364 lines
9.1 KiB
C
Raw Normal View History

2013-08-30 13:34:05 -07:00
// nav.h
// AI Navigation data structures
// Author: Michael S. Booth (mike@turtlerockstudios.com), January 2003
#ifndef _NAV_H_
#define _NAV_H_
#pragma warning( disable : 4530 ) // STL uses exceptions, but we are not compiling with them - ignore warning
const float GenerationStepSize = 25.0f; // (30) was 20, but bots can't fit always fit
const float StepHeight = 18.0f; ///< if delta Z is greater than this, we have to jump to get up
const float JumpHeight = 41.8f; ///< if delta Z is less than this, we can jump up on it
const float JumpCrouchHeight = 58.0f; ///< (48) if delta Z is less than or equal to this, we can jumpcrouch up on it
// Strictly speaking, you CAN get up a slope of 1.643 (about 59 degrees), but you move very, very slowly
// This slope will represent the slope you can navigate without much slowdown
const float MaxSlope = 1.4f; ///< rise/run - if greater than this, we can't move up it (de_survivor canyon ramps)
// instead of MaxSlope, we are using the following max Z component of a unit normal
const float MaxUnitZSlope = 0.7f;
const float BotRadius = 10.0f; ///< circular extent that contains bot
const float DeathDrop = 200.0f; ///< (300) distance at which we will die if we fall - should be about 600, and pay attention to fall damage during pathfind
const float HalfHumanWidth = 16.0f;
const float HalfHumanHeight = 36.0f;
const float HumanHeight = 72.0f;
#define NAV_MAGIC_NUMBER 0xFEEDFACE ///< to help identify nav files
/**
* A place is a named group of navigation areas
*/
typedef unsigned int Place;
#define UNDEFINED_PLACE 0 // ie: "no place"
#define ANY_PLACE 0xFFFF
enum NavErrorType
{
NAV_OK,
NAV_CANT_ACCESS_FILE,
NAV_INVALID_FILE,
NAV_BAD_FILE_VERSION,
NAV_CORRUPT_DATA,
};
enum NavAttributeType
{
NAV_CROUCH = 0x01, ///< must crouch to use this node/area
NAV_JUMP = 0x02, ///< must jump to traverse this area
NAV_PRECISE = 0x04, ///< do not adjust for obstacles, just move along area
NAV_NO_JUMP = 0x08, ///< inhibit discontinuity jumping
};
enum NavDirType
{
NORTH = 0,
EAST = 1,
SOUTH = 2,
WEST = 3,
NUM_DIRECTIONS
};
/**
* Defines possible ways to move from one area to another
*/
enum NavTraverseType
{
// NOTE: First 4 directions MUST match NavDirType
GO_NORTH = 0,
GO_EAST,
GO_SOUTH,
GO_WEST,
GO_LADDER_UP,
GO_LADDER_DOWN,
GO_JUMP,
NUM_TRAVERSE_TYPES
};
enum NavCornerType
{
NORTH_WEST = 0,
NORTH_EAST = 1,
SOUTH_EAST = 2,
SOUTH_WEST = 3,
NUM_CORNERS
};
enum NavRelativeDirType
{
FORWARD = 0,
RIGHT,
BACKWARD,
LEFT,
UP,
DOWN,
NUM_RELATIVE_DIRECTIONS
};
struct Extent
{
Vector lo, hi;
float SizeX( void ) const { return hi.x - lo.x; }
float SizeY( void ) const { return hi.y - lo.y; }
float SizeZ( void ) const { return hi.z - lo.z; }
float Area( void ) const { return SizeX() * SizeY(); }
/// return true if 'pos' is inside of this extent
bool Contains( const Vector *pos ) const
{
return (pos->x >= lo.x && pos->x <= hi.x &&
pos->y >= lo.y && pos->y <= hi.y &&
pos->z >= lo.z && pos->z <= hi.z);
}
};
struct Ray
{
Vector from, to;
};
class CNavArea;
class CNavNode;
extern Extent NodeMapExtent;
//--------------------------------------------------------------------------------------------------------------
inline NavDirType OppositeDirection( NavDirType dir )
{
switch( dir )
{
case NORTH: return SOUTH;
case SOUTH: return NORTH;
case EAST: return WEST;
case WEST: return EAST;
}
return NORTH;
}
//--------------------------------------------------------------------------------------------------------------
inline NavDirType DirectionLeft( NavDirType dir )
{
switch( dir )
{
case NORTH: return WEST;
case SOUTH: return EAST;
case EAST: return NORTH;
case WEST: return SOUTH;
}
return NORTH;
}
//--------------------------------------------------------------------------------------------------------------
inline NavDirType DirectionRight( NavDirType dir )
{
switch( dir )
{
case NORTH: return EAST;
case SOUTH: return WEST;
case EAST: return SOUTH;
case WEST: return NORTH;
}
return NORTH;
}
//--------------------------------------------------------------------------------------------------------------
inline void AddDirectionVector( Vector *v, NavDirType dir, float amount )
{
switch( dir )
{
case NORTH: v->y -= amount; return;
case SOUTH: v->y += amount; return;
case EAST: v->x += amount; return;
case WEST: v->x -= amount; return;
}
}
//--------------------------------------------------------------------------------------------------------------
inline float DirectionToAngle( NavDirType dir )
{
switch( dir )
{
case NORTH: return 270.0f;
case SOUTH: return 90.0f;
case EAST: return 0.0f;
case WEST: return 180.0f;
}
return 0.0f;
}
//--------------------------------------------------------------------------------------------------------------
inline NavDirType AngleToDirection( float angle )
{
while( angle < 0.0f )
angle += 360.0f;
while( angle > 360.0f )
angle -= 360.0f;
if (angle < 45 || angle > 315)
return EAST;
if (angle >= 45 && angle < 135)
return SOUTH;
if (angle >= 135 && angle < 225)
return WEST;
return NORTH;
}
//--------------------------------------------------------------------------------------------------------------
inline void DirectionToVector2D( NavDirType dir, Vector2D *v )
{
switch( dir )
{
case NORTH: v->x = 0.0f; v->y = -1.0f; break;
case SOUTH: v->x = 0.0f; v->y = 1.0f; break;
case EAST: v->x = 1.0f; v->y = 0.0f; break;
case WEST: v->x = -1.0f; v->y = 0.0f; break;
}
}
//--------------------------------------------------------------------------------------------------------------
inline void SnapToGrid( Vector *pos )
{
int cx = pos->x / GenerationStepSize;
int cy = pos->y / GenerationStepSize;
pos->x = cx * GenerationStepSize;
pos->y = cy * GenerationStepSize;
}
//--------------------------------------------------------------------------------------------------------------
inline void SnapToGrid( float *value )
{
int c = *value / GenerationStepSize;
*value = c * GenerationStepSize;
}
//--------------------------------------------------------------------------------------------------------------
inline float NormalizeAngle( float angle )
{
while( angle < -180.0f )
angle += 360.0f;
while( angle > 180.0f )
angle -= 360.0f;
return angle;
}
//--------------------------------------------------------------------------------------------------------------
inline float NormalizeAnglePositive( float angle )
{
while( angle < 0.0f )
angle += 360.0f;
while( angle >= 360.0f )
angle -= 360.0f;
return angle;
}
//--------------------------------------------------------------------------------------------------------------
inline float AngleDifference( float a, float b )
{
float angleDiff = a - b;
while (angleDiff > 180.0f)
angleDiff -= 360.0f;
while (angleDiff < -180.0f)
angleDiff += 360.0f;
return angleDiff;
}
//--------------------------------------------------------------------------------------------------------------
inline bool AnglesAreEqual( float a, float b, float tolerance = 5.0f )
{
if (abs( AngleDifference( a, b ) ) < tolerance)
return true;
return false;
}
//--------------------------------------------------------------------------------------------------------------
inline bool VectorsAreEqual( const Vector *a, const Vector *b, float tolerance = 0.1f )
{
if (abs(a->x - b->x) < tolerance &&
abs(a->y - b->y) < tolerance &&
abs(a->z - b->z) < tolerance)
return true;
return false;
}
//--------------------------------------------------------------------------------------------------------------
/**
* Return true if given entity can be ignored when moving
*/
#define WALK_THRU_DOORS 0x01
#define WALK_THRU_BREAKABLES 0x02
inline bool IsEntityWalkable( entvars_t *entity, unsigned int flags )
{
// if we hit a door, assume its walkable because it will open when we touch it
if (FClassnameIs( entity, "func_door" ) || FClassnameIs( entity, "func_door_rotating" ))
return (flags & WALK_THRU_DOORS) ? true : false;
// if we hit a breakable object, assume its walkable because we will shoot it when we touch it
if (FClassnameIs( entity, "func_breakable" ) && entity->takedamage == DAMAGE_YES)
return (flags & WALK_THRU_BREAKABLES) ? true : false;
return false;
}
//--------------------------------------------------------------------------------------------------------------
/**
* Check LOS, ignoring any entities that we can walk through
*/
inline bool IsWalkableTraceLineClear( Vector &from, Vector &to, unsigned int flags = 0 )
{
TraceResult result;
edict_t *ignore = NULL;
Vector useFrom = from;
while(true)
{
UTIL_TraceLine( useFrom, to, ignore_monsters, ignore, &result );
// if we hit a walkable entity, try again
if (result.flFraction != 1.0f && IsEntityWalkable( VARS( result.pHit ), flags ))
{
ignore = result.pHit;
// start from just beyond where we hit to avoid infinite loops
Vector dir = to - from;
dir.NormalizeInPlace();
useFrom = result.vecEndPos + 5.0f * dir;
}
else
{
break;
}
}
if (result.flFraction == 1.0f)
return true;
return false;
}
#endif // _NAV_H_