mirror of
https://github.com/s1lentq/ReGameDLL_CS.git
synced 2025-01-27 14:08:00 +03:00
385 lines
7.0 KiB
C++
385 lines
7.0 KiB
C++
#include "precompiled.h"
|
|
|
|
vec3_t vec3_origin = { 0, 0, 0 };
|
|
const int nanmask = 255 << 23;
|
|
|
|
float anglemod(float a)
|
|
{
|
|
a = (360.0 / 65536) * (int(a *(65536 / 360.0)) & 65535);
|
|
return a;
|
|
}
|
|
|
|
void AngleVectors(const vec_t *angles, vec_t *forward, vec_t *right, vec_t *up)
|
|
{
|
|
float sr, sp, sy, cr, cp;
|
|
|
|
real_t cy;
|
|
real_t angle;
|
|
|
|
angle = real_t(angles[YAW] * (M_PI * 2 / 360));
|
|
sy = Q_sin(angle);
|
|
cy = Q_cos(angle);
|
|
|
|
angle = real_t(angles[PITCH] * (M_PI * 2 / 360));
|
|
sp = Q_sin(angle);
|
|
cp = Q_cos(angle);
|
|
|
|
angle = real_t(angles[ROLL] * (M_PI * 2 / 360));
|
|
sr = Q_sin(angle);
|
|
cr = Q_cos(angle);
|
|
|
|
if (forward)
|
|
{
|
|
forward[0] = cp * cy;
|
|
forward[1] = cp * sy;
|
|
forward[2] = -sp;
|
|
}
|
|
if (right)
|
|
{
|
|
right[0] = (-1 * sr * sp * cy + -1 * cr * -sy);
|
|
right[1] = (-1 * sr * sp * sy + -1 * cr * cy);
|
|
right[2] = -1 * sr * cp;
|
|
}
|
|
if (up)
|
|
{
|
|
up[0] = (cr * sp * cy + -sr * -sy);
|
|
up[1] = (cr * sp * sy + -sr * cy);
|
|
up[2] = cr * cp;
|
|
}
|
|
}
|
|
|
|
void AngleVectorsTranspose(const vec_t *angles, vec_t *forward, vec_t *right, vec_t *up)
|
|
{
|
|
float angle;
|
|
float sr, sp, sy, cr, cp, cy;
|
|
|
|
angle = angles[YAW] * (M_PI * 2 / 360);
|
|
sy = Q_sin(angle);
|
|
cy = Q_cos(angle);
|
|
angle = angles[PITCH] * (M_PI * 2 / 360);
|
|
sp = Q_sin(angle);
|
|
cp = Q_cos(angle);
|
|
angle = angles[ROLL] * (M_PI * 2 / 360);
|
|
sr = Q_sin(angle);
|
|
cr = Q_cos(angle);
|
|
|
|
if (forward)
|
|
{
|
|
forward[0] = cp * cy;
|
|
forward[1] = (sr * sp * cy + cr * -sy);
|
|
forward[2] = (cr * sp * cy + -sr * -sy);
|
|
}
|
|
if (right)
|
|
{
|
|
right[0] = cp * sy;
|
|
right[1] = (sr * sp * sy + cr * cy);
|
|
right[2] = (cr * sp * sy + -sr * cy);
|
|
}
|
|
if (up)
|
|
{
|
|
up[0] = -sp;
|
|
up[1] = sr * cp;
|
|
up[2] = cr * cp;
|
|
}
|
|
}
|
|
|
|
void AngleMatrix(const vec_t *angles, float (*matrix)[4])
|
|
{
|
|
real_t angle;
|
|
real_t sr, sp, sy, cr, cp, cy;
|
|
|
|
angle = real_t(angles[ROLL] * (M_PI * 2 / 360));
|
|
sy = Q_sin(angle);
|
|
cy = Q_cos(angle);
|
|
|
|
angle = real_t(angles[YAW] * (M_PI * 2 / 360));
|
|
sp = Q_sin(angle);
|
|
cp = Q_cos(angle);
|
|
|
|
angle = real_t(angles[PITCH] * (M_PI * 2 / 360));
|
|
sr = Q_sin(angle);
|
|
cr = Q_cos(angle);
|
|
|
|
matrix[0][0] = cr * cp;
|
|
matrix[1][0] = cr * sp;
|
|
matrix[2][0] = -sr;
|
|
|
|
matrix[0][1] = (sy * sr) * cp - cy * sp;
|
|
matrix[1][1] = (sy * sr) * sp + cy * cp;
|
|
matrix[2][1] = sy * cr;
|
|
|
|
matrix[0][2] = (cy * sr) * cp + sy * sp;
|
|
matrix[1][2] = (cy * sr) * sp - sy * cp;
|
|
matrix[2][2] = cy * cr;
|
|
|
|
matrix[0][3] = 0.0f;
|
|
matrix[1][3] = 0.0f;
|
|
matrix[2][3] = 0.0f;
|
|
}
|
|
|
|
void AngleIMatrix(const vec_t *angles, float (*matrix)[4])
|
|
{
|
|
float angle;
|
|
float sr, sp, sy, cr, cp, cy;
|
|
|
|
angle = angles[YAW] * (M_PI * 2 / 360);
|
|
sy = Q_sin(angle);
|
|
cy = Q_cos(angle);
|
|
angle = angles[PITCH] * (M_PI * 2 / 360);
|
|
sp = Q_sin(angle);
|
|
cp = Q_cos(angle);
|
|
angle = angles[ROLL] * (M_PI * 2 / 360);
|
|
sr = Q_sin(angle);
|
|
cr = Q_cos(angle);
|
|
|
|
// matrix = (YAW * PITCH) * ROLL
|
|
matrix[0][0] = cp * cy;
|
|
matrix[0][1] = cp * sy;
|
|
matrix[0][2] = -sp;
|
|
matrix[1][0] = sr * sp * cy + cr * -sy;
|
|
matrix[1][1] = sr * sp * sy + cr * cy;
|
|
matrix[1][2] = sr * cp;
|
|
matrix[2][0] = (cr * sp * cy + -sr * -sy);
|
|
matrix[2][1] = (cr * sp * sy + -sr * cy);
|
|
matrix[2][2] = cr * cp;
|
|
matrix[0][3] = 0.0;
|
|
matrix[1][3] = 0.0;
|
|
matrix[2][3] = 0.0;
|
|
}
|
|
|
|
void NormalizeAngles(float *angles)
|
|
{
|
|
// Normalize angles
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
if (angles[i] > 180.0)
|
|
{
|
|
angles[i] -= 360.0;
|
|
}
|
|
else if (angles[i] < -180.0)
|
|
{
|
|
angles[i] += 360.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Interpolate Euler angles.
|
|
// FIXME: Use Quaternions to avoid discontinuities
|
|
// Frac is 0.0 to 1.0 (i.e., should probably be clamped, but doesn't have to be)
|
|
void InterpolateAngles(float *start, float *end, float *output, float frac)
|
|
{
|
|
int i;
|
|
float ang1, ang2;
|
|
float d;
|
|
|
|
NormalizeAngles(start);
|
|
NormalizeAngles(end);
|
|
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
ang1 = start[i];
|
|
ang2 = end[i];
|
|
|
|
d = ang2 - ang1;
|
|
if (d > 180)
|
|
{
|
|
d -= 360;
|
|
}
|
|
else if (d < -180)
|
|
{
|
|
d += 360;
|
|
}
|
|
|
|
output[i] = ang1 + d * frac;
|
|
}
|
|
|
|
NormalizeAngles(output);
|
|
}
|
|
|
|
float AngleBetweenVectors(const vec_t *v1, const vec_t *v2)
|
|
{
|
|
float angle;
|
|
float l1 = Length(v1);
|
|
float l2 = Length(v2);
|
|
|
|
if (!l1 || !l2)
|
|
return 0.0f;
|
|
|
|
angle = Q_acos(DotProduct(v1, v2)) / (l1 * l2);
|
|
angle = (angle * 180.0f) / M_PI;
|
|
|
|
return angle;
|
|
}
|
|
|
|
void VectorTransform(const vec_t *in1, float (*in2)[4], vec_t *out)
|
|
{
|
|
out[0] = DotProduct(in1, in2[0]) + in2[0][3];
|
|
out[1] = DotProduct(in1, in2[1]) + in2[1][3];
|
|
out[2] = DotProduct(in1, in2[2]) + in2[2][3];
|
|
}
|
|
|
|
int VectorCompare(const vec_t *v1, const vec_t *v2)
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
if (v1[i] != v2[i])
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
void VectorMA(const vec_t *veca, float scale, const vec_t *vecb, vec_t *vecc)
|
|
{
|
|
vecc[0] = veca[0] + scale * vecb[0];
|
|
vecc[1] = veca[1] + scale * vecb[1];
|
|
vecc[2] = veca[2] + scale * vecb[2];
|
|
}
|
|
|
|
real_t _DotProduct(const vec_t *v1, const vec_t *v2)
|
|
{
|
|
return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
|
|
}
|
|
|
|
void _VectorSubtract(vec_t *veca, vec_t *vecb, vec_t *out)
|
|
{
|
|
out[0] = veca[0] - vecb[0];
|
|
out[1] = veca[1] - vecb[1];
|
|
out[2] = veca[2] - vecb[2];
|
|
}
|
|
|
|
void _VectorAdd(vec_t *veca, vec_t *vecb, vec_t *out)
|
|
{
|
|
out[0] = veca[0] + vecb[0];
|
|
out[1] = veca[1] + vecb[1];
|
|
out[2] = veca[2] + vecb[2];
|
|
}
|
|
|
|
void _VectorCopy(vec_t *in, vec_t *out)
|
|
{
|
|
out[0] = in[0];
|
|
out[1] = in[1];
|
|
out[2] = in[2];
|
|
}
|
|
|
|
void CrossProduct(const vec_t *v1, const vec_t *v2, vec_t *cross)
|
|
{
|
|
cross[0] = v1[1] * v2[2] - v1[2] * v2[1];
|
|
cross[1] = v1[2] * v2[0] - v1[0] * v2[2];
|
|
cross[2] = v1[0] * v2[1] - v1[1] * v2[0];
|
|
}
|
|
|
|
real_t Length(const vec_t *v)
|
|
{
|
|
real_t length = 0.0f;
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
length += v[i] * v[i];
|
|
|
|
return Q_sqrt(length);
|
|
}
|
|
|
|
float Distance(const vec_t *v1, const vec_t *v2)
|
|
{
|
|
vec_t d[3];
|
|
VectorSubtract(v2, v1, d);
|
|
return Length(d);
|
|
}
|
|
|
|
real_t VectorNormalize(vec_t *v)
|
|
{
|
|
real_t length;
|
|
real_t ilength;
|
|
|
|
length = Q_sqrt(real_t(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]));
|
|
|
|
if (length)
|
|
{
|
|
ilength = 1.0 / length;
|
|
|
|
v[0] *= ilength;
|
|
v[1] *= ilength;
|
|
v[2] *= ilength;
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
void VectorInverse(vec_t *v)
|
|
{
|
|
v[0] = -v[0];
|
|
v[1] = -v[1];
|
|
v[2] = -v[2];
|
|
}
|
|
|
|
void VectorScale(const vec_t *in, vec_t scale, vec_t *out)
|
|
{
|
|
out[0] = scale * in[0];
|
|
out[1] = scale * in[1];
|
|
out[2] = scale * in[2];
|
|
}
|
|
|
|
int Q_log2(int val)
|
|
{
|
|
int answer = 0;
|
|
while (val >>= 1)
|
|
answer++;
|
|
|
|
return answer;
|
|
}
|
|
|
|
void VectorMatrix(vec_t *forward, vec_t *right, vec_t *up)
|
|
{
|
|
vec_t tmp[3];
|
|
|
|
if (forward[0] == 0 && forward[1] == 0)
|
|
{
|
|
right[0] = 1;
|
|
right[1] = 0;
|
|
right[2] = 0;
|
|
|
|
up[0] = -forward[2];
|
|
up[1] = 0;
|
|
up[2] = 0;
|
|
return;
|
|
}
|
|
|
|
tmp[0] = 0;
|
|
tmp[1] = 0;
|
|
tmp[2] = 1.0f;
|
|
|
|
CrossProduct(forward, tmp, right);
|
|
VectorNormalize(right);
|
|
CrossProduct(right, forward, up);
|
|
VectorNormalize(up);
|
|
}
|
|
|
|
void VectorAngles(const vec_t *forward, vec_t *angles)
|
|
{
|
|
float tmp, yaw, pitch;
|
|
|
|
if (forward[1] == 0 && forward[0] == 0)
|
|
{
|
|
yaw = 0;
|
|
if (forward[2] > 0)
|
|
pitch = 90;
|
|
else
|
|
pitch = 270;
|
|
}
|
|
else
|
|
{
|
|
yaw = (Q_atan2(forward[1], forward[0]) * 180 / M_PI);
|
|
if (yaw < 0)
|
|
yaw += 360;
|
|
|
|
tmp = Q_sqrt(forward[0] * forward[0] + forward[1] * forward[1]);
|
|
pitch = (Q_atan2(forward[2], tmp) * 180 / M_PI);
|
|
if (pitch < 0)
|
|
pitch += 360;
|
|
}
|
|
|
|
angles[0] = pitch;
|
|
angles[1] = yaw;
|
|
angles[2] = 0;
|
|
}
|