMNETWORKINGSOCKETS_INTERFACE ISteamNetworkingSockets *SteamNetworkingSockets_LibV12();
inline ISteamNetworkingSockets *SteamNetworkingSockets_Lib() { return SteamNetworkingSockets_LibV12(); }
STEAMNETWORKINGSOCKETS_INTERFACE ISteamNetworkingSockets *SteamGameServerNetworkingSockets_LibV12();
inline ISteamNetworkingSockets *SteamGameServerNetworkingSockets_Lib() { return SteamGameServerNetworkingSockets_LibV12(); }
#ifndef STEAMNETWORKINGSOCKETS_STEAMAPI
inline ISteamNetworkingSockets *SteamNetworkingSockets() { return SteamNetworkingSockets_LibV12(); }
inline ISteamNetworkingSockets *SteamGameServerNetworkingSockets() { return SteamGameServerNetworkingSockets_LibV12(); }
#endif
#endif
// Using Steamworks SDK
#ifdef STEAMNETWORKINGSOCKETS_STEAMAPI
STEAM_DEFINE_USER_INTERFACE_ACCESSOR( ISteamNetworkingSockets *, SteamNetworkingSockets_SteamAPI, STEAMNETWORKINGSOCKETS_INTERFACE_VERSION );
STEAM_DEFINE_GAMESERVER_INTERFACE_ACCESSOR( ISteamNetworkingSockets *, SteamGameServerNetworkingSockets_SteamAPI, STEAMNETWORKINGSOCKETS_INTERFACE_VERSION );
#ifndef STEAMNETWORKINGSOCKETS_STANDALONELIB
inline ISteamNetworkingSockets *SteamNetworkingSockets() { return SteamNetworkingSockets_SteamAPI(); }
inline ISteamNetworkingSockets *SteamGameServerNetworkingSockets() { return SteamGameServerNetworkingSockets_SteamAPI(); }
#endif
#endif
/// Callback struct used to notify when a connection has changed state
#if defined( VALVE_CALLBACK_PACK_SMALL )
#pragma pack( push, 4 )
#elif defined( VALVE_CALLBACK_PACK_LARGE )
#pragma pack( push, 8 )
#else
#error "Must define VALVE_CALLBACK_PACK_SMALL or VALVE_CALLBACK_PACK_LARGE"
#endif
/// This callback is posted whenever a connection is created, destroyed, or changes state.
/// The m_info field will contain a complete description of the connection at the time the
/// change occurred and the callback was posted. In particular, m_eState will have the
/// new connection state.
///
/// You will usually need to listen for this callback to know when:
/// - A new connection arrives on a listen socket.
/// m_info.m_hListenSocket will be set, m_eOldState = k_ESteamNetworkingConnectionState_None,
/// and m_info.m_eState = k_ESteamNetworkingConnectionState_Connecting.
/// See ISteamNetworkigSockets::AcceptConnection.
/// - A connection you initiated has been accepted by the remote host.
/// m_eOldState = k_ESteamNetworkingConnectionState_Connecting, and
/// m_info.m_eState = k_ESteamNetworkingConnectionState_Connected.
/// Some connections might transition to k_ESteamNetworkingConnectionState_FindingRoute first.
/// - A connection has been actively rejected or closed by the remote host.
/// m_eOldState = k_ESteamNetworkingConnectionState_Connecting or k_ESteamNetworkingConnectionState_Connected,
/// and m_info.m_eState = k_ESteamNetworkingConnectionState_ClosedByPeer. m_info.m_eEndReason
/// and m_info.m_szEndDebug will have for more details.
/// NOTE: upon receiving this callback, you must still destroy the connection using
/// ISteamNetworkingSockets::CloseConnection to free up local resources. (The details
/// passed to the function are not used in this case, since the connection is already closed.)
/// - A problem was detected with the connection, and it has been closed by the local host.
/// The most common failure is timeout, but other configuration or authentication failures
/// can cause this. m_eOldState = k_ESteamNetworkingConnectionState_Connecting or
/// k_ESteamNetworkingConnectionState_Connected, and m_info.m_eState = k_ESteamNetworkingConnectionState_ProblemDetectedLocally.
/// m_info.m_eEndReason and m_info.m_szEndDebug will have for more details.
/// NOTE: upon receiving this callback, you must still destroy the connection using
/// ISteamNetworkingSockets::CloseConnection to free up local resources. (The details
/// passed to the function are not used in this case, since the connection is already closed.)
///
/// Remember that callbacks are posted to a queue, and networking connections can
/// change at any time. It is possible that the connection has already changed
/// state by the time you process this callback.
///
/// Also note that callbacks will be posted when connections are created and destroyed by your own API calls.
struct SteamNetConnectionStatusChangedCallback_t
{
enum { k_iCallback = k_iSteamNetworkingSocketsCallbacks + 1 };
/// Connection handle
HSteamNetConnection m_hConn;
/// Full connection info
SteamNetConnectionInfo_t m_info;
/// Previous state. (Current state is in m_info.m_eState)
ESteamNetworkingConnectionState m_eOldState;
};
/// A struct used to describe our readiness to participate in authenticated,
/// encrypted communication. In order to do this we need:
///
/// - The list of trusted CA certificates that might be relevant for this
/// app.
/// - A valid certificate issued by a CA.
///
/// This callback is posted whenever the state of our readiness changes.
struct SteamNetAuthenticationStatus_t
{
enum { k_iCallback = k_iSteamNetworkingSocketsCallbacks + 2 };
/// Status
ESteamNetworkingAvailability m_eAvail;
/// Non-localized English language status. For diagnostic/debugging
/// purposes only.
char m_debugMsg[ 256 ];
};
#pragma pack( pop )
#endif // ISTEAMNETWORKINGSOCKETS