mirror of
https://github.com/rehlds/rechecker.git
synced 2025-01-26 10:27:55 +03:00
1173 lines
26 KiB
C++
1173 lines
26 KiB
C++
/*
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at
|
|
* your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* In addition, as a special exception, the author gives permission to
|
|
* link the code of this program with the Half-Life Game Engine ("HL
|
|
* Engine") and Modified Game Libraries ("MODs") developed by Valve,
|
|
* L.L.C ("Valve"). You must obey the GNU General Public License in all
|
|
* respects for all of the code used other than the HL Engine and MODs
|
|
* from Valve. If you modify this file, you may extend this exception
|
|
* to your version of the file, but you are not obligated to do so. If
|
|
* you do not wish to do so, delete this exception statement from your
|
|
* version.
|
|
*
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "utlmemory.h"
|
|
|
|
// Tool to generate a default compare function for any type that implements
|
|
// operator<, including all simple types
|
|
template <typename T>
|
|
class CDefOps
|
|
{
|
|
public:
|
|
static bool LessFunc(const T &lhs, const T &rhs) { return (lhs < rhs); }
|
|
};
|
|
|
|
#define DefLessFunc(type) CDefOps<type>::LessFunc
|
|
|
|
inline bool StringLessThan(const char * const &lhs, const char * const &rhs) { return (strcmp(lhs, rhs) < 0); }
|
|
inline bool CaselessStringLessThan(const char * const &lhs, const char * const &rhs) { return (_stricmp(lhs, rhs) < 0); }
|
|
|
|
// inline these two templates to stop multiple definitions of the same code
|
|
template <> inline bool CDefOps<const char *>::LessFunc(const char * const &lhs, const char * const &rhs) { return StringLessThan(lhs, rhs); }
|
|
template <> inline bool CDefOps<char *>::LessFunc(char * const &lhs, char * const &rhs) { return StringLessThan(lhs, rhs); }
|
|
|
|
template <typename RBTREE_T>
|
|
void SetDefLessFunc(RBTREE_T &RBTree)
|
|
{
|
|
RBTree.SetLessFunc(DefLessFunc(typename RBTREE_T::KeyType_t));
|
|
}
|
|
|
|
// A red-black binary search tree
|
|
template <class I>
|
|
struct UtlRBTreeLinks_t
|
|
{
|
|
I m_Left;
|
|
I m_Right;
|
|
I m_Parent;
|
|
I m_Tag;
|
|
};
|
|
|
|
template <class T, class I>
|
|
struct UtlRBTreeNode_t: public UtlRBTreeLinks_t<I>
|
|
{
|
|
T m_Data;
|
|
};
|
|
|
|
// A red-black binary search tree
|
|
template <class T, class I = unsigned short, typename L = bool (*)(const T &, const T &), class M = CUtlMemory<UtlRBTreeNode_t<T, I>, I>>
|
|
class CUtlRBTree
|
|
{
|
|
public:
|
|
typedef T KeyType_t;
|
|
typedef T ElemType_t;
|
|
typedef I IndexType_t;
|
|
|
|
// Less func typedef
|
|
// Returns true if the first parameter is "less" than the second
|
|
typedef L LessFunc_t;
|
|
|
|
// constructor, destructor
|
|
// Left at growSize = 0, the memory will first allocate 1 element and double in size
|
|
// at each increment.
|
|
// LessFunc_t is required, but may be set after the constructor using SetLessFunc() below
|
|
CUtlRBTree(int growSize = 0, int initSize = 0, LessFunc_t lessfunc = 0);
|
|
~CUtlRBTree();
|
|
|
|
// gets particular elements
|
|
T& Element(I i);
|
|
T const& Element(I i) const;
|
|
T& operator[](I i);
|
|
T const& operator[](I i) const;
|
|
|
|
// Gets the root
|
|
I Root() const;
|
|
|
|
// Num elements
|
|
unsigned int Count() const;
|
|
|
|
// Max "size" of the vector
|
|
I MaxElement() const;
|
|
|
|
// Gets the children
|
|
I Parent(I i) const;
|
|
I LeftChild(I i) const;
|
|
I RightChild(I i) const;
|
|
|
|
// Tests if a node is a left or right child
|
|
bool IsLeftChild(I i) const;
|
|
bool IsRightChild(I i) const;
|
|
|
|
// Tests if root or leaf
|
|
bool IsRoot(I i) const;
|
|
bool IsLeaf(I i) const;
|
|
|
|
// Checks if a node is valid and in the tree
|
|
bool IsValidIndex(I i) const;
|
|
|
|
// Checks if the tree as a whole is valid
|
|
bool IsValid() const;
|
|
|
|
// Invalid index
|
|
static I InvalidIndex();
|
|
|
|
// returns the tree depth (not a very fast operation)
|
|
int Depth(I node) const;
|
|
int Depth() const;
|
|
|
|
// Sets the less func
|
|
void SetLessFunc(LessFunc_t func);
|
|
|
|
// Allocation method
|
|
I NewNode();
|
|
|
|
// Insert method (inserts in order)
|
|
I Insert(T const &insert);
|
|
void Insert(const T *pArray, int nItems);
|
|
|
|
// Find method
|
|
I Find(T const &search) const;
|
|
|
|
// Remove methods
|
|
void RemoveAt(I i);
|
|
bool Remove(T const &remove);
|
|
void RemoveAll();
|
|
|
|
// Allocation, deletion
|
|
void FreeNode(I i);
|
|
|
|
// Iteration
|
|
I FirstInorder() const;
|
|
I NextInorder(I i) const;
|
|
I PrevInorder(I i) const;
|
|
I LastInorder() const;
|
|
|
|
I FirstPreorder() const;
|
|
I NextPreorder(I i) const;
|
|
I PrevPreorder(I i) const;
|
|
I LastPreorder() const;
|
|
|
|
I FirstPostorder() const;
|
|
I NextPostorder(I i) const;
|
|
|
|
// If you change the search key, this can be used to reinsert the
|
|
// element into the tree.
|
|
void Reinsert(I elem);
|
|
|
|
private:
|
|
// Can't copy the tree this way!
|
|
CUtlRBTree<T, I, L, M> &operator=(const CUtlRBTree<T, I, L, M> &other);
|
|
|
|
protected:
|
|
enum NodeColor_t
|
|
{
|
|
RED = 0,
|
|
BLACK
|
|
};
|
|
|
|
typedef UtlRBTreeNode_t<T, I> Node_t;
|
|
typedef UtlRBTreeLinks_t<I> Links_t;
|
|
|
|
// Sets the children
|
|
void SetParent(I i, I parent);
|
|
void SetLeftChild(I i, I child);
|
|
void SetRightChild(I i, I child);
|
|
void LinkToParent(I i, I parent, bool isLeft);
|
|
|
|
// Gets at the links
|
|
Links_t const& Links(I i) const;
|
|
Links_t& Links(I i);
|
|
|
|
// Checks if a link is red or black
|
|
bool IsRed(I i) const;
|
|
bool IsBlack(I i) const;
|
|
|
|
// Sets/gets node color
|
|
NodeColor_t Color(I i) const;
|
|
void SetColor(I i, NodeColor_t c);
|
|
|
|
// operations required to preserve tree balance
|
|
void RotateLeft(I i);
|
|
void RotateRight(I i);
|
|
void InsertRebalance(I i);
|
|
void RemoveRebalance(I i);
|
|
|
|
// Insertion, removal
|
|
I InsertAt(I parent, bool leftchild);
|
|
|
|
// copy constructors not allowed
|
|
CUtlRBTree(CUtlRBTree<T, I, L, M> const &tree);
|
|
|
|
// Inserts a node into the tree, doesn't copy the data in.
|
|
void FindInsertionPosition(T const &insert, I &parent, bool &leftchild);
|
|
|
|
// Remove and add back an element in the tree.
|
|
void Unlink(I elem);
|
|
void Link(I elem);
|
|
|
|
// Used for sorting.
|
|
LessFunc_t m_LessFunc;
|
|
|
|
M m_Elements;
|
|
I m_Root;
|
|
I m_NumElements;
|
|
I m_FirstFree;
|
|
I m_TotalElements;
|
|
};
|
|
|
|
// constructor, destructor
|
|
template <class T, class I, typename L, class M>
|
|
CUtlRBTree<T, I, L, M>::CUtlRBTree(int growSize, int initSize, LessFunc_t lessfunc) :
|
|
m_Elements(growSize, initSize),
|
|
m_LessFunc(lessfunc),
|
|
m_Root(InvalidIndex()),
|
|
m_NumElements(0), m_TotalElements(0),
|
|
m_FirstFree(InvalidIndex())
|
|
{
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
CUtlRBTree<T, I, L, M>::~CUtlRBTree()
|
|
{
|
|
}
|
|
|
|
// gets particular elements
|
|
template <class T, class I, typename L, class M>
|
|
inline T &CUtlRBTree<T, I, L, M>::Element(I i)
|
|
{
|
|
return m_Elements[i].m_Data;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
inline T const &CUtlRBTree<T, I, L, M>::Element(I i) const
|
|
{
|
|
return m_Elements[i].m_Data;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
inline T &CUtlRBTree<T, I, L, M>::operator[](I i)
|
|
{
|
|
return Element(i);
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
inline T const &CUtlRBTree<T, I, L, M>::operator[](I i) const
|
|
{
|
|
return Element(i);
|
|
}
|
|
|
|
// Gets the root
|
|
template <class T, class I, typename L, class M>
|
|
inline I CUtlRBTree<T, I, L, M>::Root() const
|
|
{
|
|
return m_Root;
|
|
}
|
|
|
|
// Num elements
|
|
template <class T, class I, typename L, class M>
|
|
inline unsigned int CUtlRBTree<T, I, L, M>::Count() const
|
|
{
|
|
return (unsigned int)m_NumElements;
|
|
}
|
|
|
|
// Max "size" of the vector
|
|
template <class T, class I, typename L, class M>
|
|
inline I CUtlRBTree<T, I, L, M>::MaxElement() const
|
|
{
|
|
return (I)m_TotalElements;
|
|
}
|
|
|
|
// Gets the children
|
|
template <class T, class I, typename L, class M>
|
|
inline I CUtlRBTree<T, I, L, M>::Parent(I i) const
|
|
{
|
|
return Links(i).m_Parent;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
inline I CUtlRBTree<T, I, L, M>::LeftChild(I i) const
|
|
{
|
|
return Links(i).m_Left;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
inline I CUtlRBTree<T, I, L, M>::RightChild(I i) const
|
|
{
|
|
return Links(i).m_Right;
|
|
}
|
|
|
|
// Tests if a node is a left or right child
|
|
template <class T, class I, typename L, class M>
|
|
inline bool CUtlRBTree<T, I, L, M>::IsLeftChild(I i) const
|
|
{
|
|
return LeftChild(Parent(i)) == i;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
inline bool CUtlRBTree<T, I, L, M>::IsRightChild(I i) const
|
|
{
|
|
return RightChild(Parent(i)) == i;
|
|
}
|
|
|
|
// Tests if root or leaf
|
|
template <class T, class I, typename L, class M>
|
|
inline bool CUtlRBTree<T, I, L, M>::IsRoot(I i) const
|
|
{
|
|
return i == m_Root;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
inline bool CUtlRBTree<T, I, L, M>::IsLeaf(I i) const
|
|
{
|
|
return (LeftChild(i) == InvalidIndex()) && (RightChild(i) == InvalidIndex());
|
|
}
|
|
|
|
// Checks if a node is valid and in the tree
|
|
template <class T, class I, typename L, class M>
|
|
inline bool CUtlRBTree<T, I, L, M>::IsValidIndex(I i) const
|
|
{
|
|
return LeftChild(i) != i;
|
|
}
|
|
|
|
// Invalid index
|
|
template <class T, class I, typename L, class M>
|
|
I CUtlRBTree<T, I, L, M>::InvalidIndex()
|
|
{
|
|
return (I)M::InvalidIndex();
|
|
}
|
|
|
|
// returns the tree depth (not a very fast operation)
|
|
template <class T, class I, typename L, class M>
|
|
inline int CUtlRBTree<T, I, L, M>::Depth() const
|
|
{
|
|
return Depth(Root());
|
|
}
|
|
|
|
// Sets the children
|
|
template <class T, class I, typename L, class M>
|
|
inline void CUtlRBTree<T, I, L, M>::SetParent(I i, I parent)
|
|
{
|
|
Links(i).m_Parent = parent;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
inline void CUtlRBTree<T, I, L, M>::SetLeftChild(I i, I child)
|
|
{
|
|
Links(i).m_Left = child;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
inline void CUtlRBTree<T, I, L, M>::SetRightChild(I i, I child)
|
|
{
|
|
Links(i).m_Right = child;
|
|
}
|
|
|
|
// Gets at the links
|
|
template <class T, class I, typename L, class M>
|
|
inline typename CUtlRBTree<T, I, L, M>::Links_t const &CUtlRBTree<T, I, L, M>::Links(I i) const
|
|
{
|
|
// Sentinel node, makes life easier
|
|
static Links_t s_Sentinel =
|
|
{
|
|
InvalidIndex(), InvalidIndex(), InvalidIndex(), CUtlRBTree<T, I, L, M>::BLACK
|
|
};
|
|
|
|
return (i != InvalidIndex()) ?
|
|
*(Links_t*)&m_Elements[i] :
|
|
*(Links_t*)&s_Sentinel;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
inline typename CUtlRBTree<T, I, L, M>::Links_t &CUtlRBTree<T, I, L, M>::Links(I i)
|
|
{
|
|
Assert(i != InvalidIndex());
|
|
return *(Links_t *)&m_Elements[i];
|
|
}
|
|
|
|
// Checks if a link is red or black
|
|
template <class T, class I, typename L, class M>
|
|
inline bool CUtlRBTree<T, I, L, M>::IsRed(I i) const
|
|
{
|
|
return (Links(i).m_Tag == RED);
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
inline bool CUtlRBTree<T, I, L, M>::IsBlack(I i) const
|
|
{
|
|
return (Links(i).m_Tag == BLACK);
|
|
}
|
|
|
|
// Sets/gets node color
|
|
template <class T, class I, typename L, class M>
|
|
inline typename CUtlRBTree<T, I, L, M>::NodeColor_t CUtlRBTree<T, I, L, M>::Color(I i) const
|
|
{
|
|
return (NodeColor_t)Links(i).m_Tag;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
inline void CUtlRBTree<T, I, L, M>::SetColor(I i, typename CUtlRBTree<T, I, L, M>::NodeColor_t c)
|
|
{
|
|
Links(i).m_Tag = (I)c;
|
|
}
|
|
|
|
// Allocates/ deallocates nodes
|
|
template <class T, class I, typename L, class M>
|
|
I CUtlRBTree<T, I, L, M>::NewNode()
|
|
{
|
|
I newElem;
|
|
|
|
// Nothing in the free list; add.
|
|
if (m_FirstFree == InvalidIndex())
|
|
{
|
|
if (m_Elements.NumAllocated() == m_TotalElements)
|
|
m_Elements.Grow();
|
|
newElem = m_TotalElements++;
|
|
}
|
|
else
|
|
{
|
|
newElem = m_FirstFree;
|
|
m_FirstFree = RightChild(m_FirstFree);
|
|
}
|
|
|
|
#ifdef _DEBUG
|
|
// reset links to invalid....
|
|
Links_t &node = Links(newElem);
|
|
node.m_Left = node.m_Right = node.m_Parent = InvalidIndex();
|
|
#endif
|
|
|
|
Construct(&Element(newElem));
|
|
return newElem;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
void CUtlRBTree<T, I, L, M>::FreeNode(I i)
|
|
{
|
|
Assert(IsValidIndex(i) && (i != InvalidIndex()));
|
|
Destruct(&Element(i));
|
|
SetLeftChild(i, i); // indicates it's in not in the tree
|
|
SetRightChild(i, m_FirstFree);
|
|
m_FirstFree = i;
|
|
}
|
|
|
|
// Rotates node i to the left
|
|
template <class T, class I, typename L, class M>
|
|
void CUtlRBTree<T, I, L, M>::RotateLeft(I elem)
|
|
{
|
|
I rightchild = RightChild(elem);
|
|
SetRightChild(elem, LeftChild(rightchild));
|
|
if (LeftChild(rightchild) != InvalidIndex())
|
|
SetParent(LeftChild(rightchild), elem);
|
|
|
|
if (rightchild != InvalidIndex())
|
|
SetParent(rightchild, Parent(elem));
|
|
if (!IsRoot(elem))
|
|
{
|
|
if (IsLeftChild(elem))
|
|
SetLeftChild(Parent(elem), rightchild);
|
|
else
|
|
SetRightChild(Parent(elem), rightchild);
|
|
}
|
|
else
|
|
m_Root = rightchild;
|
|
|
|
SetLeftChild(rightchild, elem);
|
|
if (elem != InvalidIndex())
|
|
SetParent(elem, rightchild);
|
|
}
|
|
|
|
// Rotates node i to the right
|
|
template <class T, class I, typename L, class M>
|
|
void CUtlRBTree<T, I, L, M>::RotateRight(I elem)
|
|
{
|
|
I leftchild = LeftChild(elem);
|
|
SetLeftChild(elem, RightChild(leftchild));
|
|
if (RightChild(leftchild) != InvalidIndex())
|
|
SetParent(RightChild(leftchild), elem);
|
|
|
|
if (leftchild != InvalidIndex())
|
|
SetParent(leftchild, Parent(elem));
|
|
if (!IsRoot(elem))
|
|
{
|
|
if (IsRightChild(elem))
|
|
SetRightChild(Parent(elem), leftchild);
|
|
else
|
|
SetLeftChild(Parent(elem), leftchild);
|
|
}
|
|
else
|
|
m_Root = leftchild;
|
|
|
|
SetRightChild(leftchild, elem);
|
|
if (elem != InvalidIndex())
|
|
SetParent(elem, leftchild);
|
|
}
|
|
|
|
// Rebalances the tree after an insertion
|
|
template <class T, class I, typename L, class M>
|
|
void CUtlRBTree<T, I, L, M>::InsertRebalance(I elem)
|
|
{
|
|
while (!IsRoot(elem) && (Color(Parent(elem)) == RED))
|
|
{
|
|
I parent = Parent(elem);
|
|
I grandparent = Parent(parent);
|
|
|
|
// we have a violation
|
|
if (IsLeftChild(parent))
|
|
{
|
|
I uncle = RightChild(grandparent);
|
|
if (IsRed(uncle))
|
|
{
|
|
// uncle is RED
|
|
SetColor(parent, BLACK);
|
|
SetColor(uncle, BLACK);
|
|
SetColor(grandparent, RED);
|
|
elem = grandparent;
|
|
}
|
|
else
|
|
{
|
|
// uncle is BLACK
|
|
if (IsRightChild(elem))
|
|
{
|
|
// make x a left child, will change parent and grandparent
|
|
elem = parent;
|
|
RotateLeft(elem);
|
|
parent = Parent(elem);
|
|
grandparent = Parent(parent);
|
|
}
|
|
|
|
// recolor and rotate
|
|
SetColor(parent, BLACK);
|
|
SetColor(grandparent, RED);
|
|
RotateRight(grandparent);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// mirror image of above code
|
|
I uncle = LeftChild(grandparent);
|
|
if (IsRed(uncle))
|
|
{
|
|
// uncle is RED
|
|
SetColor(parent, BLACK);
|
|
SetColor(uncle, BLACK);
|
|
SetColor(grandparent, RED);
|
|
elem = grandparent;
|
|
}
|
|
else
|
|
{
|
|
// uncle is BLACK
|
|
if (IsLeftChild(elem))
|
|
{
|
|
// make x a right child, will change parent and grandparent
|
|
elem = parent;
|
|
RotateRight(parent);
|
|
parent = Parent(elem);
|
|
grandparent = Parent(parent);
|
|
}
|
|
// recolor and rotate
|
|
SetColor(parent, BLACK);
|
|
SetColor(grandparent, RED);
|
|
RotateLeft(grandparent);
|
|
}
|
|
}
|
|
}
|
|
SetColor(m_Root, BLACK);
|
|
}
|
|
|
|
// Insert a node into the tree
|
|
template <class T, class I, typename L, class M>
|
|
I CUtlRBTree<T, I, L, M>::InsertAt(I parent, bool leftchild)
|
|
{
|
|
I i = NewNode();
|
|
LinkToParent(i, parent, leftchild);
|
|
++m_NumElements;
|
|
return i;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
void CUtlRBTree<T, I, L, M>::LinkToParent(I i, I parent, bool isLeft)
|
|
{
|
|
Links_t &elem = Links(i);
|
|
elem.m_Parent = parent;
|
|
elem.m_Left = elem.m_Right = InvalidIndex();
|
|
elem.m_Tag = RED;
|
|
|
|
// insert node in tree
|
|
if (parent != InvalidIndex())
|
|
{
|
|
if (isLeft)
|
|
Links(parent).m_Left = i;
|
|
else
|
|
Links(parent).m_Right = i;
|
|
}
|
|
else
|
|
{
|
|
m_Root = i;
|
|
}
|
|
|
|
InsertRebalance(i);
|
|
|
|
Assert(IsValid());
|
|
}
|
|
|
|
// Rebalance the tree after a deletion
|
|
template <class T, class I, typename L, class M>
|
|
void CUtlRBTree<T, I, L, M>::RemoveRebalance(I elem)
|
|
{
|
|
while (elem != m_Root && IsBlack(elem))
|
|
{
|
|
I parent = Parent(elem);
|
|
|
|
// If elem is the left child of the parent
|
|
if (elem == LeftChild(parent))
|
|
{
|
|
// Get our sibling
|
|
I sibling = RightChild(parent);
|
|
if (IsRed(sibling))
|
|
{
|
|
SetColor(sibling, BLACK);
|
|
SetColor(parent, RED);
|
|
RotateLeft(parent);
|
|
|
|
// We may have a new parent now
|
|
parent = Parent(elem);
|
|
sibling = RightChild(parent);
|
|
}
|
|
if ((IsBlack(LeftChild(sibling))) && (IsBlack(RightChild(sibling))))
|
|
{
|
|
if (sibling != InvalidIndex())
|
|
SetColor(sibling, RED);
|
|
elem = parent;
|
|
}
|
|
else
|
|
{
|
|
if (IsBlack(RightChild(sibling)))
|
|
{
|
|
SetColor(LeftChild(sibling), BLACK);
|
|
SetColor(sibling, RED);
|
|
RotateRight(sibling);
|
|
|
|
// rotation may have changed this
|
|
parent = Parent(elem);
|
|
sibling = RightChild(parent);
|
|
}
|
|
SetColor(sibling, Color(parent));
|
|
SetColor(parent, BLACK);
|
|
SetColor(RightChild(sibling), BLACK);
|
|
RotateLeft(parent);
|
|
elem = m_Root;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Elem is the right child of the parent
|
|
I sibling = LeftChild(parent);
|
|
if (IsRed(sibling))
|
|
{
|
|
SetColor(sibling, BLACK);
|
|
SetColor(parent, RED);
|
|
RotateRight(parent);
|
|
|
|
// We may have a new parent now
|
|
parent = Parent(elem);
|
|
sibling = LeftChild(parent);
|
|
}
|
|
if ((IsBlack(RightChild(sibling))) && (IsBlack(LeftChild(sibling))))
|
|
{
|
|
if (sibling != InvalidIndex())
|
|
SetColor(sibling, RED);
|
|
elem = parent;
|
|
}
|
|
else
|
|
{
|
|
if (IsBlack(LeftChild(sibling)))
|
|
{
|
|
SetColor(RightChild(sibling), BLACK);
|
|
SetColor(sibling, RED);
|
|
RotateLeft(sibling);
|
|
|
|
// rotation may have changed this
|
|
parent = Parent(elem);
|
|
sibling = LeftChild(parent);
|
|
}
|
|
SetColor(sibling, Color(parent));
|
|
SetColor(parent, BLACK);
|
|
SetColor(LeftChild(sibling), BLACK);
|
|
RotateRight(parent);
|
|
elem = m_Root;
|
|
}
|
|
}
|
|
}
|
|
SetColor(elem, BLACK);
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
void CUtlRBTree<T, I, L, M>::Unlink(I elem)
|
|
{
|
|
if (elem != InvalidIndex())
|
|
{
|
|
I x, y;
|
|
|
|
if ((LeftChild(elem) == InvalidIndex()) ||
|
|
(RightChild(elem) == InvalidIndex()))
|
|
{
|
|
// y has a NIL node as a child
|
|
y = elem;
|
|
}
|
|
else
|
|
{
|
|
// find tree successor with a NIL node as a child
|
|
y = RightChild(elem);
|
|
while (LeftChild(y) != InvalidIndex())
|
|
y = LeftChild(y);
|
|
}
|
|
|
|
// x is y's only child
|
|
if (LeftChild(y) != InvalidIndex())
|
|
x = LeftChild(y);
|
|
else
|
|
x = RightChild(y);
|
|
|
|
// remove y from the parent chain
|
|
if (x != InvalidIndex())
|
|
SetParent(x, Parent(y));
|
|
if (!IsRoot(y))
|
|
{
|
|
if (IsLeftChild(y))
|
|
SetLeftChild(Parent(y), x);
|
|
else
|
|
SetRightChild(Parent(y), x);
|
|
}
|
|
else
|
|
m_Root = x;
|
|
|
|
// need to store this off now, we'll be resetting y's color
|
|
NodeColor_t ycolor = Color(y);
|
|
if (y != elem)
|
|
{
|
|
// Standard implementations copy the data around, we cannot here.
|
|
// Hook in y to link to the same stuff elem used to.
|
|
SetParent(y, Parent(elem));
|
|
SetRightChild(y, RightChild(elem));
|
|
SetLeftChild(y, LeftChild(elem));
|
|
|
|
if (!IsRoot(elem))
|
|
if (IsLeftChild(elem))
|
|
SetLeftChild(Parent(elem), y);
|
|
else
|
|
SetRightChild(Parent(elem), y);
|
|
else
|
|
m_Root = y;
|
|
|
|
if (LeftChild(y) != InvalidIndex())
|
|
SetParent(LeftChild(y), y);
|
|
if (RightChild(y) != InvalidIndex())
|
|
SetParent(RightChild(y), y);
|
|
|
|
SetColor(y, Color(elem));
|
|
}
|
|
|
|
if ((x != InvalidIndex()) && (ycolor == BLACK))
|
|
RemoveRebalance(x);
|
|
}
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
void CUtlRBTree<T, I, L, M>::Link(I elem)
|
|
{
|
|
if (elem != InvalidIndex())
|
|
{
|
|
I parent;
|
|
bool leftchild;
|
|
FindInsertionPosition(Element(elem), parent, leftchild);
|
|
LinkToParent(elem, parent, leftchild);
|
|
}
|
|
}
|
|
|
|
// Delete a node from the tree
|
|
template <class T, class I, typename L, class M>
|
|
void CUtlRBTree<T, I, L, M>::RemoveAt(I elem)
|
|
{
|
|
if (elem != InvalidIndex())
|
|
{
|
|
Unlink(elem);
|
|
|
|
FreeNode(elem);
|
|
--m_NumElements;
|
|
}
|
|
}
|
|
|
|
// remove a node in the tree
|
|
template <class T, class I, typename L, class M>
|
|
bool CUtlRBTree<T, I, L, M>::Remove(T const &search)
|
|
{
|
|
I node = Find(search);
|
|
if (node != InvalidIndex())
|
|
{
|
|
RemoveAt(node);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Removes all nodes from the tree
|
|
template <class T, class I, typename L, class M>
|
|
void CUtlRBTree<T, I, L, M>::RemoveAll()
|
|
{
|
|
// Just iterate through the whole list and add to free list
|
|
// much faster than doing all of the rebalancing
|
|
// also, do it so the free list is pointing to stuff in order
|
|
// to get better cache coherence when re-adding stuff to this tree.
|
|
I prev = InvalidIndex();
|
|
for (int i = (int)m_TotalElements; --i >= 0;)
|
|
{
|
|
I idx = (I)i;
|
|
if (IsValidIndex(idx))
|
|
Destruct(&Element(idx));
|
|
SetRightChild(idx, prev);
|
|
SetLeftChild(idx, idx);
|
|
prev = idx;
|
|
}
|
|
m_FirstFree = m_TotalElements ? (I)0 : InvalidIndex();
|
|
m_Root = InvalidIndex();
|
|
m_NumElements = 0;
|
|
}
|
|
|
|
// iteration
|
|
template <class T, class I, typename L, class M>
|
|
I CUtlRBTree<T, I, L, M>::FirstInorder() const
|
|
{
|
|
I i = m_Root;
|
|
while (LeftChild(i) != InvalidIndex())
|
|
i = LeftChild(i);
|
|
return i;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
I CUtlRBTree<T, I, L, M>::NextInorder(I i) const
|
|
{
|
|
Assert(IsValidIndex(i));
|
|
|
|
if (RightChild(i) != InvalidIndex())
|
|
{
|
|
i = RightChild(i);
|
|
while (LeftChild(i) != InvalidIndex())
|
|
i = LeftChild(i);
|
|
return i;
|
|
}
|
|
|
|
I parent = Parent(i);
|
|
while (IsRightChild(i))
|
|
{
|
|
i = parent;
|
|
if (i == InvalidIndex()) break;
|
|
parent = Parent(i);
|
|
}
|
|
return parent;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
I CUtlRBTree<T, I, L, M>::PrevInorder(I i) const
|
|
{
|
|
Assert(IsValidIndex(i));
|
|
|
|
if (LeftChild(i) != InvalidIndex())
|
|
{
|
|
i = LeftChild(i);
|
|
while (RightChild(i) != InvalidIndex())
|
|
i = RightChild(i);
|
|
return i;
|
|
}
|
|
|
|
I parent = Parent(i);
|
|
while (IsLeftChild(i))
|
|
{
|
|
i = parent;
|
|
if (i == InvalidIndex()) break;
|
|
parent = Parent(i);
|
|
}
|
|
return parent;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
I CUtlRBTree<T, I, L, M>::LastInorder() const
|
|
{
|
|
I i = m_Root;
|
|
while (RightChild(i) != InvalidIndex())
|
|
i = RightChild(i);
|
|
return i;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
I CUtlRBTree<T, I, L, M>::FirstPreorder() const
|
|
{
|
|
return m_Root;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
I CUtlRBTree<T, I, L, M>::NextPreorder(I i) const
|
|
{
|
|
if (LeftChild(i) != InvalidIndex())
|
|
return LeftChild(i);
|
|
|
|
if (RightChild(i) != InvalidIndex())
|
|
return RightChild(i);
|
|
|
|
I parent = Parent(i);
|
|
while(parent != InvalidIndex())
|
|
{
|
|
if (IsLeftChild(i) && (RightChild(parent) != InvalidIndex()))
|
|
return RightChild(parent);
|
|
i = parent;
|
|
parent = Parent(parent);
|
|
}
|
|
return InvalidIndex();
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
I CUtlRBTree<T, I, L, M>::PrevPreorder(I i) const
|
|
{
|
|
Assert(0); // not implemented yet
|
|
return InvalidIndex();
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
I CUtlRBTree<T, I, L, M>::LastPreorder() const
|
|
{
|
|
I i = m_Root;
|
|
while (1)
|
|
{
|
|
while (RightChild(i) != InvalidIndex())
|
|
i = RightChild(i);
|
|
|
|
if (LeftChild(i) != InvalidIndex())
|
|
i = LeftChild(i);
|
|
else
|
|
break;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
I CUtlRBTree<T, I, L, M>::FirstPostorder() const
|
|
{
|
|
I i = m_Root;
|
|
while (!IsLeaf(i))
|
|
{
|
|
if (LeftChild(i))
|
|
i = LeftChild(i);
|
|
else
|
|
i = RightChild(i);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
I CUtlRBTree<T, I, L, M>::NextPostorder(I i) const
|
|
{
|
|
I parent = Parent(i);
|
|
if (parent == InvalidIndex())
|
|
return InvalidIndex();
|
|
|
|
if (IsRightChild(i))
|
|
return parent;
|
|
|
|
if (RightChild(parent) == InvalidIndex())
|
|
return parent;
|
|
|
|
i = RightChild(parent);
|
|
while (!IsLeaf(i))
|
|
{
|
|
if (LeftChild(i))
|
|
i = LeftChild(i);
|
|
else
|
|
i = RightChild(i);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
void CUtlRBTree<T, I, L, M>::Reinsert(I elem)
|
|
{
|
|
Unlink(elem);
|
|
Link(elem);
|
|
}
|
|
|
|
// returns the tree depth (not a very fast operation)
|
|
template <class T, class I, typename L, class M>
|
|
int CUtlRBTree<T, I, L, M>::Depth(I node) const
|
|
{
|
|
if (node == InvalidIndex())
|
|
return 0;
|
|
|
|
int depthright = Depth(RightChild(node));
|
|
int depthleft = Depth(LeftChild(node));
|
|
return max(depthright, depthleft) + 1;
|
|
}
|
|
|
|
// Makes sure the tree is valid after every operation
|
|
template <class T, class I, typename L, class M>
|
|
bool CUtlRBTree<T, I, L, M>::IsValid() const
|
|
{
|
|
if (!Count())
|
|
return true;
|
|
|
|
if ((Root() >= MaxElement()) || (Parent(Root()) != InvalidIndex()))
|
|
goto InvalidTree;
|
|
|
|
#ifdef UTLTREE_PARANOID
|
|
|
|
// First check to see that mNumEntries matches reality.
|
|
// count items on the free list
|
|
int numFree = 0;
|
|
int curr = m_FirstFree;
|
|
while (curr != InvalidIndex())
|
|
{
|
|
++numFree;
|
|
curr = RightChild(curr);
|
|
if ((curr > MaxElement()) && (curr != InvalidIndex()))
|
|
goto InvalidTree;
|
|
}
|
|
if (MaxElement() - numFree != Count())
|
|
goto InvalidTree;
|
|
|
|
// iterate over all elements, looking for validity
|
|
// based on the self pointers
|
|
int numFree2 = 0;
|
|
for (curr = 0; curr < MaxElement(); ++curr)
|
|
{
|
|
if (!IsValidIndex(curr))
|
|
++numFree2;
|
|
else
|
|
{
|
|
int right = RightChild(curr);
|
|
int left = LeftChild(curr);
|
|
if ((right == left) && (right != InvalidIndex()))
|
|
goto InvalidTree;
|
|
|
|
if (right != InvalidIndex())
|
|
{
|
|
if (!IsValidIndex(right))
|
|
goto InvalidTree;
|
|
if (Parent(right) != curr)
|
|
goto InvalidTree;
|
|
if (IsRed(curr) && IsRed(right))
|
|
goto InvalidTree;
|
|
}
|
|
|
|
if (left != InvalidIndex())
|
|
{
|
|
if (!IsValidIndex(left))
|
|
goto InvalidTree;
|
|
if (Parent(left) != curr)
|
|
goto InvalidTree;
|
|
if (IsRed(curr) && IsRed(left))
|
|
goto InvalidTree;
|
|
}
|
|
}
|
|
}
|
|
if (numFree2 != numFree)
|
|
goto InvalidTree;
|
|
|
|
#endif // UTLTREE_PARANOID
|
|
|
|
return true;
|
|
|
|
InvalidTree:
|
|
return false;
|
|
}
|
|
|
|
// Sets the less func
|
|
template <class T, class I, typename L, class M>
|
|
void CUtlRBTree<T, I, L, M>::SetLessFunc(typename CUtlRBTree<T, I, L, M>::LessFunc_t func)
|
|
{
|
|
if (!m_LessFunc)
|
|
m_LessFunc = func;
|
|
else
|
|
{
|
|
// need to re-sort the tree here....
|
|
Assert(0);
|
|
}
|
|
}
|
|
|
|
// Inserts a node into the tree, doesn't copy the data in.
|
|
template <class T, class I, typename L, class M>
|
|
void CUtlRBTree<T, I, L, M>::FindInsertionPosition(T const &insert, I &parent, bool &leftchild)
|
|
{
|
|
Assert(m_LessFunc);
|
|
|
|
// find where node belongs
|
|
I current = m_Root;
|
|
parent = InvalidIndex();
|
|
leftchild = false;
|
|
while (current != InvalidIndex())
|
|
{
|
|
parent = current;
|
|
if (m_LessFunc(insert, Element(current)))
|
|
{
|
|
leftchild = true;
|
|
current = LeftChild(current);
|
|
}
|
|
else
|
|
{
|
|
leftchild = false;
|
|
current = RightChild(current);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
I CUtlRBTree<T, I, L, M>::Insert(T const &insert)
|
|
{
|
|
// use copy constructor to copy it in
|
|
I parent;
|
|
bool leftchild;
|
|
FindInsertionPosition(insert, parent, leftchild);
|
|
I newNode = InsertAt(parent, leftchild);
|
|
CopyConstruct(&Element(newNode), insert);
|
|
return newNode;
|
|
}
|
|
|
|
template <class T, class I, typename L, class M>
|
|
void CUtlRBTree<T, I, L, M>::Insert(const T *pArray, int nItems)
|
|
{
|
|
while (nItems--)
|
|
{
|
|
Insert(*pArray++);
|
|
}
|
|
}
|
|
|
|
// finds a node in the tree
|
|
template <class T, class I, typename L, class M>
|
|
I CUtlRBTree<T, I, L, M>::Find(T const &search) const
|
|
{
|
|
Assert(m_LessFunc);
|
|
|
|
I current = m_Root;
|
|
while (current != InvalidIndex())
|
|
{
|
|
if (m_LessFunc(search, Element(current)))
|
|
current = LeftChild(current);
|
|
else if (m_LessFunc(Element(current), search))
|
|
current = RightChild(current);
|
|
else
|
|
break;
|
|
}
|
|
return current;
|
|
}
|