ReGameDLL_CS/regamedll/game_shared/bot/nav_path.h
2017-11-23 00:43:30 +07:00

217 lines
7.3 KiB
C++

/*
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* In addition, as a special exception, the author gives permission to
* link the code of this program with the Half-Life Game Engine ("HL
* Engine") and Modified Game Libraries ("MODs") developed by Valve,
* L.L.C ("Valve"). You must obey the GNU General Public License in all
* respects for all of the code used other than the HL Engine and MODs
* from Valve. If you modify this file, you may extend this exception
* to your version of the file, but you are not obligated to do so. If
* you do not wish to do so, delete this exception statement from your
* version.
*
*/
#pragma once
// STL uses exceptions, but we are not compiling with them - ignore warning
#pragma warning(disable : 4530)
class CNavPath
{
public:
CNavPath() { m_segmentCount = 0; }
struct PathSegment
{
CNavArea *area; // the area along the path
NavTraverseType how; // how to enter this area from the previous one
Vector pos; // our movement goal position at this point in the path
const CNavLadder *ladder; // if "how" refers to a ladder, this is it
};
const PathSegment *operator[](int i) { return (i >= 0 && i < m_segmentCount) ? &m_path[i] : nullptr; }
int GetSegmentCount() const { return m_segmentCount; }
const Vector &GetEndpoint() const { return m_path[m_segmentCount - 1].pos; }
bool IsAtEnd(const Vector &pos) const; // return true if position is at the end of the path
float GetLength() const; // return length of path from start to finish
bool GetPointAlongPath(float distAlong, Vector *pointOnPath) const; // return point a given distance along the path - if distance is out of path bounds, point is clamped to start/end
// return the node index closest to the given distance along the path without going over - returns (-1) if error
int GetSegmentIndexAlongPath(float distAlong) const;
bool IsValid() const { return (m_segmentCount > 0); }
void Invalidate() { m_segmentCount = 0; }
// draw the path for debugging
void Draw();
// compute closest point on path to given point
bool FindClosestPointOnPath(const Vector *worldPos, int startIndex, int endIndex, Vector *close) const;
void Optimize();
// Compute shortest path from 'start' to 'goal' via A* algorithm
template<typename CostFunctor>
bool Compute(const Vector *start, const Vector *goal, CostFunctor &costFunc)
{
Invalidate();
if (!start || !goal)
return false;
CNavArea *startArea = TheNavAreaGrid.GetNearestNavArea(start);
if (!startArea)
return false;
CNavArea *goalArea = TheNavAreaGrid.GetNavArea(goal);
// if we are already in the goal area, build trivial path
if (startArea == goalArea)
{
BuildTrivialPath(start, goal);
return true;
}
// make sure path end position is on the ground
Vector pathEndPosition = *goal;
if (goalArea)
pathEndPosition.z = goalArea->GetZ(&pathEndPosition);
else
GetGroundHeight(&pathEndPosition, &pathEndPosition.z);
// Compute shortest path to goal
CNavArea *closestArea;
bool pathToGoalExists = NavAreaBuildPath(startArea, goalArea, goal, costFunc, &closestArea);
CNavArea *effectiveGoalArea = (pathToGoalExists) ? goalArea : closestArea;
// Build path by following parent links
int count = 0;
CNavArea *area;
for (area = effectiveGoalArea; area; area = area->GetParent())
count++;
// save room for endpoint
if (count > MAX_PATH_SEGMENTS - 1)
count = MAX_PATH_SEGMENTS - 1;
if (count == 0)
return false;
if (count == 1)
{
BuildTrivialPath(start, goal);
return true;
}
m_segmentCount = count;
for (area = effectiveGoalArea; count && area; area = area->GetParent())
{
count--;
m_path[count].area = area;
m_path[count].how = area->GetParentHow();
}
// compute path positions
if (ComputePathPositions() == false)
{
Invalidate();
return false;
}
// append path end position
m_path[m_segmentCount].area = effectiveGoalArea;
m_path[m_segmentCount].pos = pathEndPosition;
m_path[m_segmentCount].ladder = nullptr;
m_path[m_segmentCount].how = NUM_TRAVERSE_TYPES;
m_segmentCount++;
return true;
}
private:
enum { MAX_PATH_SEGMENTS = 256 };
PathSegment m_path[MAX_PATH_SEGMENTS];
int m_segmentCount;
bool ComputePathPositions(); // determine actual path positions
bool BuildTrivialPath(const Vector *start, const Vector *goal); // utility function for when start and goal are in the same area
int FindNextOccludedNode(int anchor); // used by Optimize()
};
// Monitor improv movement and determine if it becomes stuck
class CStuckMonitor
{
public:
CStuckMonitor();
void Reset();
void Update(CImprov *improv);
bool IsStuck() const { return m_isStuck; }
float GetDuration() const { return m_isStuck ? m_stuckTimer.GetElapsedTime() : 0.0f; }
private:
bool m_isStuck; // if true, we are stuck
Vector m_stuckSpot; // the location where we became stuck
IntervalTimer m_stuckTimer; // how long we have been stuck
enum { MAX_VEL_SAMPLES = 5 };
float m_avgVel[MAX_VEL_SAMPLES];
int m_avgVelIndex;
int m_avgVelCount;
Vector m_lastCentroid;
float m_lastTime;
};
// The CNavPathFollower class implements path following behavior
class CNavPathFollower
{
public:
CNavPathFollower();
void SetImprov(CImprov *improv) { m_improv = improv; }
void SetPath(CNavPath *path) { m_path = path; }
void Reset();
void Update(float deltaT, bool avoidObstacles = true); // move improv along path
void Debug(bool status) { m_isDebug = status; } // turn debugging on/off
bool IsStuck() const { return m_stuckMonitor.IsStuck(); } // return true if improv is stuck
void ResetStuck() { m_stuckMonitor.Reset(); }
float GetStuckDuration() const { return m_stuckMonitor.GetDuration(); } // return how long we've been stuck
void FeelerReflexAdjustment(Vector *goalPosition, float height = -1.0f); // adjust goal position if "feelers" are touched
private:
int FindOurPositionOnPath(Vector *close, bool local) const; // return the closest point to our current position on current path
int FindPathPoint(float aheadRange, Vector *point, int *prevIndex); // compute a point a fixed distance ahead along our path.
CImprov *m_improv; // who is doing the path following
CNavPath *m_path; // the path being followed
int m_segmentIndex; // the point on the path the improv is moving towards
int m_behindIndex; // index of the node on the path just behind us
Vector m_goal; // last computed follow goal
bool m_isLadderStarted;
bool m_isDebug;
CStuckMonitor m_stuckMonitor;
};