Tapping anything in titles that supported touch (such as Puyo Puyo Tetris or Sonic Mania) wouldn't work due to the first touch point never being removed from the screen, it is supposed to be removed after a 3 frame delay from the touch ending.
This commit introduces a mechanism to "time-out" touch points which counts down during the shared memory updates and removes them from the screen after a specified timeout duration.
Certain titles depend on HID LIFO entries being written out at a fixed frequency rather than on actual state change, not doing this can lead to applications freezing till the LIFO is filled up to maximum size, this behavior is seen in Super Mario Odyssey. In other cases such as Metroid Dread, the game can run into race conditions that would lead to crashes, these were worked around by smashing a button during loading prior.
This commit introduces a thread which sleeps and wakes up occasionally to write LIFO entries into HID shared memory at the desired frequencies. This alleviates any issues as it fills up the LIFO instantly and correctly emulates HID Shared Memory behavior expected by the guest.
Co-authored-by: Narr the Reg <juangerman-13@hotmail.com>
It was determined that deadlocks inside `KThread::UpdatePriorityInheritance` would not only arise from the first level of locking with `waitingOn->waiterMutex` but also the second level of locking with `nextThread->waiterMutex` which has now also been fixed to fallback when facing contention.
PR #1758 introduced a bug where the game list would be entirely loaded every time the app was opened. This commit addresses that issue, which was caused by the `version` member of the cached game list being serialized to file (although incorrectly) but never actually read back when deserializing.
* Remove `package` from manifest and from activity prefixes, gradle `namespace` will be used instead
* Removed deprecated `android.support.PARENT_ACTIVITY` metadata
entries
* Make `MainActivity` and `SettingsActivity` launched in `singleTop` mode to avoid unnecessary activity restarts while navigating the app
Using `__attribute__((packed))` doesn't work in new NDKs when a struct contains 128-bit integer members, likely because of a ndk/compiler bug. We now enclose the requiring structs in `#pragma pack` directives to tightly pack them.
Since the blit engine itself samples from pixel corners and the helper shader from pixel centres teh src coordinates need to be adjusted to avoid the helper shader wrapping round on the final column.
We previously missed the hades pass for attribute conversion leading to crashes when games would attempt to use such an attribute. The hades pass for this isn't a proper fix however as it modifies the IR directly and will break if any of the previous stages in the pipeline change. Enable it to allow for games using them to at least have a chance at working. In the long term the pass will be reworked on the hades side to avoid modifying the IR in a way that can't be undone.
This vertex state must only be present for the last pipeline stage that touches vertices, if it is present for other stages it could result in incorrect behaviour like performing TFB in the fragment shader or flipping device coordinates twice.
As the code was before, if we had a shader that was disabled and enabled again after without being invalidated the pipeline stage would stay disabled and break rendering.
We previously only supported non-indexed quads. Support for this is implemented by converting the index buffer at record time and pushing the result into the megabuffer, which is then used as the index buffer in the final draw command.
The `Allocate` method allocates the given amount of space in a megabuffer chunk, returning a descriptor of the allocated region. This is useful for situations where you want to write directly to the megabuffer, avoiding the need for an intermediary buffer.
Entirely rewrites the engine and interconnect code to take advantage of the subpixel and OOB blit support offered by the blit helper shader. The interconnect code is also cleaned up significantly with the 'context' naming being dropped due to potential conflicts with the 'context' from context lock
It is desirable for us to use a shader for blits to allow easily emulating out of bounds blits and blits between different swizzled colour formats. The helper shader infrastructure is designed to be generic so it can be reused by any other helper shaders that we may need in the future.
These sometimes spuriously occur in games during transitions, to avoid crashing during them just use the null texture if they occur and log an error log
The constant destruction and creation of `BufferView`s in cbuf-heavy games showed up as a large chunk of the profiler. Fix this by taking advantage of the fact that constant buffer `BufferView`s are never deleted and always kept around in the cache to just return a pointer to them in the cache.
Currently we heavily thrash the heap each draw, with malloc/free taking up about 10% of GPFIFOs execution time. Using a linear allocator for the main offenders of buffer usage callbacks and index/vertex state helps to reduce this to about 4%
Certain titles can have a display frames out of order due to not waiting on the copy from the final RT to the swapchain image to occur. Although `PresentFrame` does wait on the syncpoint, that isn't enough to ensure the source texture is up-to-date due to us signalling syncpoints early.
By waiting on the swapchain texture after the copy is submitted, we now implicitly wait on the source texture's cycle to be signalled thus waiting on the frame to be done which fixes the issue.
After the introduction of workahead a system to hold a single large megabuffer per submission was implemented, this worked fine for most cases however when many submissions were flight at the same time memory usage would increase dramatically due to the amount of megabuffers needed. Since only one megabuffer was allowed per execution, it forced the buffer to be fairly large in order to accomodate the upper-bound, even further increasing memory usage.
This commit implements a system to fix the memory usage issue described above by allowing multiple megabuffers to be allocated per execution, as well as reuse across executions. Allocations now go through a global allocator object which chooses which chunk to allocate into on a per-allocation scale, if all are in use by the GPU another chunk will be allocated, that can then be reused for future allocations too. This reduces Hollow Knight megabuffer memory usage by a factor 4 and SMO by even more.
Accesses to unset entries is now clearly defined as returning a 0'd out value, the prior behavior would be to optimize sets for border segments to use L2 atomicity when the specific segment had no L1 entries set. This would lead to any future lookups of offsets within the same L2 segment but a different L1 entry to incorrectly return an inaccurate value as the only prior guarantee was that lookups after setting a segment would return the same value as was set but lacked the guarantee for unset segments to also consistently return unset values.
This could lead to issues in practical usages such as the `BufferManager` lookups returning the existence of a `Buffer` at a location falsely even though the segment was never set to the value, this was problematic as raw pointers were utilized and bound checks would lead to a segmentation fault.
This commit fixes this issue by introducing this guarantee and refactoring the class accordingly, it also deletes the `Set` method for setting a single entry as the meaning is ambiguous and it's functionality was more akin to the past guarantee and no longer makes sense.
Co-authored-by: PixelyIon <pixelyion@protonmail.com>
We would always write all L1 entries that correspond to an L2 entry, even if setting an input range ended before that. This would effectively reduce the atomicity of the segment table to that of the L2 range and lead to breaking API guarantees by returning entirely wrong segment values for a lookup covering a region that was overwritten.
It was determined that `RangeTable` was too ambiguous of a name as it could be interpreted to be holding ranges rather than looking them up, to avoid confusion the terminology has been changed to `range` to `segment`. As "segment table" is more clear in describing that it is a table comprised of descriptors regarding segments and it avoids any overlaps with terminology concerning "pages" which would be overly specific for this data structure or the ambiguous "ranges".