424 lines
9.0 KiB
C

/*
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* In addition, as a special exception, the author gives permission to
* link the code of this program with the Half-Life Game Engine ("HL
* Engine") and Modified Game Libraries ("MODs") developed by Valve,
* L.L.C ("Valve"). You must obey the GNU General Public License in all
* respects for all of the code used other than the HL Engine and MODs
* from Valve. If you modify this file, you may extend this exception
* to your version of the file, but you are not obligated to do so. If
* you do not wish to do so, delete this exception statement from your
* version.
*
*/
#pragma once
// STL uses exceptions, but we are not compiling with them - ignore warning
#pragma warning(disable : 4530)
// to help identify nav files
#define NAV_MAGIC_NUMBER 0xFEEDFACE
// version
// 1 = hiding spots as plain vector array
// 2 = hiding spots as HidingSpot objects
// 3 = Encounter spots use HidingSpot ID's instead of storing vector again
// 4 = Includes size of source bsp file to verify nav data correlation
// ---- Beta Release at V4 -----
// 5 = Added Place info
#define NAV_VERSION 5
// A place is a named group of navigation areas
typedef unsigned int Place;
// ie: "no place"
#define UNDEFINED_PLACE 0
#define ANY_PLACE 0xFFFF
#define WALK_THRU_DOORS 0x01
#define WALK_THRU_BREAKABLES 0x02
#define WALK_THRU_EVERYTHING (WALK_THRU_DOORS | WALK_THRU_BREAKABLES)
enum NavErrorType
{
NAV_OK,
NAV_CANT_ACCESS_FILE,
NAV_INVALID_FILE,
NAV_BAD_FILE_VERSION,
NAV_CORRUPT_DATA,
};
enum NavAttributeType
{
NAV_CROUCH = 0x01, // must crouch to use this node/area
NAV_JUMP = 0x02, // must jump to traverse this area
NAV_PRECISE = 0x04, // do not adjust for obstacles, just move along area
NAV_NO_JUMP = 0x08, // inhibit discontinuity jumping
};
enum NavDirType
{
NORTH = 0,
EAST,
SOUTH,
WEST,
NUM_DIRECTIONS
};
// Defines possible ways to move from one area to another
enum NavTraverseType
{
// NOTE: First 4 directions MUST match NavDirType
GO_NORTH = 0,
GO_EAST,
GO_SOUTH,
GO_WEST,
GO_LADDER_UP,
GO_LADDER_DOWN,
GO_JUMP,
NUM_TRAVERSE_TYPES
};
enum NavCornerType
{
NORTH_WEST = 0,
NORTH_EAST,
SOUTH_EAST,
SOUTH_WEST,
NUM_CORNERS
};
enum NavRelativeDirType
{
FORWARD = 0,
RIGHT,
BACKWARD,
LEFT,
UP,
DOWN,
NUM_RELATIVE_DIRECTIONS
};
const double GenerationStepSize = 25.0; // (30) was 20, but bots can't always fit
const float StepHeight = 18.0f; // if delta Z is greater than this, we have to jump to get up
const float JumpHeight = 41.8f; // if delta Z is less than this, we can jump up on it
const float JumpCrouchHeight = 58.0f; // (48) if delta Z is less than or equal to this, we can jumpcrouch up on it
// Strictly speaking, you CAN get up a slope of 1.643 (about 59 degrees), but you move very, very slowly
// This slope will represent the slope you can navigate without much slowdown
// rise/run - if greater than this, we can't move up it (de_survivor canyon ramps)
const float MaxSlope = 1.4f;
// instead of MaxSlope, we are using the following max Z component of a unit normal
const float MaxUnitZSlope = 0.7f;
const float BotRadius = 10.0f; // circular extent that contains bot
const float DeathDrop = 200.0f; // (300) distance at which we will die if we fall - should be about 600, and pay attention to fall damage during pathfind
const float HalfHumanWidth = 16.0f;
const float HalfHumanHeight = 36.0f;
const float HumanHeight = 72.0f;
struct Extent
{
Vector lo;
Vector hi;
float SizeX() const { return hi.x - lo.x; }
float SizeY() const { return hi.y - lo.y; }
float SizeZ() const { return hi.z - lo.z; }
float Area() const { return SizeX() * SizeY(); }
// return true if 'pos' is inside of this extent
bool Contains(const Vector *pos) const
{
return (pos->x >= lo.x && pos->x <= hi.x &&
pos->y >= lo.y && pos->y <= hi.y &&
pos->z >= lo.z && pos->z <= hi.z);
}
};
struct Ray
{
Vector from;
Vector to;
};
inline NavDirType OppositeDirection(NavDirType dir)
{
switch (dir)
{
case NORTH:
return SOUTH;
case EAST:
return WEST;
case SOUTH:
return NORTH;
case WEST:
return EAST;
}
return NORTH;
}
inline NavDirType DirectionLeft(NavDirType dir)
{
switch (dir)
{
case NORTH:
return WEST;
case SOUTH:
return EAST;
case EAST:
return NORTH;
case WEST:
return SOUTH;
}
return NORTH;
}
inline NavDirType DirectionRight(NavDirType dir)
{
switch (dir)
{
case NORTH:
return EAST;
case SOUTH:
return WEST;
case EAST:
return SOUTH;
case WEST:
return NORTH;
}
return NORTH;
}
inline void AddDirectionVector(Vector *v, NavDirType dir, float amount)
{
switch (dir)
{
case NORTH:
v->y -= amount;
return;
case SOUTH:
v->y += amount;
return;
case EAST:
v->x += amount;
return;
case WEST:
v->x -= amount;
return;
}
}
inline float DirectionToAngle(NavDirType dir)
{
switch (dir)
{
case NORTH:
return 270.0f;
case EAST:
return 0.0f;
case SOUTH:
return 90.0f;
case WEST:
return 180.0f;
}
return 0.0f;
}
inline NavDirType AngleToDirection(real_t angle)
{
while (angle < 0.0f)
angle += 360.0f;
while (angle > 360.0f)
angle -= 360.0f;
if (angle < 45 || angle > 315)
return EAST;
if (angle >= 45 && angle < 135)
return SOUTH;
if (angle >= 135 && angle < 225)
return WEST;
return NORTH;
}
inline void DirectionToVector2D(NavDirType dir, Vector2D *v)
{
switch (dir)
{
case NORTH:
v->x = 0.0f;
v->y = -1.0f;
break;
case SOUTH:
v->x = 0.0f;
v->y = 1.0f;
break;
case EAST:
v->x = 1.0f;
v->y = 0.0f;
break;
case WEST:
v->x = -1.0f;
v->y = 0.0f;
break;
}
}
inline void SnapToGrid(Vector *pos)
{
int cx = pos->x / GenerationStepSize;
int cy = pos->y / GenerationStepSize;
pos->x = cx * GenerationStepSize;
pos->y = cy * GenerationStepSize;
}
inline void SnapToGrid(float *value)
{
int c = *value / GenerationStepSize;
*value = c * GenerationStepSize;
}
inline float SnapToGrid(float value)
{
int c = value / GenerationStepSize;
return c * GenerationStepSize;
}
inline real_t NormalizeAngle(real_t angle)
{
while (angle < -180.0f)
angle += 360.0f;
while (angle > 180.0f)
angle -= 360.0f;
return angle;
}
inline float NormalizeAnglePositive(float angle)
{
while (angle < 0.0f)
angle += 360.0f;
while (angle >= 360.0f)
angle -= 360.0f;
return angle;
}
inline float AngleDifference(float a, float b)
{
float angleDiff = a - b;
while (angleDiff > 180.0f)
angleDiff -= 360.0f;
while (angleDiff < -180.0f)
angleDiff += 360.0f;
return angleDiff;
}
inline bool AnglesAreEqual(float a, float b, float tolerance = 5.0f)
{
#ifdef REGAMEDLL_FIXES
if (Q_abs(AngleDifference(a, b)) < tolerance)
#else
if (Q_abs(int64(AngleDifference(a, b))) < tolerance)
#endif
return true;
return false;
}
inline bool VectorsAreEqual(const Vector *a, const Vector *b, float tolerance = 0.1f)
{
if (Q_abs(a->x - b->x) < tolerance
&& Q_abs(a->y - b->y) < tolerance
&& Q_abs(a->z - b->z) < tolerance)
return true;
return false;
}
inline bool IsEntityWalkable(entvars_t *pev, unsigned int flags)
{
// if we hit a door, assume its walkable because it will open when we touch it
if (FClassnameIs(pev, "func_door") || FClassnameIs(pev, "func_door_rotating"))
return (flags & WALK_THRU_DOORS) ? true : false;
// if we hit a breakable object, assume its walkable because we will shoot it when we touch it
else if (FClassnameIs(pev, "func_breakable") && pev->takedamage == DAMAGE_YES)
return (flags & WALK_THRU_BREAKABLES) ? true : false;
return false;
}
// Check LOS, ignoring any entities that we can walk through
inline bool IsWalkableTraceLineClear(Vector &from, Vector &to, unsigned int flags = 0)
{
TraceResult result;
edict_t *pEntIgnore = nullptr;
edict_t *pEntPrev = nullptr;
Vector useFrom = from;
const int maxTries = 50;
for (int t = 0; t < maxTries; ++t)
{
UTIL_TraceLine(useFrom, to, ignore_monsters, pEntIgnore, &result);
// if we hit a walkable entity, try again
if (result.flFraction != 1.0f && (result.pHit && IsEntityWalkable(VARS(result.pHit), flags)))
{
if (result.pHit == pEntPrev)
return false; // deadlock, give up
pEntPrev = pEntIgnore;
pEntIgnore = result.pHit;
// start from just beyond where we hit to avoid infinite loops
Vector dir = to - from;
dir.NormalizeInPlace();
useFrom = result.vecEndPos + 5.0f * dir;
}
else
{
break;
}
}
if (result.flFraction == 1.0f)
return true;
return false;
}