mirror of
https://github.com/skyline-emu/skyline.git
synced 2025-04-11 08:30:00 +03:00
This was the source of a lot of heap allocs, moving to small_vector helps to avoid most of them
501 lines
21 KiB
C++
501 lines
21 KiB
C++
// SPDX-License-Identifier: MPL-2.0
|
|
// Copyright © 2021 Skyline Team and Contributors (https://github.com/skyline-emu/)
|
|
|
|
#include <common/trace.h>
|
|
#include <kernel/types/KProcess.h>
|
|
#include "address_space.h"
|
|
|
|
#define MAP_MEMBER(returnType) template<typename VaType, VaType UnmappedVa, typename PaType, PaType UnmappedPa, bool PaContigSplit, size_t AddressSpaceBits, typename ExtraBlockInfo> requires AddressSpaceValid<VaType, AddressSpaceBits> returnType FlatAddressSpaceMap<VaType, UnmappedVa, PaType, UnmappedPa, PaContigSplit, AddressSpaceBits, ExtraBlockInfo>
|
|
|
|
#define MM_MEMBER(returnType) template<typename VaType, VaType UnmappedVa, size_t AddressSpaceBits> requires AddressSpaceValid<VaType, AddressSpaceBits> returnType FlatMemoryManager<VaType, UnmappedVa, AddressSpaceBits>
|
|
|
|
#define ALLOC_MEMBER(returnType) template<typename VaType, VaType UnmappedVa, size_t AddressSpaceBits> requires AddressSpaceValid<VaType, AddressSpaceBits> returnType FlatAllocator<VaType, UnmappedVa, AddressSpaceBits>
|
|
|
|
namespace skyline {
|
|
MAP_MEMBER()::FlatAddressSpaceMap(VaType vaLimit, std::function<void(VaType, VaType)> unmapCallback) :
|
|
vaLimit(vaLimit),
|
|
unmapCallback(std::move(unmapCallback)) {
|
|
if (vaLimit > VaMaximum)
|
|
throw exception("Invalid VA limit!");
|
|
}
|
|
|
|
MAP_MEMBER(void)::MapLocked(VaType virt, PaType phys, VaType size, ExtraBlockInfo extraInfo) {
|
|
TRACE_EVENT("containers", "FlatAddressSpaceMap::Map");
|
|
|
|
VaType virtEnd{virt + size};
|
|
|
|
if (virtEnd > vaLimit)
|
|
throw exception("Trying to map a block past the VA limit: virtEnd: 0x{:X}, vaLimit: 0x{:X}", virtEnd, vaLimit);
|
|
|
|
auto blockEndSuccessor{std::lower_bound(blocks.begin(), blocks.end(), virtEnd)};
|
|
if (blockEndSuccessor == blocks.begin())
|
|
throw exception("Trying to map a block before the VA start: virtEnd: 0x{:X}", virtEnd);
|
|
|
|
auto blockEndPredecessor{std::prev(blockEndSuccessor)};
|
|
|
|
if (blockEndSuccessor != blocks.end()) {
|
|
// We have blocks in front of us, if one is directly in front then we don't have to add a tail
|
|
if (blockEndSuccessor->virt != virtEnd) {
|
|
PaType tailPhys{[&]() -> PaType {
|
|
if (!PaContigSplit || blockEndPredecessor->Unmapped())
|
|
return blockEndPredecessor->phys; // Always propagate unmapped regions rather than calculating offset
|
|
else
|
|
return blockEndPredecessor->phys + virtEnd - blockEndPredecessor->virt;
|
|
}()};
|
|
|
|
if (blockEndPredecessor->virt >= virt) {
|
|
// If this block's start would be overlapped by the map then reuse it as a tail block
|
|
blockEndPredecessor->virt = virtEnd;
|
|
blockEndPredecessor->phys = tailPhys;
|
|
blockEndPredecessor->extraInfo = blockEndPredecessor->extraInfo;
|
|
|
|
// No longer predecessor anymore
|
|
blockEndSuccessor = blockEndPredecessor--;
|
|
} else {
|
|
// Else insert a new one and we're done
|
|
blocks.insert(blockEndSuccessor, {Block(virt, phys, extraInfo), Block(virtEnd, tailPhys, blockEndPredecessor->extraInfo)});
|
|
if (unmapCallback)
|
|
unmapCallback(virt, size);
|
|
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
// blockEndPredecessor will always be unmapped as blocks has to be terminated by an unmapped chunk
|
|
if (blockEndPredecessor != blocks.begin() && blockEndPredecessor->virt >= virt) {
|
|
// Move the unmapped block start backwards
|
|
blockEndPredecessor->virt = virtEnd;
|
|
|
|
// No longer predecessor anymore
|
|
blockEndSuccessor = blockEndPredecessor--;
|
|
} else {
|
|
// Else insert a new one and we're done
|
|
blocks.insert(blockEndSuccessor, {Block(virt, phys, extraInfo), Block(virtEnd, UnmappedPa, {})});
|
|
if (unmapCallback)
|
|
unmapCallback(virt, size);
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
auto blockStartSuccessor{blockEndSuccessor};
|
|
|
|
// Walk the block vector to find the start successor as this is more efficient than another binary search in most scenarios
|
|
while (std::prev(blockStartSuccessor)->virt >= virt)
|
|
blockStartSuccessor--;
|
|
|
|
// Check that the start successor is either the end block or something in between
|
|
if (blockStartSuccessor->virt > virtEnd) {
|
|
throw exception("Unsorted block in AS map: virt: 0x{:X}", blockStartSuccessor->virt);
|
|
} else if (blockStartSuccessor->virt == virtEnd) {
|
|
// We need to create a new block as there are none spare that we would overwrite
|
|
blocks.insert(blockStartSuccessor, Block(virt, phys, extraInfo));
|
|
} else {
|
|
// Erase overwritten blocks
|
|
if (auto eraseStart{std::next(blockStartSuccessor)}; eraseStart != blockEndSuccessor)
|
|
blocks.erase(eraseStart, blockEndSuccessor);
|
|
|
|
// Reuse a block that would otherwise be overwritten as a start block
|
|
blockStartSuccessor->virt = virt;
|
|
blockStartSuccessor->phys = phys;
|
|
blockStartSuccessor->extraInfo = extraInfo;
|
|
}
|
|
|
|
if (unmapCallback)
|
|
unmapCallback(virt, size);
|
|
}
|
|
|
|
MAP_MEMBER(void)::UnmapLocked(VaType virt, VaType size) {
|
|
TRACE_EVENT("containers", "FlatAddressSpaceMap::Unmap");
|
|
|
|
VaType virtEnd{virt + size};
|
|
|
|
if (virtEnd > vaLimit)
|
|
throw exception("Trying to map a block past the VA limit: virtEnd: 0x{:X}, vaLimit: 0x{:X}", virtEnd, vaLimit);
|
|
|
|
auto blockEndSuccessor{std::lower_bound(blocks.begin(), blocks.end(), virtEnd)};
|
|
if (blockEndSuccessor == blocks.begin())
|
|
throw exception("Trying to unmap a block before the VA start: virtEnd: 0x{:X}", virtEnd);
|
|
|
|
auto blockEndPredecessor{std::prev(blockEndSuccessor)};
|
|
|
|
auto walkBackToPredecessor{[&](auto iter) {
|
|
while (iter->virt >= virt)
|
|
iter--;
|
|
|
|
return iter;
|
|
}};
|
|
|
|
auto eraseBlocksWithEndUnmapped{[&](auto unmappedEnd) {
|
|
auto blockStartPredecessor{walkBackToPredecessor(unmappedEnd)};
|
|
auto blockStartSuccessor{std::next(blockStartPredecessor)};
|
|
|
|
auto eraseEnd{[&]() {
|
|
if (blockStartPredecessor->Unmapped()) {
|
|
// If the start predecessor is unmapped then we can erase everything in our region and be done
|
|
return std::next(unmappedEnd);
|
|
} else {
|
|
// Else reuse the end predecessor as the start of our unmapped region then erase all up to it
|
|
unmappedEnd->virt = virt;
|
|
return unmappedEnd;
|
|
}
|
|
}()};
|
|
|
|
// We can't have two unmapped regions after each other
|
|
if (eraseEnd != blocks.end() && (eraseEnd == blockStartSuccessor || (blockStartPredecessor->Unmapped() && eraseEnd->Unmapped())))
|
|
throw exception("Multiple contiguous unmapped regions are unsupported!");
|
|
|
|
blocks.erase(blockStartSuccessor, eraseEnd);
|
|
}};
|
|
|
|
// We can avoid any splitting logic if these are the case
|
|
if (blockEndPredecessor->Unmapped()) {
|
|
if (blockEndPredecessor->virt > virt)
|
|
eraseBlocksWithEndUnmapped(blockEndPredecessor);
|
|
|
|
if (unmapCallback)
|
|
unmapCallback(virt, size);
|
|
|
|
return; // The region is unmapped, bail out early
|
|
} else if (blockEndSuccessor->virt == virtEnd && blockEndSuccessor->Unmapped()) {
|
|
eraseBlocksWithEndUnmapped(blockEndSuccessor);
|
|
|
|
if (unmapCallback)
|
|
unmapCallback(virt, size);
|
|
|
|
return; // The region is unmapped here and doesn't need splitting, bail out early
|
|
} else if (blockEndSuccessor == blocks.end()) {
|
|
// This should never happen as the end should always follow an unmapped block
|
|
throw exception("Unexpected Memory Manager state!");
|
|
} else if (blockEndSuccessor->virt != virtEnd) {
|
|
// If one block is directly in front then we don't have to add a tail
|
|
|
|
// The previous block is mapped so we will need to add a tail with an offset
|
|
PaType tailPhys{[&]() {
|
|
if constexpr (PaContigSplit)
|
|
return blockEndPredecessor->phys + virtEnd - blockEndPredecessor->virt;
|
|
else
|
|
return blockEndPredecessor->phys;
|
|
}()};
|
|
|
|
if (blockEndPredecessor->virt >= virt) {
|
|
// If this block's start would be overlapped by the unmap then reuse it as a tail block
|
|
blockEndPredecessor->virt = virtEnd;
|
|
blockEndPredecessor->phys = tailPhys;
|
|
|
|
// No longer predecessor anymore
|
|
blockEndSuccessor = blockEndPredecessor--;
|
|
} else {
|
|
blocks.insert(blockEndSuccessor, {Block(virt, UnmappedPa, {}), Block(virtEnd, tailPhys, blockEndPredecessor->extraInfo)});
|
|
if (unmapCallback)
|
|
unmapCallback(virt, size);
|
|
|
|
return; // The previous block is mapped and ends before
|
|
}
|
|
}
|
|
|
|
// Walk the block vector to find the start predecessor as this is more efficient than another binary search in most scenarios
|
|
auto blockStartPredecessor{walkBackToPredecessor(blockEndSuccessor)};
|
|
auto blockStartSuccessor{std::next(blockStartPredecessor)};
|
|
|
|
if (blockStartSuccessor->virt > virtEnd) {
|
|
throw exception("Unsorted block in AS map: virt: 0x{:X}", blockStartSuccessor->virt);
|
|
} else if (blockStartSuccessor->virt == virtEnd) {
|
|
// There are no blocks between the start and the end that would let us skip inserting a new one for head
|
|
|
|
// The previous block is may be unmapped, if so we don't need to insert any unmaps after it
|
|
if (blockStartPredecessor->Mapped())
|
|
blocks.insert(blockStartSuccessor, Block(virt, UnmappedPa, {}));
|
|
} else if (blockStartPredecessor->Unmapped()) {
|
|
// If the previous block is unmapped
|
|
blocks.erase(blockStartSuccessor, blockEndPredecessor);
|
|
} else {
|
|
// Erase overwritten blocks, skipping the first one as we have written the unmapped start block there
|
|
if (auto eraseStart{std::next(blockStartSuccessor)}; eraseStart != blockEndSuccessor)
|
|
blocks.erase(eraseStart, blockEndSuccessor);
|
|
|
|
// Add in the unmapped block header
|
|
blockStartSuccessor->virt = virt;
|
|
blockStartSuccessor->phys = UnmappedPa;
|
|
}
|
|
|
|
if (unmapCallback)
|
|
unmapCallback(virt, size);
|
|
}
|
|
|
|
MM_MEMBER()::FlatMemoryManager() {
|
|
sparseMap = static_cast<u8 *>(mmap(0, SparseMapSize, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0));
|
|
if (!sparseMap)
|
|
throw exception("Failed to mmap sparse map!");
|
|
}
|
|
|
|
MM_MEMBER()::~FlatMemoryManager() {
|
|
munmap(sparseMap, SparseMapSize);
|
|
}
|
|
|
|
MM_MEMBER(TranslatedAddressRange)::TranslateRange(VaType virt, VaType size, std::function<void(span<u8>)> cpuAccessCallback) {
|
|
TRACE_EVENT("containers", "FlatMemoryManager::TranslateRange");
|
|
|
|
std::scoped_lock lock(this->blockMutex);
|
|
|
|
auto successor{std::upper_bound(this->blocks.begin(), this->blocks.end(), virt, [] (auto virt, const auto &block) {
|
|
return virt < block.virt;
|
|
})};
|
|
|
|
auto predecessor{std::prev(successor)};
|
|
|
|
u8 *blockPhys{predecessor->phys + (virt - predecessor->virt)};
|
|
VaType blockSize{std::min(successor->virt - virt, size)};
|
|
|
|
TranslatedAddressRange ranges;
|
|
|
|
while (size) {
|
|
// Return a zeroed out map to emulate sparse mappings
|
|
if (predecessor->extraInfo.sparseMapped) {
|
|
if (blockSize > SparseMapSize)
|
|
throw exception("Size of the sparse map is too small to fit block of size: 0x{:X}", blockSize);
|
|
|
|
blockPhys = sparseMap;
|
|
}
|
|
|
|
span cpuBlock{blockPhys, blockSize};
|
|
if (cpuAccessCallback)
|
|
cpuAccessCallback(cpuBlock);
|
|
|
|
ranges.push_back(cpuBlock);
|
|
|
|
size -= blockSize;
|
|
|
|
if (size) {
|
|
predecessor = successor++;
|
|
blockPhys = predecessor->phys;
|
|
blockSize = std::min(successor->virt - predecessor->virt, size);
|
|
}
|
|
}
|
|
|
|
return ranges;
|
|
}
|
|
|
|
MM_MEMBER(void)::Read(u8 *destination, VaType virt, VaType size, std::function<void(span<u8>)> cpuAccessCallback) {
|
|
TRACE_EVENT("containers", "FlatMemoryManager::Read");
|
|
|
|
std::scoped_lock lock(this->blockMutex);
|
|
|
|
auto successor{std::upper_bound(this->blocks.begin(), this->blocks.end(), virt, [] (auto virt, const auto &block) {
|
|
return virt < block.virt;
|
|
})};
|
|
|
|
auto predecessor{std::prev(successor)};
|
|
|
|
u8 *blockPhys{predecessor->phys + (virt - predecessor->virt)};
|
|
VaType blockReadSize{std::min(successor->virt - virt, size)};
|
|
|
|
// Reads may span across multiple individual blocks
|
|
while (size) {
|
|
if (predecessor->phys == nullptr) {
|
|
throw exception("Page fault at 0x{:X}", predecessor->virt);
|
|
} else {
|
|
if (predecessor->extraInfo.sparseMapped) { // Sparse mappings read all zeroes
|
|
std::memset(destination, 0, blockReadSize);
|
|
} else {
|
|
if (cpuAccessCallback)
|
|
cpuAccessCallback(span{blockPhys, blockReadSize});
|
|
|
|
std::memcpy(destination, blockPhys, blockReadSize);
|
|
}
|
|
}
|
|
|
|
destination += blockReadSize;
|
|
size -= blockReadSize;
|
|
|
|
if (size) {
|
|
predecessor = successor++;
|
|
blockPhys = predecessor->phys;
|
|
blockReadSize = std::min(successor->virt - predecessor->virt, size);
|
|
}
|
|
}
|
|
}
|
|
|
|
MM_MEMBER(void)::Write(VaType virt, u8 *source, VaType size, std::function<void(span<u8>)> cpuAccessCallback) {
|
|
TRACE_EVENT("containers", "FlatMemoryManager::Write");
|
|
|
|
std::scoped_lock lock(this->blockMutex);
|
|
|
|
VaType virtEnd{virt + size};
|
|
|
|
auto successor{std::upper_bound(this->blocks.begin(), this->blocks.end(), virt, [] (auto virt, const auto &block) {
|
|
return virt < block.virt;
|
|
})};
|
|
|
|
auto predecessor{std::prev(successor)};
|
|
|
|
u8 *blockPhys{predecessor->phys + (virt - predecessor->virt)};
|
|
VaType blockWriteSize{std::min(successor->virt - virt, size)};
|
|
|
|
// Writes may span across multiple individual blocks
|
|
while (size) {
|
|
if (predecessor->phys == nullptr) {
|
|
throw exception("Page fault at 0x{:X}", predecessor->virt);
|
|
} else {
|
|
if (!predecessor->extraInfo.sparseMapped) { // Sparse mappings ignore writes
|
|
if (cpuAccessCallback)
|
|
cpuAccessCallback(span{blockPhys, blockWriteSize});
|
|
|
|
std::memcpy(blockPhys, source, blockWriteSize);
|
|
}
|
|
}
|
|
|
|
source += blockWriteSize;
|
|
size -= blockWriteSize;
|
|
|
|
if (size) {
|
|
predecessor = successor++;
|
|
blockPhys = predecessor->phys;
|
|
blockWriteSize = std::min(successor->virt - predecessor->virt, size);
|
|
}
|
|
}
|
|
}
|
|
|
|
MM_MEMBER(void)::Copy(VaType dst, VaType src, VaType size, std::function<void(span<u8>)> cpuAccessCallback) {
|
|
TRACE_EVENT("containers", "FlatMemoryManager::Copy");
|
|
|
|
std::scoped_lock lock(this->blockMutex);
|
|
|
|
VaType srcEnd{src + size};
|
|
VaType dstEnd{dst + size};
|
|
|
|
auto srcSuccessor{std::upper_bound(this->blocks.begin(), this->blocks.end(), src, [] (auto virt, const auto &block) {
|
|
return virt < block.virt;
|
|
})};
|
|
|
|
auto dstSuccessor{std::upper_bound(this->blocks.begin(), this->blocks.end(), dst, [] (auto virt, const auto &block) {
|
|
return virt < block.virt;
|
|
})};
|
|
|
|
auto srcPredecessor{std::prev(srcSuccessor)};
|
|
auto dstPredecessor{std::prev(dstSuccessor)};
|
|
|
|
u8 *srcBlockPhys{srcPredecessor->phys + (src - srcPredecessor->virt)};
|
|
u8 *dstBlockPhys{dstPredecessor->phys + (dst - dstPredecessor->virt)};
|
|
|
|
VaType srcBlockRemainingSize{srcSuccessor->virt - src};
|
|
VaType dstBlockRemainingSize{dstSuccessor->virt - dst};
|
|
|
|
VaType blockCopySize{std::min({srcBlockRemainingSize, dstBlockRemainingSize, size})};
|
|
|
|
// Writes may span across multiple individual blocks
|
|
while (size) {
|
|
if (srcPredecessor->phys == nullptr) {
|
|
throw exception("Page fault at 0x{:X}", srcPredecessor->virt);
|
|
} else if (dstPredecessor->phys == nullptr) {
|
|
throw exception("Page fault at 0x{:X}", dstPredecessor->virt);
|
|
} else { [[likely]]
|
|
if (srcPredecessor->extraInfo.sparseMapped) {
|
|
std::memset(dstBlockPhys, 0, blockCopySize);
|
|
} else [[likely]] {
|
|
if (cpuAccessCallback) {
|
|
cpuAccessCallback(span{dstBlockPhys, blockCopySize});
|
|
cpuAccessCallback(span{srcBlockPhys, blockCopySize});
|
|
}
|
|
|
|
std::memcpy(dstBlockPhys, srcBlockPhys, blockCopySize);
|
|
}
|
|
}
|
|
|
|
dstBlockPhys += blockCopySize;
|
|
srcBlockPhys += blockCopySize;
|
|
size -= blockCopySize;
|
|
srcBlockRemainingSize -= blockCopySize;
|
|
dstBlockRemainingSize -= blockCopySize;
|
|
|
|
if (size) {
|
|
if (!srcBlockRemainingSize) {
|
|
srcPredecessor = srcSuccessor++;
|
|
srcBlockPhys = srcPredecessor->phys;
|
|
srcBlockRemainingSize = srcSuccessor->virt - srcPredecessor->virt;
|
|
blockCopySize = std::min({srcBlockRemainingSize, dstBlockRemainingSize, size});
|
|
}
|
|
if (!dstBlockRemainingSize) {
|
|
dstPredecessor = dstSuccessor++;
|
|
dstBlockPhys = dstPredecessor->phys;
|
|
dstBlockRemainingSize = dstSuccessor->virt - dstPredecessor->virt;
|
|
blockCopySize = std::min({srcBlockRemainingSize, dstBlockRemainingSize, size});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ALLOC_MEMBER()::FlatAllocator(VaType vaStart, VaType vaLimit) : Base(vaLimit), vaStart(vaStart), currentLinearAllocEnd(vaStart) {}
|
|
|
|
ALLOC_MEMBER(VaType)::Allocate(VaType size) {
|
|
TRACE_EVENT("containers", "FlatAllocator::Allocate");
|
|
|
|
std::scoped_lock lock(this->blockMutex);
|
|
|
|
VaType allocStart{UnmappedVa};
|
|
VaType allocEnd{currentLinearAllocEnd + size};
|
|
|
|
// Avoid searching backwards in the address space if possible
|
|
if (allocEnd >= currentLinearAllocEnd && allocEnd <= this->vaLimit) {
|
|
auto allocEndSuccessor{std::lower_bound(this->blocks.begin(), this->blocks.end(), allocEnd)};
|
|
if (allocEndSuccessor == this->blocks.begin())
|
|
throw exception("First block in AS map is invalid!");
|
|
|
|
auto allocEndPredecessor{std::prev(allocEndSuccessor)};
|
|
if (allocEndPredecessor->virt <= currentLinearAllocEnd) {
|
|
allocStart = currentLinearAllocEnd;
|
|
} else {
|
|
// Skip over fixed any mappings in front of us
|
|
while (allocEndSuccessor != this->blocks.end()) {
|
|
if (allocEndSuccessor->virt - allocEndPredecessor->virt < size || allocEndPredecessor->Mapped() ) {
|
|
allocStart = allocEndPredecessor->virt;
|
|
break;
|
|
}
|
|
|
|
allocEndPredecessor = allocEndSuccessor++;
|
|
|
|
// Use the VA limit to calculate if we can fit in the final block since it has no successor
|
|
if (allocEndSuccessor == this->blocks.end()) {
|
|
allocEnd = allocEndPredecessor->virt + size;
|
|
|
|
if (allocEnd >= allocEndPredecessor->virt && allocEnd <= this->vaLimit)
|
|
allocStart = allocEndPredecessor->virt;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (allocStart != UnmappedVa) {
|
|
currentLinearAllocEnd = allocStart + size;
|
|
} else { // If linear allocation overflows the AS then find a gap
|
|
if (this->blocks.size() <= 2)
|
|
throw exception("Unexpected allocator state!");
|
|
|
|
auto searchPredecessor{this->blocks.begin()};
|
|
auto searchSuccessor{std::next(searchPredecessor)};
|
|
|
|
while (searchSuccessor != this->blocks.end() &&
|
|
(searchSuccessor->virt - searchPredecessor->virt < size || searchPredecessor->Mapped())) {
|
|
searchPredecessor = searchSuccessor++;
|
|
}
|
|
|
|
if (searchSuccessor != this->blocks.end())
|
|
allocStart = searchPredecessor->virt;
|
|
else
|
|
return {}; // AS is full
|
|
}
|
|
|
|
|
|
this->MapLocked(allocStart, true, size, {});
|
|
return allocStart;
|
|
}
|
|
|
|
ALLOC_MEMBER(void)::AllocateFixed(VaType virt, VaType size) {
|
|
this->Map(virt, true, size);
|
|
}
|
|
|
|
ALLOC_MEMBER(void)::Free(VaType virt, VaType size) {
|
|
this->Unmap(virt, size);
|
|
}
|
|
}
|