#include "precompiled.h" vec3_t vec3_origin = { 0, 0, 0 }; const int nanmask = 255 << 23; float anglemod(float a) { a = (360.0 / 65536) * (int(a *(65536 / 360.0)) & 65535); return a; } void AngleVectors(const vec_t *angles, vec_t *forward, vec_t *right, vec_t *up) { float sr, sp, sy, cr, cp; real_t cy; real_t angle; angle = real_t(angles[YAW] * (M_PI * 2 / 360)); sy = Q_sin(angle); cy = Q_cos(angle); angle = real_t(angles[PITCH] * (M_PI * 2 / 360)); sp = Q_sin(angle); cp = Q_cos(angle); angle = real_t(angles[ROLL] * (M_PI * 2 / 360)); sr = Q_sin(angle); cr = Q_cos(angle); if (forward) { forward[0] = cp * cy; forward[1] = cp * sy; forward[2] = -sp; } if (right) { right[0] = (-1 * sr * sp * cy + -1 * cr * -sy); right[1] = (-1 * sr * sp * sy + -1 * cr * cy); right[2] = -1 * sr * cp; } if (up) { up[0] = (cr * sp * cy + -sr * -sy); up[1] = (cr * sp * sy + -sr * cy); up[2] = cr * cp; } } void AngleVectorsTranspose(const vec_t *angles, vec_t *forward, vec_t *right, vec_t *up) { float angle; float sr, sp, sy, cr, cp, cy; angle = angles[YAW] * (M_PI * 2 / 360); sy = Q_sin(angle); cy = Q_cos(angle); angle = angles[PITCH] * (M_PI * 2 / 360); sp = Q_sin(angle); cp = Q_cos(angle); angle = angles[ROLL] * (M_PI * 2 / 360); sr = Q_sin(angle); cr = Q_cos(angle); if (forward) { forward[0] = cp * cy; forward[1] = (sr * sp * cy + cr * -sy); forward[2] = (cr * sp * cy + -sr * -sy); } if (right) { right[0] = cp * sy; right[1] = (sr * sp * sy + cr * cy); right[2] = (cr * sp * sy + -sr * cy); } if (up) { up[0] = -sp; up[1] = sr * cp; up[2] = cr * cp; } } void AngleMatrix(const vec_t *angles, float (*matrix)[4]) { real_t angle; real_t sr, sp, sy, cr, cp, cy; angle = real_t(angles[ROLL] * (M_PI * 2 / 360)); sy = Q_sin(angle); cy = Q_cos(angle); angle = real_t(angles[YAW] * (M_PI * 2 / 360)); sp = Q_sin(angle); cp = Q_cos(angle); angle = real_t(angles[PITCH] * (M_PI * 2 / 360)); sr = Q_sin(angle); cr = Q_cos(angle); matrix[0][0] = cr * cp; matrix[1][0] = cr * sp; matrix[2][0] = -sr; matrix[0][1] = (sy * sr) * cp - cy * sp; matrix[1][1] = (sy * sr) * sp + cy * cp; matrix[2][1] = sy * cr; matrix[0][2] = (cy * sr) * cp + sy * sp; matrix[1][2] = (cy * sr) * sp - sy * cp; matrix[2][2] = cy * cr; matrix[0][3] = 0.0f; matrix[1][3] = 0.0f; matrix[2][3] = 0.0f; } void AngleIMatrix(const vec_t *angles, float (*matrix)[4]) { float angle; float sr, sp, sy, cr, cp, cy; angle = angles[YAW] * (M_PI * 2 / 360); sy = Q_sin(angle); cy = Q_cos(angle); angle = angles[PITCH] * (M_PI * 2 / 360); sp = Q_sin(angle); cp = Q_cos(angle); angle = angles[ROLL] * (M_PI * 2 / 360); sr = Q_sin(angle); cr = Q_cos(angle); // matrix = (YAW * PITCH) * ROLL matrix[0][0] = cp * cy; matrix[0][1] = cp * sy; matrix[0][2] = -sp; matrix[1][0] = sr * sp * cy + cr * -sy; matrix[1][1] = sr * sp * sy + cr * cy; matrix[1][2] = sr * cp; matrix[2][0] = (cr * sp * cy + -sr * -sy); matrix[2][1] = (cr * sp * sy + -sr * cy); matrix[2][2] = cr * cp; matrix[0][3] = 0.0; matrix[1][3] = 0.0; matrix[2][3] = 0.0; } void NormalizeAngles(float *angles) { // Normalize angles for (int i = 0; i < 3; i++) { if (angles[i] > 180.0) { angles[i] -= 360.0; } else if (angles[i] < -180.0) { angles[i] += 360.0; } } } // Interpolate Euler angles. // FIXME: Use Quaternions to avoid discontinuities // Frac is 0.0 to 1.0 (i.e., should probably be clamped, but doesn't have to be) void InterpolateAngles(float *start, float *end, float *output, float frac) { int i; float ang1, ang2; float d; NormalizeAngles(start); NormalizeAngles(end); for (i = 0; i < 3; i++) { ang1 = start[i]; ang2 = end[i]; d = ang2 - ang1; if (d > 180) { d -= 360; } else if (d < -180) { d += 360; } output[i] = ang1 + d * frac; } NormalizeAngles(output); } float AngleBetweenVectors(const vec_t *v1, const vec_t *v2) { float angle; float l1 = Length(v1); float l2 = Length(v2); if (!l1 || !l2) return 0.0f; angle = Q_acos(DotProduct(v1, v2)) / (l1 * l2); angle = (angle * 180.0f) / M_PI; return angle; } void VectorTransform(const vec_t *in1, float (*in2)[4], vec_t *out) { out[0] = DotProduct(in1, in2[0]) + in2[0][3]; out[1] = DotProduct(in1, in2[1]) + in2[1][3]; out[2] = DotProduct(in1, in2[2]) + in2[2][3]; } int VectorCompare(const vec_t *v1, const vec_t *v2) { for (int i = 0; i < 3; i++) { if (v1[i] != v2[i]) return 0; } return 1; } void VectorMA(const vec_t *veca, float scale, const vec_t *vecb, vec_t *vecc) { vecc[0] = veca[0] + scale * vecb[0]; vecc[1] = veca[1] + scale * vecb[1]; vecc[2] = veca[2] + scale * vecb[2]; } real_t _DotProduct(const vec_t *v1, const vec_t *v2) { return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2]; } void _VectorSubtract(vec_t *veca, vec_t *vecb, vec_t *out) { out[0] = veca[0] - vecb[0]; out[1] = veca[1] - vecb[1]; out[2] = veca[2] - vecb[2]; } void _VectorAdd(vec_t *veca, vec_t *vecb, vec_t *out) { out[0] = veca[0] + vecb[0]; out[1] = veca[1] + vecb[1]; out[2] = veca[2] + vecb[2]; } void _VectorCopy(vec_t *in, vec_t *out) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } void CrossProduct(const vec_t *v1, const vec_t *v2, vec_t *cross) { cross[0] = v1[1] * v2[2] - v1[2] * v2[1]; cross[1] = v1[2] * v2[0] - v1[0] * v2[2]; cross[2] = v1[0] * v2[1] - v1[1] * v2[0]; } real_t Length(const vec_t *v) { real_t length = 0.0f; for (int i = 0; i < 3; i++) length += v[i] * v[i]; return Q_sqrt(length); } float Distance(const vec_t *v1, const vec_t *v2) { vec_t d[3]; VectorSubtract(v2, v1, d); return Length(d); } real_t VectorNormalize(vec_t *v) { real_t length; real_t ilength; length = Q_sqrt(real_t(v[0] * v[0] + v[1] * v[1] + v[2] * v[2])); if (length) { ilength = 1.0 / length; v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; } return length; } void VectorInverse(vec_t *v) { v[0] = -v[0]; v[1] = -v[1]; v[2] = -v[2]; } void VectorScale(const vec_t *in, vec_t scale, vec_t *out) { out[0] = scale * in[0]; out[1] = scale * in[1]; out[2] = scale * in[2]; } int Q_log2(int val) { int answer = 0; while (val >>= 1) answer++; return answer; } void VectorMatrix(vec_t *forward, vec_t *right, vec_t *up) { vec_t tmp[3]; if (forward[0] == 0 && forward[1] == 0) { right[0] = 1; right[1] = 0; right[2] = 0; up[0] = -forward[2]; up[1] = 0; up[2] = 0; return; } tmp[0] = 0; tmp[1] = 0; tmp[2] = 1.0f; CrossProduct(forward, tmp, right); VectorNormalize(right); CrossProduct(right, forward, up); VectorNormalize(up); } void VectorAngles(const vec_t *forward, vec_t *angles) { float tmp, yaw, pitch; if (forward[1] == 0 && forward[0] == 0) { yaw = 0; if (forward[2] > 0) pitch = 90; else pitch = 270; } else { yaw = (Q_atan2(forward[1], forward[0]) * 180 / M_PI); if (yaw < 0) yaw += 360; tmp = Q_sqrt(forward[0] * forward[0] + forward[1] * forward[1]); pitch = (Q_atan2(forward[2], tmp) * 180 / M_PI); if (pitch < 0) pitch += 360; } angles[0] = pitch; angles[1] = yaw; angles[2] = 0; }