This commit contains the Kotlin side of the initial Input implementation, this is based on the work done in the `hid` branch in `bylaws/skyline`.
Co-authored-by: ◱ PixelyIon <pixelyion@protonmail.com>
This commit contains the C++ side of the initial Input implementation, this is based on the work done in the `hid` branch in `bylaws/skyline`.
Co-authored-by: ◱ PixelyIon <pixelyion@protonmail.com>
interpreter.
The Maxwell 3D engine handles all 3D rendering, currently only non
rendering related methods are implemented. Macros are small pieces of
code that run on the GPU and allow methods to be quickly called for
things like instanced drawing.
These are used to allow the CPU to synchronise with the GPU as it
reaches specific points in its command stream.
Also fixes an nvmap bug where a struct was incorrect.
bugs
An engine is effectively a HW block in the GPU, the main one is the
Maxwell 3D which is used for 3D graphics. Engines can be bound to
individual subchannels and then methods within them can be called
through pushbuffers.
The engine side of the GPFIO is also included, it currently does nothing
but will need to be extended in the future with semaphores.
* Rework VFS to support creating and writing files and introduce OsFileSystem
OsFileSystem abstracts a directory on the device using the filesystem API.
This also introduces GetEntryType and changes FileExists to use it.
* Implement the Horizon FileSystem APIs using our VFS framework
Horizon provides access to files through its IFileSystem class, we can
closely map this to our vfs::FileSystem class.
* Add support for creating application savedata
This implements basic savedata creation using the OsFileSystem API. The
data is stored in Skyline's private directory is stored in the same
format as yuzu.
* Make sure icons have a 1:1 ratio
* Use recyclerview padding to increase grid edge margins
* Fix race condition in searching roms
* Use notify insert for adapter
The GPU has it's own seperate address space to the CPU. It is able to
address 40 bit addresses and accesses the system memory. A sorted vector
has been used to store blocks as insertions are not very frequent.
unmapped regions
svcQueryMemory will return a valid descriptor for anything in the
address space, from 0 to 1 << addrSpaceBits, this was handled
incorrectly before and we were only returning descriptors if the
address was in a mapped region.
If an address in an unmapped region is requested then the extents of the
unmapped region up to the address space end are returned. If the address
requested is outside of the address space then the extents of the
inaccessible address space are returned.
To facilitate this support was added to MemoryManager::Get for
generating the extents of unmapped regions using the chunk list.
As the stack is automatically mapped in the guest by `clone` we do not
need to explicitly map it. This adds a flag to solve the issue.
Also mark the stack as stack rather than reserved.
Not zeroing the sample buffer causes issues when a voice is started but
is playing no samples. The system event handling was also reworked
according to Thog's info.
This fixes two bugs in IPC that were discovered when running Puyo Puyo
Tetris.
The CloneCurrentObject control IPC will now correctly return the handle
of the newly created object through move handles, rather than pushing it
as a result.
The size array of u16s with the sizes of each C buffer is now taken into
account when reading them. Before this change C buffers were entirely
broken.
This gives some useful warnings for less significant issues.
Warnings for reordering are left disabled as they are rather pedantic
and serve little benefit.
This implements the base account service and stubs
InitializeApplicationInfoV0 which is used by Puyo Puyo Tetris. Support
for the entirety of account services will be added in the future.
lm is used by applications to print messages to the system log. Log
messages are made up of a header and then several fields containing
metadata or string messages.
In the case of am, IStorage is used to exchange buffers of data such
as application launch parameters or an applets result. It has no
relation to fsp-srv's IStorage.
Fonts are stored in an array of TTF data with an 8 byte header
containing a magic and an XOR'd length. Instead of requiring users to
provide original Nintendo fonts we pack open source replacements.
They are generated with the scripts here
https://github.com/FearlessTobi/yuzu_system_archives. All the fonts are
licenced under the Open Font or Apache 2 License so we can include them
all freely.
An NSP (Nintendo Submission Package) is effectively a PFS0 containing
NCAs, there are also tickets and a CNMT file which contains metadata
about updates. The current implementation is very basic and only
support Control and Program NCAs which is enough for loading games.
Support for updates and dlc will be added at a later date.
Nintendo Content Archives are used to store the assets, executables
and updates of applications. They support holding either a PFS0 or a
RomFS.
An NCA's ExeFS can be loaded by placing each NSO sequentially into
memory, starting with rtld which will link them together.
Currently only decrypted NCAs are supported, encryption and BKTR
handling will be added at a later time.
RomFS is a hierarchial filesystem where each level is made up of a
linked list of files and child directories. It is used in NCAs to store
the applications icon as well as by applications themselves for
accessing assets.
Partition FS encapsulates both the HFS0 found in XCIs and the PFS0 used
for ExeFS images and NSPs, it is purely file based and has no support at
all for directories aside from the root.
Mapping and writing segments into memory is now handled by a common
function that can be shared between all loaders. All they need to do now
is to pack each segment into a common struct.