/* * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * In addition, as a special exception, the author gives permission to * link the code of this program with the Half-Life Game Engine ("HL * Engine") and Modified Game Libraries ("MODs") developed by Valve, * L.L.C ("Valve"). You must obey the GNU General Public License in all * respects for all of the code used other than the HL Engine and MODs * from Valve. If you modify this file, you may extend this exception * to your version of the file, but you are not obligated to do so. If * you do not wish to do so, delete this exception statement from your * version. * */ #pragma once #include "utlmemory.h" #include template class CUtlVector { public: typedef T ElemType_t; // constructor, destructor CUtlVector(int growSize = 0, int initSize = 0); CUtlVector(T *pMemory, int numElements); ~CUtlVector(); // Copy the array. CUtlVector &operator=(const CUtlVector &other); // element access T &operator[](int i); T const &operator[](int i) const; T &Element(int i); T const &Element(int i) const; // STL compatible member functions. These allow easier use of std::sort // and they are forward compatible with the C++ 11 range-based for loops T *begin() { return Base(); } const T *begin() const { return Base(); } T *end() { return Base() + Count(); } const T *end() const { return Base() + Count(); } // Gets the base address (can change when adding elements!) T *Base(); T const *Base() const; // Returns the number of elements in the vector // SIZE IS DEPRECATED! int Count() const; int Size() const; // don't use me! // Is element index valid? bool IsValidIndex(int i) const; static int InvalidIndex(void); // Adds an element, uses default constructor int AddToHead(); int AddToTail(); int InsertBefore(int elem); int InsertAfter(int elem); // Adds an element, uses copy constructor int AddToHead(T const &src); int AddToTail(T const &src); int InsertBefore(int elem, T const &src); int InsertAfter(int elem, T const &src); // Adds multiple elements, uses default constructor int AddMultipleToHead(int num); int AddMultipleToTail(int num, const T *pToCopy = nullptr); int InsertMultipleBefore(int elem, int num, const T *pToCopy = nullptr); // If pToCopy is set, then it's an array of length 'num' and int InsertMultipleAfter(int elem, int num); // Calls RemoveAll() then AddMultipleToTail. void SetSize(int size); void SetCount(int count); // Calls SetSize and copies each element. void CopyArray(T const *pArray, int size); // Add the specified array to the tail. int AddVectorToTail(CUtlVector const &src); // Finds an element (element needs operator== defined) int Find(T const &src) const; bool HasElement(T const &src); // Makes sure we have enough memory allocated to store a requested # of elements void EnsureCapacity(int num); // Makes sure we have at least this many elements void EnsureCount(int num); // Element removal void FastRemove(int elem); // doesn't preserve order void Remove(int elem); // preserves order, shifts elements void FindAndRemove(T const &src); // removes first occurrence of src, preserves order, shifts elements void RemoveMultiple(int elem, int num); // preserves order, shifts elements void RemoveAll(); // doesn't deallocate memory // Memory deallocation void Purge(); // Purges the list and calls delete on each element in it. void PurgeAndDeleteElements(); void PurgeAndDeleteArrays(); // Set the size by which it grows when it needs to allocate more memory. void SetGrowSize(int size); // sort using std:: and expecting a "<" function to be defined for the type void Sort(); void Sort(bool (*pfnLessFunc)(const T &src1, const T &src2)); #if defined(_WIN32) void Sort(int (__cdecl *pfnCompare)(const T *, const T *)); #else void Sort(int (*pfnCompare)(const T *, const T *)); #endif // sort using std:: with a predicate. e.g. [] -> bool (const T &a, const T &b) const { return a < b; } template void SortPredicate(F &&predicate); protected: // Can't copy this unless we explicitly do it! CUtlVector(CUtlVector const &vec) { Assert(0); } // Grows the vector void GrowVector(int num = 1); // Shifts elements.... void ShiftElementsRight(int elem, int num = 1); void ShiftElementsLeft(int elem, int num = 1); // For easier access to the elements through the debugger void ResetDbgInfo(); CUtlMemory m_Memory; int m_Size; // For easier access to the elements through the debugger // it's in release builds so this can be used in libraries correctly T *m_pElements; }; // For easier access to the elements through the debugger template inline void CUtlVector::ResetDbgInfo() { m_pElements = m_Memory.Base(); } // constructor, destructor template inline CUtlVector::CUtlVector(int growSize, int initSize) : m_Memory(growSize, initSize), m_Size(0) { ResetDbgInfo(); } template inline CUtlVector::CUtlVector(T *pMemory, int numElements) : m_Memory(pMemory, numElements), m_Size(0) { ResetDbgInfo(); } template inline CUtlVector::~CUtlVector() { Purge(); } template inline CUtlVector &CUtlVector::operator=(const CUtlVector &other) { CopyArray(other.Base(), other.Count()); return *this; } // element access template inline T &CUtlVector::operator[](int i) { DbgAssert(IsValidIndex(i)); return m_Memory[i]; } template inline T const &CUtlVector::operator[](int i) const { DbgAssert(IsValidIndex(i)); return m_Memory[i]; } template inline T &CUtlVector::Element(int i) { DbgAssert(IsValidIndex(i)); return m_Memory[i]; } template inline T const &CUtlVector::Element(int i) const { DbgAssert(IsValidIndex(i)); return m_Memory[i]; } // Gets the base address (can change when adding elements!) template inline T *CUtlVector::Base() { return m_Memory.Base(); } template inline T const *CUtlVector::Base() const { return m_Memory.Base(); } // Count template inline int CUtlVector::Size() const { return m_Size; } template inline int CUtlVector::Count() const { return m_Size; } // Is element index valid? template inline bool CUtlVector::IsValidIndex(int i) const { return (i >= 0) && (i < m_Size); } // Returns in invalid index template inline int CUtlVector::InvalidIndex(void) { return -1; } // Grows the vector template void CUtlVector::GrowVector(int num) { if (m_Size + num - 1 >= m_Memory.NumAllocated()) { m_Memory.Grow(m_Size + num - m_Memory.NumAllocated()); } m_Size += num; ResetDbgInfo(); } // Makes sure we have enough memory allocated to store a requested # of elements template void CUtlVector::EnsureCapacity(int num) { m_Memory.EnsureCapacity(num); ResetDbgInfo(); } // Makes sure we have at least this many elements template void CUtlVector::EnsureCount(int num) { if (Count() < num) AddMultipleToTail(num - Count()); } // Shifts elements template void CUtlVector::ShiftElementsRight(int elem, int num) { DbgAssert(IsValidIndex(elem) || (m_Size == 0) || (num == 0)); int numToMove = m_Size - elem - num; if ((numToMove > 0) && (num > 0)) memmove(&Element(elem+num), &Element(elem), numToMove * sizeof(T)); } template void CUtlVector::ShiftElementsLeft(int elem, int num) { DbgAssert(IsValidIndex(elem) || (m_Size == 0) || (num == 0)); int numToMove = m_Size - elem - num; if ((numToMove > 0) && (num > 0)) { memmove(&Element(elem), &Element(elem + num), numToMove * sizeof(T)); #ifdef _DEBUG memset(&Element(m_Size-num), 0xDD, num * sizeof(T)); #endif } } // Adds an element, uses default constructor template inline int CUtlVector::AddToHead() { return InsertBefore(0); } template inline int CUtlVector::AddToTail() { return InsertBefore(m_Size); } template inline int CUtlVector::InsertAfter(int elem) { return InsertBefore(elem + 1); } template int CUtlVector::InsertBefore(int elem) { // Can insert at the end DbgAssert((elem == Count()) || IsValidIndex(elem)); GrowVector(); ShiftElementsRight(elem); Construct(&Element(elem)); return elem; } // Adds an element, uses copy constructor template inline int CUtlVector::AddToHead(T const &src) { return InsertBefore(0, src); } template< class T > inline int CUtlVector::AddToTail(T const &src) { return InsertBefore(m_Size, src); } template< class T > inline int CUtlVector::InsertAfter(int elem, T const &src) { return InsertBefore(elem + 1, src); } template< class T > int CUtlVector::InsertBefore(int elem, T const &src) { // Can insert at the end DbgAssert((elem == Count()) || IsValidIndex(elem)); GrowVector(); ShiftElementsRight(elem); CopyConstruct(&Element(elem), src); return elem; } // Adds multiple elements, uses default constructor template inline int CUtlVector::AddMultipleToHead(int num) { return InsertMultipleBefore(0, num); } template inline int CUtlVector::AddMultipleToTail(int num, const T *pToCopy) { return InsertMultipleBefore(m_Size, num, pToCopy); } template int CUtlVector::InsertMultipleAfter(int elem, int num) { return InsertMultipleBefore(elem + 1, num); } template void CUtlVector::SetCount(int count) { RemoveAll(); AddMultipleToTail(count); } template inline void CUtlVector::SetSize(int size) { SetCount(size); } template void CUtlVector::CopyArray(T const *pArray, int size) { SetSize(size); for(int i = 0; i < size; i++) { (*this)[i] = pArray[i]; } } template int CUtlVector::AddVectorToTail(CUtlVector const &src) { int base = Count(); // Make space. AddMultipleToTail(src.Count()); // Copy the elements. for (int i = 0; i < src.Count(); i++) { (*this)[base + i] = src[i]; } return base; } template inline int CUtlVector::InsertMultipleBefore(int elem, int num, const T *pToInsert) { if (num == 0) return elem; // Can insert at the end DbgAssert((elem == Count()) || IsValidIndex(elem)); GrowVector(num); ShiftElementsRight(elem, num); // Invoke default constructors for (int i = 0; i < num; i++) { Construct(&Element(elem+i)); } // Copy stuff in? if (pToInsert) { for (int i = 0; i < num; i++) { Element(elem+i) = pToInsert[i]; } } return elem; } // Finds an element (element needs operator== defined) template int CUtlVector::Find(T const &src) const { for (int i = 0; i < Count(); i++) { if (Element(i) == src) return i; } return InvalidIndex(); } template bool CUtlVector::HasElement(T const &src) { return (Find(src) >= 0); } // Element removal template void CUtlVector::FastRemove(int elem) { DbgAssert(IsValidIndex(elem)); Destruct(&Element(elem)); if (m_Size > 0) { Q_memcpy(&Element(elem), &Element(m_Size - 1), sizeof(T)); m_Size--; } } template void CUtlVector::Remove(int elem) { Destruct(&Element(elem)); ShiftElementsLeft(elem); m_Size--; } template void CUtlVector::FindAndRemove(T const &src) { int elem = Find(src); if (elem != InvalidIndex()) { Remove(elem); } } template void CUtlVector::RemoveMultiple(int elem, int num) { DbgAssert(IsValidIndex(elem)); DbgAssert(elem + num <= Count()); for (int i = elem + num; --i >= elem;) Destruct(&Element(i)); ShiftElementsLeft(elem, num); m_Size -= num; } template void CUtlVector::RemoveAll() { for (int i = m_Size; --i >= 0;) Destruct(&Element(i)); m_Size = 0; } // Memory deallocation template void CUtlVector::Purge() { RemoveAll(); m_Memory.Purge(); ResetDbgInfo(); } template inline void CUtlVector::PurgeAndDeleteElements() { for (int i = 0; i < m_Size; i++) delete Element(i); Purge(); } template inline void CUtlVector::PurgeAndDeleteArrays() { for (int i = 0; i < m_Size; i++) delete[] Element(i); Purge(); } template void CUtlVector::SetGrowSize(int size) { m_Memory.SetGrowSize(size); } // Sort methods template void CUtlVector::Sort() { std::sort(begin(), end()); } template void CUtlVector::Sort(bool (*pfnLessFunc)(const T &src1, const T &src2)) { std::sort(begin(), end(), [pfnLessFunc](const T &a, const T &b) -> bool { if (&a == &b) return false; return (*pfnLessFunc)(a, b); }); } #if defined(_WIN32) template void CUtlVector::Sort(int (__cdecl *pfnCompare)(const T *, const T *)) { typedef int (__cdecl *QSortCompareFunc_t)(const void *, const void *); if (Count() <= 1) return; qsort(Base(), Count(), sizeof(T), (QSortCompareFunc_t)(pfnCompare)); } #else // #if defined(_LINUX) template void CUtlVector::Sort(int (*pfnCompare)(const T *, const T *)) { typedef int (*QSortCompareFunc_t)(const void *, const void *); if (Count() <= 1) return; qsort(Base(), Count(), sizeof(T), (QSortCompareFunc_t)(pfnCompare)); } #endif // #if defined(_LINUX) template template void CUtlVector::SortPredicate(F &&predicate) { std::sort(begin(), end(), predicate); }