2024-09-13 06:43:27 +07:00

4984 lines
123 KiB
C++

#include "precompiled.h"
// STL uses exceptions, but we are not compiling with them - ignore warning
#pragma warning(disable : 4530)
// long STL names get truncated in browse info.
#pragma warning(disable : 4786)
#include <list>
#include <vector>
#include <algorithm>
#include <fcntl.h>
#include <sys/stat.h>
#include <assert.h>
#ifdef _WIN32
#include <io.h>
#else
#include <unistd.h>
#endif // _WIN32
unsigned int CNavArea::m_nextID = 1;
unsigned int CNavArea::m_masterMarker = 1;
unsigned int HidingSpot::m_nextID = 1;
unsigned int HidingSpot::m_masterMarker = 0;
NavLadderList TheNavLadderList;
HidingSpotList TheHidingSpotList;
NavAreaList TheNavAreaList;
// The singleton for accessing the grid
CNavAreaGrid TheNavAreaGrid;
CNavArea *CNavArea::m_openList = nullptr;
bool CNavArea::m_isReset = false;
float lastDrawTimestamp = 0.0f;
NavAreaList goodSizedAreaList;
CNavArea *markedArea = nullptr;
CNavArea *lastSelectedArea = nullptr;
NavCornerType markedCorner = NUM_CORNERS;
bool isCreatingNavArea = false;
bool isAnchored = false;
Vector anchor;
bool isPlaceMode = false;
bool isPlacePainting = false;
float editTimestamp = 0.0f;
const int MAX_BLOCKED_AREAS = 256;
unsigned int BlockedID[MAX_BLOCKED_AREAS];
int BlockedIDCount = 0;
NOXREF void buildGoodSizedList()
{
const float minSize = 200.0f;
for (auto area : TheNavAreaList)
{
// skip the small areas
const Extent *extent = area->GetExtent();
if (extent->SizeX() < minSize || extent->SizeY() < minSize)
continue;
goodSizedAreaList.push_back(area);
}
}
void DestroyHidingSpots()
{
// remove all hiding spot references from the nav areas
for (auto area : TheNavAreaList)
area->m_hidingSpotList.clear();
HidingSpot::m_nextID = 0;
// free all the HidingSpots
for (auto spot : TheHidingSpotList)
delete spot;
TheHidingSpotList.clear();
}
// For use when loading from a file
HidingSpot::HidingSpot()
{
m_pos = Vector(0, 0, 0);
m_id = 0;
m_flags = 0;
TheHidingSpotList.push_back(this);
}
// For use when generating - assigns unique ID
HidingSpot::HidingSpot(const Vector *pos, unsigned char flags)
{
m_pos = *pos;
m_id = m_nextID++;
m_flags = flags;
TheHidingSpotList.push_back(this);
}
void HidingSpot::Save(int fd, unsigned int version) const
{
_write(fd, &m_id, sizeof(unsigned int));
_write(fd, &m_pos, 3 * sizeof(float));
_write(fd, &m_flags, sizeof(unsigned char));
}
void HidingSpot::Load(SteamFile *file, unsigned int version)
{
file->Read(&m_id, sizeof(unsigned int));
file->Read(&m_pos, 3 * sizeof(float));
file->Read(&m_flags, sizeof(unsigned char));
// update next ID to avoid ID collisions by later spots
if (m_id >= m_nextID) {
m_nextID = m_id + 1;
}
}
// Given a HidingSpot ID, return the associated HidingSpot
HidingSpot *GetHidingSpotByID(unsigned int id)
{
for (HidingSpotList::iterator iter = TheHidingSpotList.begin(); iter != TheHidingSpotList.end(); iter++)
{
HidingSpot *spot = (*iter);
if (spot->GetID() == id)
return spot;
}
return nullptr;
}
// To keep constructors consistent
void CNavArea::Initialize()
{
m_marker = 0;
m_parent = nullptr;
m_parentHow = GO_NORTH;
m_attributeFlags = 0;
m_place = 0;
for (int i = 0; i < MAX_AREA_TEAMS; i++)
{
m_danger[i] = 0.0f;
m_dangerTimestamp[i] = 0.0f;
m_clearedTimestamp[i] = 0.0f;
}
m_approachCount = 0;
// set an ID for splitting and other interactive editing - loads will overwrite this
m_id = m_nextID++;
m_prevHash = nullptr;
m_nextHash = nullptr;
}
// Constructor used during normal runtime
CNavArea::CNavArea()
{
Initialize();
}
// Assumes Z is flat
CNavArea::CNavArea(const Vector *corner, const Vector *otherCorner)
{
Initialize();
if (corner->x < otherCorner->x)
{
m_extent.lo.x = corner->x;
m_extent.hi.x = otherCorner->x;
}
else
{
m_extent.hi.x = corner->x;
m_extent.lo.x = otherCorner->x;
}
if (corner->y < otherCorner->y)
{
m_extent.lo.y = corner->y;
m_extent.hi.y = otherCorner->y;
}
else
{
m_extent.hi.y = corner->y;
m_extent.lo.y = otherCorner->y;
}
m_extent.lo.z = corner->z;
m_extent.hi.z = corner->z;
m_center.x = (m_extent.lo.x + m_extent.hi.x) / 2.0f;
m_center.y = (m_extent.lo.y + m_extent.hi.y) / 2.0f;
m_center.z = (m_extent.lo.z + m_extent.hi.z) / 2.0f;
m_neZ = corner->z;
m_swZ = otherCorner->z;
}
// Constructor used during generation phase
CNavArea::CNavArea(const Vector *nwCorner, const Vector *neCorner, const Vector *seCorner, const Vector *swCorner)
{
Initialize();
m_extent.lo = *nwCorner;
m_extent.hi = *seCorner;
m_center.x = (m_extent.lo.x + m_extent.hi.x) / 2.0f;
m_center.y = (m_extent.lo.y + m_extent.hi.y) / 2.0f;
m_center.z = (m_extent.lo.z + m_extent.hi.z) / 2.0f;
m_neZ = neCorner->z;
m_swZ = swCorner->z;
}
CNavArea::CNavArea(CNavNode *nwNode, class CNavNode *neNode, class CNavNode *seNode, class CNavNode *swNode)
{
Initialize();
m_extent.lo = *nwNode->GetPosition();
m_extent.hi = *seNode->GetPosition();
m_center.x = (m_extent.lo.x + m_extent.hi.x) / 2.0f;
m_center.y = (m_extent.lo.y + m_extent.hi.y) / 2.0f;
m_center.z = (m_extent.lo.z + m_extent.hi.z) / 2.0f;
m_neZ = neNode->GetPosition()->z;
m_swZ = swNode->GetPosition()->z;
m_node[NORTH_WEST] = nwNode;
m_node[NORTH_EAST] = neNode;
m_node[SOUTH_EAST] = seNode;
m_node[SOUTH_WEST] = swNode;
// mark internal nodes as part of this area
AssignNodes(this);
}
// Destructor
CNavArea::~CNavArea()
{
// if we are resetting the system, don't bother cleaning up - all areas are being destroyed
if (m_isReset)
return;
// tell the other areas we are going away
NavAreaList::iterator iter;
for (iter = TheNavAreaList.begin(); iter != TheNavAreaList.end(); iter++)
{
CNavArea *area = (*iter);
if (area == this)
continue;
area->OnDestroyNotify(this);
}
// unhook from ladders
for (int i = 0; i < NUM_LADDER_DIRECTIONS; i++)
{
for (NavLadderList::iterator liter = m_ladder[i].begin(); liter != m_ladder[i].end(); liter++)
{
CNavLadder *ladder = *liter;
ladder->OnDestroyNotify(this);
}
}
// remove the area from the grid
TheNavAreaGrid.RemoveNavArea(this);
}
// This is invoked when an area is going away.
// Remove any references we have to it.
void CNavArea::OnDestroyNotify(CNavArea *dead)
{
NavConnect con;
con.area = dead;
for (int d = 0; d < NUM_DIRECTIONS; d++)
m_connect[d].remove(con);
m_overlapList.remove(dead);
}
// Connect this area to given area in given direction
void CNavArea::ConnectTo(CNavArea *area, NavDirType dir)
{
DbgAssert(area);
// check if already connected
for (NavConnectList::iterator iter = m_connect[dir].begin(); iter != m_connect[dir].end(); iter++)
{
if ((*iter).area == area)
return;
}
NavConnect con;
con.area = area;
m_connect[dir].push_back(con);
//static char *dirName[] = { "NORTH", "EAST", "SOUTH", "WEST" };
//CONSOLE_ECHO(" Connected area #%d to #%d, %s\n", m_id, area->m_id, dirName[dir]);
}
// Disconnect this area from given area
void CNavArea::Disconnect(CNavArea *area)
{
NavConnect connect;
connect.area = area;
for (int dir = 0; dir < NUM_DIRECTIONS; dir++)
m_connect[dir].remove(connect);
}
// Recompute internal data once nodes have been adjusted during merge
// Destroy adjArea.
void CNavArea::FinishMerge(CNavArea *adjArea)
{
// update extent
m_extent.lo = *m_node[NORTH_WEST]->GetPosition();
m_extent.hi = *m_node[SOUTH_EAST]->GetPosition();
m_center.x = (m_extent.lo.x + m_extent.hi.x) / 2.0f;
m_center.y = (m_extent.lo.y + m_extent.hi.y) / 2.0f;
m_center.z = (m_extent.lo.z + m_extent.hi.z) / 2.0f;
m_neZ = m_node[NORTH_EAST]->GetPosition()->z;
m_swZ = m_node[SOUTH_WEST]->GetPosition()->z;
// reassign the adjacent area's internal nodes to the final area
adjArea->AssignNodes(this);
// merge adjacency links - we gain all the connections that adjArea had
MergeAdjacentConnections(adjArea);
// remove subsumed adjacent area
TheNavAreaList.remove(adjArea);
delete adjArea;
}
// For merging with "adjArea" - pick up all of "adjArea"s connections
void CNavArea::MergeAdjacentConnections(CNavArea *adjArea)
{
// merge adjacency links - we gain all the connections that adjArea had
NavConnectList::iterator iter;
int dir;
for (dir = 0; dir < NUM_DIRECTIONS; dir++)
{
for (iter = adjArea->m_connect[dir].begin(); iter != adjArea->m_connect[dir].end(); iter++)
{
NavConnect connect = (*iter);
if (connect.area != adjArea && connect.area != this)
ConnectTo(connect.area, (NavDirType)dir);
}
}
// remove any references from this area to the adjacent area, since it is now part of us
for (dir = 0; dir < NUM_DIRECTIONS; dir++)
{
NavConnect connect;
connect.area = adjArea;
m_connect[dir].remove(connect);
}
// Change other references to adjArea to refer instead to us
// We can't just replace existing connections, as several adjacent areas may have been merged into one,
// resulting in a large area adjacent to all of them ending up with multiple redunandant connections
// into the merged area, one for each of the adjacent subsumed smaller ones.
// If an area has a connection to the merged area, we must remove all references to adjArea, and add
// a single connection to us.
for (NavAreaList::iterator areaIter = TheNavAreaList.begin(); areaIter != TheNavAreaList.end(); areaIter++)
{
CNavArea *area = *areaIter;
if (area == this || area == adjArea)
continue;
for (dir = 0; dir < NUM_DIRECTIONS; dir++)
{
// check if there are any references to adjArea in this direction
bool connected = false;
for (iter = area->m_connect[dir].begin(); iter != area->m_connect[dir].end(); iter++)
{
NavConnect connect = (*iter);
if (connect.area == adjArea)
{
connected = true;
break;
}
}
if (connected)
{
// remove all references to adjArea
NavConnect connect;
connect.area = adjArea;
area->m_connect[dir].remove(connect);
// remove all references to the new area
connect.area = this;
area->m_connect[dir].remove(connect);
// add a single connection to the new area
connect.area = this;
area->m_connect[dir].push_back(connect);
}
}
}
}
// Assign internal nodes to the given area
// NOTE: "internal" nodes do not include the east or south border nodes
void CNavArea::AssignNodes(CNavArea *area)
{
CNavNode *horizLast = m_node[NORTH_EAST];
for (CNavNode *vertNode = m_node[NORTH_WEST]; vertNode != m_node[SOUTH_WEST]; vertNode = vertNode->GetConnectedNode(SOUTH))
{
for (CNavNode *horizNode = vertNode; horizNode != horizLast; horizNode = horizNode->GetConnectedNode(EAST))
{
horizNode->AssignArea(area);
}
horizLast = horizLast->GetConnectedNode(SOUTH);
}
}
// Split this area into two areas at the given edge.
// Preserve all adjacency connections.
// NOTE: This does not update node connections, only areas.
bool CNavArea::SplitEdit(bool splitAlongX, float splitEdge, CNavArea **outAlpha, CNavArea **outBeta)
{
CNavArea *alpha = nullptr;
CNavArea *beta = nullptr;
if (splitAlongX)
{
// +-----+->X
// | A |
// +-----+
// | B |
// +-----+
// |
// Y
// don't do split if at edge of area
if (splitEdge <= m_extent.lo.y + 1.0f)
return false;
if (splitEdge >= m_extent.hi.y - 1.0f)
return false;
alpha = new CNavArea;
alpha->m_extent.lo = m_extent.lo;
alpha->m_extent.hi.x = m_extent.hi.x;
alpha->m_extent.hi.y = splitEdge;
alpha->m_extent.hi.z = GetZ(&alpha->m_extent.hi);
beta = new CNavArea;
beta->m_extent.lo.x = m_extent.lo.x;
beta->m_extent.lo.y = splitEdge;
beta->m_extent.lo.z = GetZ(&beta->m_extent.lo);
beta->m_extent.hi = m_extent.hi;
alpha->ConnectTo(beta, SOUTH);
beta->ConnectTo(alpha, NORTH);
FinishSplitEdit(alpha, SOUTH);
FinishSplitEdit(beta, NORTH);
}
else
{
// +--+--+->X
// | | |
// | A|B |
// | | |
// +--+--+
// |
// Y
// don't do split if at edge of area
if (splitEdge <= m_extent.lo.x + 1.0f)
return false;
if (splitEdge >= m_extent.hi.x - 1.0f)
return false;
alpha = new CNavArea;
alpha->m_extent.lo = m_extent.lo;
alpha->m_extent.hi.x = splitEdge;
alpha->m_extent.hi.y = m_extent.hi.y;
alpha->m_extent.hi.z = GetZ(&alpha->m_extent.hi);
beta = new CNavArea;
beta->m_extent.lo.x = splitEdge;
beta->m_extent.lo.y = m_extent.lo.y;
beta->m_extent.lo.z = GetZ(&beta->m_extent.lo);
beta->m_extent.hi = m_extent.hi;
alpha->ConnectTo(beta, EAST);
beta->ConnectTo(alpha, WEST);
FinishSplitEdit(alpha, EAST);
FinishSplitEdit(beta, WEST);
}
// new areas inherit attributes from original area
alpha->SetAttributes(GetAttributes());
beta->SetAttributes(GetAttributes());
// new areas inherit place from original area
alpha->SetPlace(GetPlace());
beta->SetPlace(GetPlace());
// return new areas
if (outAlpha)
*outAlpha = alpha;
if (outBeta)
*outBeta = beta;
// remove original area
TheNavAreaList.remove(this);
delete this;
return true;
}
// Return true if given area is connected in given direction
// if dir == NUM_DIRECTIONS, check all directions (direction is unknown)
// TODO: Formalize "asymmetric" flag on connections
bool CNavArea::IsConnected(const CNavArea *area, NavDirType dir) const
{
// we are connected to ourself
if (area == this)
return true;
NavConnectList::const_iterator iter;
if (dir == NUM_DIRECTIONS)
{
// search all directions
for (int d = 0; d < NUM_DIRECTIONS; d++)
{
for (iter = m_connect[d].begin(); iter != m_connect[d].end(); iter++)
{
if (area == (*iter).area)
return true;
}
}
// check ladder connections
NavLadderList::const_iterator liter;
for (liter = m_ladder[LADDER_UP].begin(); liter != m_ladder[LADDER_UP].end(); liter++)
{
CNavLadder *ladder = *liter;
if (ladder->m_topBehindArea == area || ladder->m_topForwardArea == area || ladder->m_topLeftArea == area || ladder->m_topRightArea == area)
return true;
}
for (liter = m_ladder[LADDER_DOWN].begin(); liter != m_ladder[LADDER_DOWN].end(); liter++)
{
CNavLadder *ladder = *liter;
if (ladder->m_bottomArea == area)
return true;
}
}
else
{
// check specific direction
for (iter = m_connect[dir].begin(); iter != m_connect[dir].end(); iter++)
{
if (area == (*iter).area)
return true;
}
}
return false;
}
// Compute change in height from this area to given area
// TODO: This is approximate for now
float CNavArea::ComputeHeightChange(const CNavArea *area)
{
float ourZ = GetZ(GetCenter());
float areaZ = area->GetZ(area->GetCenter());
return areaZ - ourZ;
}
// Given the portion of the original area, update its internal data
// The "ignoreEdge" direction defines the side of the original area that the new area does not include
void CNavArea::FinishSplitEdit(CNavArea *newArea, NavDirType ignoreEdge)
{
newArea->m_center.x = (newArea->m_extent.lo.x + newArea->m_extent.hi.x) / 2.0f;
newArea->m_center.y = (newArea->m_extent.lo.y + newArea->m_extent.hi.y) / 2.0f;
newArea->m_center.z = (newArea->m_extent.lo.z + newArea->m_extent.hi.z) / 2.0f;
newArea->m_neZ = GetZ(newArea->m_extent.hi.x, newArea->m_extent.lo.y);
newArea->m_swZ = GetZ(newArea->m_extent.lo.x, newArea->m_extent.hi.y);
// connect to adjacent areas
for (int d = 0; d < NUM_DIRECTIONS; d++)
{
if (d == ignoreEdge)
continue;
int count = GetAdjacentCount((NavDirType)d);
for (int a = 0; a < count; a++)
{
CNavArea *adj = GetAdjacentArea((NavDirType)d, a);
switch (d)
{
case NORTH:
case SOUTH:
if (newArea->IsOverlappingX(adj))
{
newArea->ConnectTo(adj, (NavDirType)d);
// add reciprocal connection if needed
if (adj->IsConnected(this, OppositeDirection((NavDirType)d)))
adj->ConnectTo(newArea, OppositeDirection((NavDirType)d));
}
break;
case EAST:
case WEST:
if (newArea->IsOverlappingY(adj))
{
newArea->ConnectTo(adj, (NavDirType)d);
// add reciprocal connection if needed
if (adj->IsConnected(this, OppositeDirection((NavDirType)d)))
adj->ConnectTo(newArea, OppositeDirection((NavDirType)d));
}
break;
}
}
}
TheNavAreaList.push_back(newArea);
TheNavAreaGrid.AddNavArea(newArea);
}
// Create a new area between this area and given area
bool CNavArea::SpliceEdit(CNavArea *other)
{
CNavArea *newArea = nullptr;
Vector nw, ne, se, sw;
if (m_extent.lo.x > other->m_extent.hi.x)
{
// 'this' is east of 'other'
float top = Q_max(m_extent.lo.y, other->m_extent.lo.y);
float bottom = Q_min(m_extent.hi.y, other->m_extent.hi.y);
nw.x = other->m_extent.hi.x;
nw.y = top;
nw.z = other->GetZ(&nw);
se.x = m_extent.lo.x;
se.y = bottom;
se.z = GetZ(&se);
ne.x = se.x;
ne.y = nw.y;
ne.z = GetZ(&ne);
sw.x = nw.x;
sw.y = se.y;
sw.z = other->GetZ(&sw);
newArea = new CNavArea(&nw, &ne, &se, &sw);
this->ConnectTo(newArea, WEST);
newArea->ConnectTo(this, EAST);
other->ConnectTo(newArea, EAST);
newArea->ConnectTo(other, WEST);
}
else if (m_extent.hi.x < other->m_extent.lo.x)
{
// 'this' is west of 'other'
float top = Q_max(m_extent.lo.y, other->m_extent.lo.y);
float bottom = Q_min(m_extent.hi.y, other->m_extent.hi.y);
nw.x = m_extent.hi.x;
nw.y = top;
nw.z = GetZ(&nw);
se.x = other->m_extent.lo.x;
se.y = bottom;
se.z = other->GetZ(&se);
ne.x = se.x;
ne.y = nw.y;
ne.z = other->GetZ(&ne);
sw.x = nw.x;
sw.y = se.y;
sw.z = GetZ(&sw);
newArea = new CNavArea(&nw, &ne, &se, &sw);
this->ConnectTo(newArea, EAST);
newArea->ConnectTo(this, WEST);
other->ConnectTo(newArea, WEST);
newArea->ConnectTo(other, EAST);
}
else // 'this' overlaps in X
{
if (m_extent.lo.y > other->m_extent.hi.y)
{
// 'this' is south of 'other'
float left = Q_max(m_extent.lo.x, other->m_extent.lo.x);
float right = Q_min(m_extent.hi.x, other->m_extent.hi.x);
nw.x = left;
nw.y = other->m_extent.hi.y;
nw.z = other->GetZ(&nw);
se.x = right;
se.y = m_extent.lo.y;
se.z = GetZ(&se);
ne.x = se.x;
ne.y = nw.y;
ne.z = other->GetZ(&ne);
sw.x = nw.x;
sw.y = se.y;
sw.z = GetZ(&sw);
newArea = new CNavArea(&nw, &ne, &se, &sw);
this->ConnectTo(newArea, NORTH);
newArea->ConnectTo(this, SOUTH);
other->ConnectTo(newArea, SOUTH);
newArea->ConnectTo(other, NORTH);
}
else if (m_extent.hi.y < other->m_extent.lo.y)
{
// 'this' is north of 'other'
float left = Q_max(m_extent.lo.x, other->m_extent.lo.x);
float right = Q_min(m_extent.hi.x, other->m_extent.hi.x);
nw.x = left;
nw.y = m_extent.hi.y;
nw.z = GetZ(&nw);
se.x = right;
se.y = other->m_extent.lo.y;
se.z = other->GetZ(&se);
ne.x = se.x;
ne.y = nw.y;
ne.z = GetZ(&ne);
sw.x = nw.x;
sw.y = se.y;
sw.z = other->GetZ(&sw);
newArea = new CNavArea(&nw, &ne, &se, &sw);
this->ConnectTo(newArea, SOUTH);
newArea->ConnectTo(this, NORTH);
other->ConnectTo(newArea, NORTH);
newArea->ConnectTo(other, SOUTH);
}
else
{
// areas overlap
return false;
}
}
// if both areas have the same place, the new area inherits it
if (GetPlace() == other->GetPlace())
{
newArea->SetPlace(GetPlace());
}
else if (GetPlace() == UNDEFINED_PLACE)
{
newArea->SetPlace(other->GetPlace());
}
else if (other->GetPlace() == UNDEFINED_PLACE)
{
newArea->SetPlace(GetPlace());
}
else
{
// both have valid, but different places - pick on at random
if (RANDOM_LONG(0, 100) < 50)
newArea->SetPlace(GetPlace());
else
newArea->SetPlace(other->GetPlace());
}
TheNavAreaList.push_back(newArea);
TheNavAreaGrid.AddNavArea(newArea);
return true;
}
// Merge this area and given adjacent area
bool CNavArea::MergeEdit(CNavArea *adj)
{
// can only merge if attributes of both areas match
// check that these areas can be merged
const float tolerance = 1.0f;
bool merge = false;
if (Q_abs(m_extent.lo.x - adj->m_extent.lo.x) < tolerance &&
Q_abs(m_extent.hi.x - adj->m_extent.hi.x) < tolerance)
merge = true;
if (Q_abs(m_extent.lo.y - adj->m_extent.lo.y) < tolerance &&
Q_abs(m_extent.hi.y - adj->m_extent.hi.y) < tolerance)
merge = true;
if (merge == false)
return false;
Extent origExtent = m_extent;
// update extent
if (m_extent.lo.x > adj->m_extent.lo.x || m_extent.lo.y > adj->m_extent.lo.y)
m_extent.lo = adj->m_extent.lo;
if (m_extent.hi.x < adj->m_extent.hi.x || m_extent.hi.y < adj->m_extent.hi.y)
m_extent.hi = adj->m_extent.hi;
m_center.x = (m_extent.lo.x + m_extent.hi.x)/2.0f;
m_center.y = (m_extent.lo.y + m_extent.hi.y)/2.0f;
m_center.z = (m_extent.lo.z + m_extent.hi.z)/2.0f;
if (m_extent.hi.x > origExtent.hi.x || m_extent.lo.y < origExtent.lo.y)
m_neZ = adj->GetZ(m_extent.hi.x, m_extent.lo.y);
else
m_neZ = GetZ(m_extent.hi.x, m_extent.lo.y);
if (m_extent.lo.x < origExtent.lo.x || m_extent.hi.y > origExtent.hi.y)
m_swZ = adj->GetZ(m_extent.lo.x, m_extent.hi.y);
else
m_swZ = GetZ(m_extent.lo.x, m_extent.hi.y);
// merge adjacency links - we gain all the connections that adjArea had
MergeAdjacentConnections(adj);
// remove subsumed adjacent area
TheNavAreaList.remove(adj);
delete adj;
return true;
}
void ApproachAreaAnalysisPrep()
{
// collect "good-sized" areas for computing approach areas
buildGoodSizedList();
}
void CleanupApproachAreaAnalysisPrep()
{
goodSizedAreaList.clear();
}
// Destroy ladder representations
void DestroyLadders()
{
while (!TheNavLadderList.empty())
{
CNavLadder *ladder = TheNavLadderList.front();
TheNavLadderList.pop_front();
delete ladder;
}
}
// Free navigation map data
void DestroyNavigationMap()
{
CNavArea::m_isReset = true;
// remove each element of the list and delete them
while (!TheNavAreaList.empty())
{
CNavArea *area = TheNavAreaList.front();
TheNavAreaList.pop_front();
delete area;
}
CNavArea::m_isReset = false;
// destroy ladder representations
DestroyLadders();
// destroy all hiding spots
DestroyHidingSpots();
// destroy navigation nodes created during map learning
CNavNode *node, *next;
for (node = CNavNode::m_list; node; node = next)
{
next = node->m_next;
delete node;
}
CNavNode::m_list = nullptr;
// reset the grid
TheNavAreaGrid.Reset();
}
// Strip the "analyzed" data out of all navigation areas
void StripNavigationAreas()
{
for (NavAreaList::iterator iter = TheNavAreaList.begin(); iter != TheNavAreaList.end(); iter++)
{
CNavArea *area = (*iter);
area->Strip();
}
}
// Remove "analyzed" data from nav area
void CNavArea::Strip()
{
m_approachCount = 0;
m_spotEncounterList.clear(); // memory leak
}
// Start at given position and find first area in given direction
inline CNavArea *FindFirstAreaInDirection(const Vector *start, NavDirType dir, float range, float beneathLimit, CBaseEntity *traceIgnore = nullptr, Vector *closePos = nullptr)
{
CNavArea *area = nullptr;
Vector pos = *start;
int end = int((range / GenerationStepSize) + 0.5f);
for (int i = 1; i <= end; i++)
{
AddDirectionVector(&pos, dir, GenerationStepSize);
// make sure we dont look thru the wall
TraceResult result;
if (traceIgnore)
UTIL_TraceLine(*start, pos, ignore_monsters, ENT(traceIgnore->pev), &result);
else
UTIL_TraceLine(*start, pos, ignore_monsters, nullptr, &result);
if (result.flFraction != 1.0f)
break;
area = TheNavAreaGrid.GetNavArea(&pos, beneathLimit);
if (area)
{
if (closePos)
{
closePos->x = pos.x;
closePos->y = pos.y;
closePos->z = area->GetZ(pos.x, pos.y);
}
break;
}
}
return area;
}
// Determine if we can "jump down" from given point
inline bool testJumpDown(const Vector *fromPos, const Vector *toPos)
{
float dz = fromPos->z - toPos->z;
// drop can't be too far, or too short (or nonexistant)
if (dz <= JumpCrouchHeight || dz >= DeathDrop)
return false;
//
// Check LOS out and down
//
// ------+
// |
// F |
// |
// T
//
Vector from(fromPos->x, fromPos->y, fromPos->z + HumanHeight);
Vector to(toPos->x, toPos->y, from.z);
TraceResult result;
UTIL_TraceLine(from, to, ignore_monsters, nullptr, &result);
if (result.flFraction != 1.0f || result.fStartSolid)
return false;
from = to;
to.z = toPos->z + 2.0f;
UTIL_TraceLine(from, to, ignore_monsters, nullptr, &result);
if (result.flFraction != 1.0f || result.fStartSolid)
return false;
return true;
}
inline CNavArea *findJumpDownArea(const Vector *fromPos, NavDirType dir)
{
Vector start(fromPos->x, fromPos->y, fromPos->z + HalfHumanHeight);
AddDirectionVector(&start, dir, GenerationStepSize / 2.0f);
Vector toPos;
CNavArea *downArea = FindFirstAreaInDirection(&start, dir, 4.0f * GenerationStepSize, DeathDrop, nullptr, &toPos);
if (downArea && testJumpDown(fromPos, &toPos))
return downArea;
return nullptr;
}
// Define connections between adjacent generated areas
void ConnectGeneratedAreas()
{
CONSOLE_ECHO(" Connecting navigation areas...\n");
for (NavAreaList::iterator iter = TheNavAreaList.begin(); iter != TheNavAreaList.end(); iter++)
{
CNavArea *area = (*iter);
// scan along edge nodes, stepping one node over into the next area
// for now, only use bi-directional connections
// north edge
CNavNode *node;
for (node = area->m_node[NORTH_WEST]; node != area->m_node[NORTH_EAST]; node = node->GetConnectedNode(EAST))
{
CNavNode *adj = node->GetConnectedNode(NORTH);
if (adj && adj->GetArea() && adj->GetConnectedNode(SOUTH) == node)
{
area->ConnectTo(adj->GetArea(), NORTH);
}
else
{
CNavArea *downArea = findJumpDownArea(node->GetPosition(), NORTH);
if (downArea && downArea != area)
area->ConnectTo(downArea, NORTH);
}
}
// west edge
for (node = area->m_node[NORTH_WEST]; node != area->m_node[SOUTH_WEST]; node = node->GetConnectedNode(SOUTH))
{
CNavNode *adj = node->GetConnectedNode(WEST);
if (adj && adj->GetArea() && adj->GetConnectedNode(EAST) == node)
{
area->ConnectTo(adj->GetArea(), WEST);
}
else
{
CNavArea *downArea = findJumpDownArea(node->GetPosition(), WEST);
if (downArea && downArea != area)
area->ConnectTo(downArea, WEST);
}
}
// south edge - this edge's nodes are actually part of adjacent areas
// move one node north, and scan west to east
// TODO: This allows one-node-wide areas - do we want this?
node = area->m_node[SOUTH_WEST];
node = node->GetConnectedNode(NORTH);
if (node)
{
CNavNode *end = area->m_node[SOUTH_EAST]->GetConnectedNode(NORTH);
// TODO: Figure out why cs_backalley gets a NULL node in here...
for (; node && node != end; node = node->GetConnectedNode(EAST))
{
CNavNode *adj = node->GetConnectedNode(SOUTH);
if (adj && adj->GetArea() && adj->GetConnectedNode(NORTH) == node)
{
area->ConnectTo(adj->GetArea(), SOUTH);
}
else
{
CNavArea *downArea = findJumpDownArea(node->GetPosition(), SOUTH);
if (downArea && downArea != area)
area->ConnectTo(downArea, SOUTH);
}
}
}
// east edge - this edge's nodes are actually part of adjacent areas
node = area->m_node[NORTH_EAST];
node = node->GetConnectedNode(WEST);
if (node)
{
CNavNode *end = area->m_node[SOUTH_EAST]->GetConnectedNode(WEST);
for (; node && node != end; node = node->GetConnectedNode(SOUTH))
{
CNavNode *adj = node->GetConnectedNode(EAST);
if (adj && adj->GetArea() && adj->GetConnectedNode(WEST) == node)
{
area->ConnectTo(adj->GetArea(), EAST);
}
else
{
CNavArea *downArea = findJumpDownArea(node->GetPosition(), EAST);
if (downArea && downArea != area)
area->ConnectTo(downArea, EAST);
}
}
}
}
}
// Merge areas together to make larger ones (must remain rectangular - convex).
// Areas can only be merged if their attributes match.
void MergeGeneratedAreas()
{
CONSOLE_ECHO(" Merging navigation areas...\n");
bool merged;
do
{
merged = false;
for (NavAreaList::iterator iter = TheNavAreaList.begin(); iter != TheNavAreaList.end(); iter++)
{
CNavArea *area = (*iter);
// north edge
NavConnectList::iterator citer;
for (citer = area->m_connect[NORTH].begin(); citer != area->m_connect[NORTH].end(); citer++)
{
CNavArea *adjArea = (*citer).area;
if (area->m_node[NORTH_WEST] == adjArea->m_node[SOUTH_WEST] &&
area->m_node[NORTH_EAST] == adjArea->m_node[SOUTH_EAST] &&
area->GetAttributes() == adjArea->GetAttributes() &&
area->IsCoplanar(adjArea))
{
// merge vertical
area->m_node[NORTH_WEST] = adjArea->m_node[NORTH_WEST];
area->m_node[NORTH_EAST] = adjArea->m_node[NORTH_EAST];
merged = true;
//CONSOLE_ECHO(" Merged (north) areas #%d and #%d\n", area->m_id, adjArea->m_id);
area->FinishMerge(adjArea);
// restart scan - iterator is invalidated
break;
}
}
if (merged)
break;
// south edge
for (citer = area->m_connect[SOUTH].begin(); citer != area->m_connect[SOUTH].end(); citer++)
{
CNavArea *adjArea = (*citer).area;
if (adjArea->m_node[NORTH_WEST] == area->m_node[SOUTH_WEST] &&
adjArea->m_node[NORTH_EAST] == area->m_node[SOUTH_EAST] &&
area->GetAttributes() == adjArea->GetAttributes() &&
area->IsCoplanar(adjArea))
{
// merge vertical
area->m_node[SOUTH_WEST] = adjArea->m_node[SOUTH_WEST];
area->m_node[SOUTH_EAST] = adjArea->m_node[SOUTH_EAST];
merged = true;
//CONSOLE_ECHO(" Merged (south) areas #%d and #%d\n", area->m_id, adjArea->m_id);
area->FinishMerge(adjArea);
// restart scan - iterator is invalidated
break;
}
}
if (merged)
break;
// west edge
for (citer = area->m_connect[WEST].begin(); citer != area->m_connect[WEST].end(); citer++)
{
CNavArea *adjArea = (*citer).area;
if (area->m_node[NORTH_WEST] == adjArea->m_node[NORTH_EAST] &&
area->m_node[SOUTH_WEST] == adjArea->m_node[SOUTH_EAST] &&
area->GetAttributes() == adjArea->GetAttributes() &&
area->IsCoplanar(adjArea))
{
// merge horizontal
area->m_node[NORTH_WEST] = adjArea->m_node[NORTH_WEST];
area->m_node[SOUTH_WEST] = adjArea->m_node[SOUTH_WEST];
merged = true;
//CONSOLE_ECHO(" Merged (west) areas #%d and #%d\n", area->m_id, adjArea->m_id);
area->FinishMerge(adjArea);
// restart scan - iterator is invalidated
break;
}
}
if (merged)
break;
// east edge
for (citer = area->m_connect[EAST].begin(); citer != area->m_connect[EAST].end(); citer++)
{
CNavArea *adjArea = (*citer).area;
if (adjArea->m_node[NORTH_WEST] == area->m_node[NORTH_EAST] &&
adjArea->m_node[SOUTH_WEST] == area->m_node[SOUTH_EAST] &&
area->GetAttributes() == adjArea->GetAttributes() &&
area->IsCoplanar(adjArea))
{
// merge horizontal
area->m_node[NORTH_EAST] = adjArea->m_node[NORTH_EAST];
area->m_node[SOUTH_EAST] = adjArea->m_node[SOUTH_EAST];
merged = true;
//CONSOLE_ECHO(" Merged (east) areas #%d and #%d\n", area->m_id, adjArea->m_id);
area->FinishMerge(adjArea);
// restart scan - iterator is invalidated
break;
}
}
if (merged)
break;
}
}
while (merged);
}
// Return true if area is more or less square.
// This is used when merging to prevent long, thin, areas being created.
inline bool IsAreaRoughlySquare(const class CNavArea *area)
{
float aspect = area->GetSizeX() / area->GetSizeY();
const float maxAspect = 3.01;
const float minAspect = 1.0f / maxAspect;
if (aspect < minAspect || aspect > maxAspect)
return false;
return true;
}
// Recursively chop area in half along X until child areas are roughly square
void SplitX(CNavArea *area)
{
if (IsAreaRoughlySquare(area))
return;
float split = area->GetSizeX();
split /= 2.0f;
split += area->GetExtent()->lo.x;
SnapToGrid(&split);
const float epsilon = 0.1f;
if (Q_abs(split - area->GetExtent()->lo.x) < epsilon || Q_abs(split - area->GetExtent()->hi.x) < epsilon)
{
// too small to subdivide
return;
}
CNavArea *alpha, *beta;
if (area->SplitEdit(false, split, &alpha, &beta))
{
// split each new area until square
SplitX(alpha);
SplitX(beta);
}
}
void SplitY(CNavArea *area)
{
if (IsAreaRoughlySquare(area))
return;
float split = area->GetSizeY();
split /= 2.0f;
split += area->GetExtent()->lo.y;
SnapToGrid(&split);
const float epsilon = 0.1f;
if (Q_abs(split - area->GetExtent()->lo.y) < epsilon
|| Q_abs(split - area->GetExtent()->hi.y) < epsilon)
{
// too small to subdivide
return;
}
CNavArea *alpha, *beta;
if (area->SplitEdit(true, split, &alpha, &beta))
{
// split each new area until square
SplitY(alpha);
SplitY(beta);
}
}
// Split any long, thin, areas into roughly square chunks.
void SquareUpAreas()
{
auto iter = TheNavAreaList.begin();
while (iter != TheNavAreaList.end())
{
CNavArea *area = (*iter);
iter++;
if (!IsAreaRoughlySquare(area))
{
// chop this area into square pieces
if (area->GetSizeX() > area->GetSizeY())
SplitX(area);
else
SplitY(area);
}
}
}
// Check if an rectangular area of the given size can be
// made starting from the given node as the NW corner.
// Only consider fully connected nodes for this check.
// All of the nodes within the test area must have the same attributes.
// All of the nodes must be approximately co-planar w.r.t the NW node's normal, with the
// exception of 1x1 areas which can be any angle.
bool TestArea(CNavNode *node, int width, int height)
{
Vector normal = *node->GetNormal();
float d = -DotProduct(normal, *node->GetPosition());
const float offPlaneTolerance = 5.0f;
CNavNode *vertNode, *horizNode;
vertNode = node;
for (int y = 0; y < height; y++)
{
horizNode = vertNode;
for (int x = 0; x < width; x++)
{
// all nodes must have the same attributes
if (horizNode->GetAttributes() != node->GetAttributes())
return false;
if (horizNode->IsCovered())
return false;
if (!horizNode->IsClosedCell())
return false;
horizNode = horizNode->GetConnectedNode(EAST);
if (!horizNode)
return false;
// nodes must lie on/near the plane
if (width > 1 || height > 1)
{
float dist = Q_abs(DotProduct(*horizNode->GetPosition(), normal) + d);
if (dist > offPlaneTolerance)
return false;
}
}
vertNode = vertNode->GetConnectedNode(SOUTH);
if (!vertNode)
return false;
// nodes must lie on/near the plane
if (width > 1 || height > 1)
{
float dist = Q_abs(DotProduct(*vertNode->GetPosition(), normal) + d);
if (dist > offPlaneTolerance)
return false;
}
}
// check planarity of southern edge
if (width > 1 || height > 1)
{
horizNode = vertNode;
for (int x = 0; x < width; x++)
{
horizNode = horizNode->GetConnectedNode(EAST);
if (!horizNode)
return false;
// nodes must lie on/near the plane
float dist = Q_abs(DotProduct(*horizNode->GetPosition(), normal) + d);
if (dist > offPlaneTolerance)
return false;
}
}
return true;
}
// Create a nav area, and mark all nodes it overlaps as "covered"
// NOTE: Nodes on the east and south edges are not included.
// Returns number of nodes covered by this area, or -1 for error;
int BuildArea(CNavNode *node, int width, int height)
{
//CONSOLE_ECHO("BuildArea(#%d, %d, %d)\n", node->GetID(), width, height);
CNavNode *nwNode = node;
CNavNode *neNode = nullptr;
CNavNode *swNode = nullptr;
CNavNode *seNode = nullptr;
CNavNode *vertNode = node;
CNavNode *horizNode;
int coveredNodes = 0;
for (int y = 0; y < height; y++)
{
horizNode = vertNode;
for (int x = 0; x < width; x++)
{
horizNode->Cover();
coveredNodes++;
horizNode = horizNode->GetConnectedNode(EAST);
}
if (y == 0)
neNode = horizNode;
vertNode = vertNode->GetConnectedNode(SOUTH);
}
swNode = vertNode;
horizNode = vertNode;
for (int x = 0; x < width; x++)
{
horizNode = horizNode->GetConnectedNode(EAST);
}
seNode = horizNode;
if (!nwNode || !neNode || !seNode || !swNode)
{
CONSOLE_ECHO("ERROR: BuildArea - NULL node. (%p)(%p)(%p)(%p)\n", nwNode, neNode, seNode, swNode);
return -1;
}
CNavArea *area = new CNavArea(nwNode, neNode, seNode, swNode);
TheNavAreaList.push_back(area);
// since all internal nodes have the same attributes, set this area's attributes
area->SetAttributes(node->GetAttributes());
//Q_fprintf(fp, "f %d %d %d %d\n", nwNode->m_id, neNode->m_id, seNode->m_id, swNode->m_id);
return coveredNodes;
}
// For each ladder in the map, create a navigation representation of it.
void BuildLadders()
{
// remove any left-over ladders
DestroyLadders();
TraceResult result;
CBaseEntity *pEntity = UTIL_FindEntityByClassname(nullptr, "func_ladder");
while (pEntity && !FNullEnt(pEntity->edict()))
{
CNavLadder *ladder = new CNavLadder;
// compute top & bottom of ladder
ladder->m_top.x = (pEntity->pev->absmin.x + pEntity->pev->absmax.x) / 2.0f;
ladder->m_top.y = (pEntity->pev->absmin.y + pEntity->pev->absmax.y) / 2.0f;
ladder->m_top.z = pEntity->pev->absmax.z;
ladder->m_bottom.x = ladder->m_top.x;
ladder->m_bottom.y = ladder->m_top.y;
ladder->m_bottom.z = pEntity->pev->absmin.z;
// determine facing - assumes "normal" runged ladder
float xSize = pEntity->pev->absmax.x - pEntity->pev->absmin.x;
float ySize = pEntity->pev->absmax.y - pEntity->pev->absmin.y;
if (xSize > ySize)
{
// ladder is facing north or south - determine which way
// "pull in" traceline from bottom and top in case ladder abuts floor and/or ceiling
Vector from = ladder->m_bottom + Vector(0.0f, GenerationStepSize, GenerationStepSize);
Vector to = ladder->m_top + Vector(0.0f, GenerationStepSize, -GenerationStepSize);
UTIL_TraceLine(from, to, ignore_monsters, ENT(pEntity->pev), &result);
if (result.flFraction != 1.0f || result.fStartSolid)
ladder->m_dir = NORTH;
else
ladder->m_dir = SOUTH;
}
else
{
// ladder is facing east or west - determine which way
Vector from = ladder->m_bottom + Vector(GenerationStepSize, 0.0f, GenerationStepSize);
Vector to = ladder->m_top + Vector(GenerationStepSize, 0.0f, -GenerationStepSize);
UTIL_TraceLine(from, to, ignore_monsters, ENT(pEntity->pev), &result);
if (result.flFraction != 1.0f || result.fStartSolid)
ladder->m_dir = WEST;
else
ladder->m_dir = EAST;
}
// adjust top and bottom of ladder to make sure they are reachable
// (cs_office has a crate right in front of the base of a ladder)
Vector along = ladder->m_top - ladder->m_bottom;
float length = along.NormalizeInPlace();
Vector on, out;
const float minLadderClearance = 32.0f;
// adjust bottom to bypass blockages
const float inc = 10.0f;
float t;
for (t = 0.0f; t <= length; t += inc)
{
on = ladder->m_bottom + t * along;
out = on;
AddDirectionVector(&out, ladder->m_dir, minLadderClearance);
UTIL_TraceLine(on, out, ignore_monsters, ENT(pEntity->pev), &result);
if (result.flFraction == 1.0f && !result.fStartSolid)
{
// found viable ladder bottom
ladder->m_bottom = on;
break;
}
}
// adjust top to bypass blockages
for (t = 0.0f; t <= length; t += inc)
{
on = ladder->m_top - t * along;
out = on;
AddDirectionVector(&out, ladder->m_dir, minLadderClearance);
UTIL_TraceLine(on, out, ignore_monsters, ENT(pEntity->pev), &result);
if (result.flFraction == 1.0f && !result.fStartSolid)
{
// found viable ladder top
ladder->m_top = on;
break;
}
}
ladder->m_length = (ladder->m_top - ladder->m_bottom).Length();
DirectionToVector2D(ladder->m_dir, &ladder->m_dirVector);
ladder->m_entity = pEntity;
const float nearLadderRange = 75.0f;
// Find naviagtion area at bottom of ladder
// get approximate postion of player on ladder
Vector center = ladder->m_bottom + Vector(0, 0, GenerationStepSize);
AddDirectionVector(&center, ladder->m_dir, HalfHumanWidth);
ladder->m_bottomArea = TheNavAreaGrid.GetNearestNavArea(&center, true);
if (!ladder->m_bottomArea)
{
ALERT(at_console, "ERROR: Unconnected ladder bottom at (%g, %g, %g)\n", ladder->m_bottom.x, ladder->m_bottom.y, ladder->m_bottom.z);
}
else
{
// store reference to ladder in the area
ladder->m_bottomArea->AddLadderUp(ladder);
}
// Find adjacent navigation areas at the top of the ladder
// get approximate postion of player on ladder
center = ladder->m_top + Vector(0, 0, GenerationStepSize);
AddDirectionVector(&center, ladder->m_dir, HalfHumanWidth);
// find "ahead" area
ladder->m_topForwardArea = FindFirstAreaInDirection(&center, OppositeDirection(ladder->m_dir), nearLadderRange, 120.0f, pEntity);
if (ladder->m_topForwardArea == ladder->m_bottomArea)
ladder->m_topForwardArea = nullptr;
// find "left" area
ladder->m_topLeftArea = FindFirstAreaInDirection(&center, DirectionLeft(ladder->m_dir), nearLadderRange, 120.0f, pEntity);
if (ladder->m_topLeftArea == ladder->m_bottomArea)
ladder->m_topLeftArea = nullptr;
// find "right" area
ladder->m_topRightArea = FindFirstAreaInDirection(&center, DirectionRight(ladder->m_dir), nearLadderRange, 120.0f, pEntity);
if (ladder->m_topRightArea == ladder->m_bottomArea)
ladder->m_topRightArea = nullptr;
// find "behind" area - must look farther, since ladder is against the wall away from this area
ladder->m_topBehindArea = FindFirstAreaInDirection(&center, ladder->m_dir, 2.0f * nearLadderRange, 120.0f, pEntity);
if (ladder->m_topBehindArea == ladder->m_bottomArea)
ladder->m_topBehindArea = nullptr;
// can't include behind area, since it is not used when going up a ladder
if (!ladder->m_topForwardArea && !ladder->m_topLeftArea && !ladder->m_topRightArea)
ALERT(at_console, "ERROR: Unconnected ladder top at (%g, %g, %g)\n", ladder->m_top.x, ladder->m_top.y, ladder->m_top.z);
// store reference to ladder in the area(s)
if (ladder->m_topForwardArea)
ladder->m_topForwardArea->AddLadderDown(ladder);
if (ladder->m_topLeftArea)
ladder->m_topLeftArea->AddLadderDown(ladder);
if (ladder->m_topRightArea)
ladder->m_topRightArea->AddLadderDown(ladder);
if (ladder->m_topBehindArea)
ladder->m_topBehindArea->AddLadderDown(ladder);
// adjust top of ladder to highest connected area
float topZ = -99999.9f;
bool topAdjusted = false;
CNavArea *topAreaList[NUM_CORNERS];
topAreaList[NORTH_WEST] = ladder->m_topForwardArea;
topAreaList[NORTH_EAST] = ladder->m_topLeftArea;
topAreaList[SOUTH_EAST] = ladder->m_topRightArea;
topAreaList[SOUTH_WEST] = ladder->m_topBehindArea;
for (int a = 0; a < NUM_CORNERS; a++)
{
CNavArea *topArea = topAreaList[a];
if (!topArea)
continue;
Vector close;
topArea->GetClosestPointOnArea(&ladder->m_top, &close);
if (topZ < close.z)
{
topZ = close.z;
topAdjusted = true;
}
}
if (topAdjusted)
ladder->m_top.z = topZ;
// Determine whether this ladder is "dangling" or not
// "Dangling" ladders are too high to go up
ladder->m_isDangling = false;
if (ladder->m_bottomArea)
{
Vector bottomSpot;
ladder->m_bottomArea->GetClosestPointOnArea(&ladder->m_bottom, &bottomSpot);
if (ladder->m_bottom.z - bottomSpot.z > HumanHeight)
ladder->m_isDangling = true;
}
// add ladder to global list
TheNavLadderList.push_back(ladder);
pEntity = UTIL_FindEntityByClassname(pEntity, "func_ladder");
}
}
// Mark all areas that require a jump to get through them.
// This currently relies on jump areas having extreme slope.
void MarkJumpAreas()
{
for (NavAreaList::iterator iter = TheNavAreaList.begin(); iter != TheNavAreaList.end(); iter++)
{
CNavArea *area = (*iter);
Vector u, v;
// compute our unit surface normal
u.x = area->m_extent.hi.x - area->m_extent.lo.x;
u.y = 0.0f;
u.z = area->m_neZ - area->m_extent.lo.z;
v.x = 0.0f;
v.y = area->m_extent.hi.y - area->m_extent.lo.y;
v.z = area->m_swZ - area->m_extent.lo.z;
Vector normal = CrossProduct(u, v);
normal.NormalizeInPlace();
if (normal.z < MaxUnitZSlope)
area->SetAttributes(area->GetAttributes() | NAV_JUMP);
}
}
// This function uses the CNavNodes that have been sampled from the map to
// generate CNavAreas - rectangular areas of "walkable" space. These areas
// are connected to each other, allowing the AI to know how to move from
// area to area.
//
// This is a "greedy" algorithm that attempts to cover the walkable area
// with the fewest, largest, rectangles.
void GenerateNavigationAreaMesh()
{
// haven't yet seen a map use larger than 30...
int tryWidth = 50;
int tryHeight = 50;
int uncoveredNodes = CNavNode::GetListLength();
while (uncoveredNodes > 0)
{
for (CNavNode *node = CNavNode::GetFirst(); node; node = node->GetNext())
{
if (node->IsCovered())
continue;
if (TestArea(node, tryWidth, tryHeight))
{
int covered = BuildArea(node, tryWidth, tryHeight);
if (covered < 0)
{
CONSOLE_ECHO("GenerateNavigationAreaMesh: Error - Data corrupt.\n");
return;
}
uncoveredNodes -= covered;
}
}
if (tryWidth >= tryHeight)
tryWidth--;
else
tryHeight--;
if (tryWidth <= 0 || tryHeight <= 0)
break;
}
Extent extent;
extent.lo.x = 9999999999.9f;
extent.lo.y = 9999999999.9f;
extent.hi.x = -9999999999.9f;
extent.hi.y = -9999999999.9f;
// compute total extent
for (auto area : TheNavAreaList)
{
const Extent *areaExtent = area->GetExtent();
if (areaExtent->lo.x < extent.lo.x)
extent.lo.x = areaExtent->lo.x;
if (areaExtent->lo.y < extent.lo.y)
extent.lo.y = areaExtent->lo.y;
if (areaExtent->hi.x > extent.hi.x)
extent.hi.x = areaExtent->hi.x;
if (areaExtent->hi.y > extent.hi.y)
extent.hi.y = areaExtent->hi.y;
}
// add the areas to the grid
TheNavAreaGrid.Initialize(extent.lo.x, extent.hi.x, extent.lo.y, extent.hi.y);
for (auto area : TheNavAreaList)
{
TheNavAreaGrid.AddNavArea(area);
}
ConnectGeneratedAreas();
MergeGeneratedAreas();
SquareUpAreas();
MarkJumpAreas();
}
// Return true if 'pos' is within 2D extents of area.
bool CNavArea::IsOverlapping(const Vector *pos) const
{
if (pos->x >= m_extent.lo.x && pos->x <= m_extent.hi.x &&
pos->y >= m_extent.lo.y && pos->y <= m_extent.hi.y)
return true;
return false;
}
// Return true if 'area' overlaps our 2D extents
bool CNavArea::IsOverlapping(const CNavArea *area) const
{
if (area->m_extent.lo.x < m_extent.hi.x && area->m_extent.hi.x > m_extent.lo.x &&
area->m_extent.lo.y < m_extent.hi.y && area->m_extent.hi.y > m_extent.lo.y)
return true;
return false;
}
// Return true if 'area' overlaps our X extent
bool CNavArea::IsOverlappingX(const CNavArea *area) const
{
if (area->m_extent.lo.x < m_extent.hi.x && area->m_extent.hi.x > m_extent.lo.x)
return true;
return false;
}
// Return true if 'area' overlaps our Y extent
bool CNavArea::IsOverlappingY(const CNavArea *area) const
{
if (area->m_extent.lo.y < m_extent.hi.y && area->m_extent.hi.y > m_extent.lo.y)
return true;
return false;
}
// Return true if given point is on or above this area, but no others
bool CNavArea::Contains(const Vector *pos) const
{
// check 2D overlap
if (!IsOverlapping(pos))
return false;
// the point overlaps us, check that it is above us, but not above any areas that overlap us
float ourZ = GetZ(pos);
// if we are above this point, fail
if (ourZ > pos->z)
return false;
for (NavAreaList::const_iterator iter = m_overlapList.begin(); iter != m_overlapList.end(); iter++)
{
const CNavArea *area = (*iter);
// skip self
if (area == this)
continue;
// check 2D overlap
if (!area->IsOverlapping(pos))
continue;
float theirZ = area->GetZ(pos);
if (theirZ > pos->z)
{
// they are above the point
continue;
}
if (theirZ > ourZ)
{
// we are below an area that is closer underneath the point
return false;
}
}
return true;
}
// Return true if this area and given area are approximately co-planar
bool CNavArea::IsCoplanar(const CNavArea *area) const
{
Vector u, v;
// compute our unit surface normal
u.x = m_extent.hi.x - m_extent.lo.x;
u.y = 0.0f;
u.z = m_neZ - m_extent.lo.z;
v.x = 0.0f;
v.y = m_extent.hi.y - m_extent.lo.y;
v.z = m_swZ - m_extent.lo.z;
Vector normal = CrossProduct(u, v);
normal.NormalizeInPlace();
// compute their unit surface normal
u.x = area->m_extent.hi.x - area->m_extent.lo.x;
u.y = 0.0f;
u.z = area->m_neZ - area->m_extent.lo.z;
v.x = 0.0f;
v.y = area->m_extent.hi.y - area->m_extent.lo.y;
v.z = area->m_swZ - area->m_extent.lo.z;
Vector otherNormal = CrossProduct(u, v);
otherNormal.NormalizeInPlace();
// can only merge areas that are nearly planar, to ensure areas do not differ from underlying geometry much
const float tolerance = 0.99f; // 0.7071f; // 0.9
if (DotProduct(normal, otherNormal) > tolerance)
return true;
return false;
}
// Return Z of area at (x,y) of 'pos'
// Trilinear interpolation of Z values at quad edges.
// NOTE: pos->z is not used.
float CNavArea::GetZ(const Vector *pos) const
{
float dx = m_extent.hi.x - m_extent.lo.x;
float dy = m_extent.hi.y - m_extent.lo.y;
// guard against division by zero due to degenerate areas
if (dx == 0.0f || dy == 0.0f)
return m_neZ;
float u = (pos->x - m_extent.lo.x) / dx;
float v = (pos->y - m_extent.lo.y) / dy;
// clamp Z values to (x,y) volume
if (u < 0.0f)
u = 0.0f;
else if (u > 1.0f)
u = 1.0f;
if (v < 0.0f)
v = 0.0f;
else if (v > 1.0f)
v = 1.0f;
float northZ = m_extent.lo.z + u * (m_neZ - m_extent.lo.z);
float southZ = m_swZ + u * (m_extent.hi.z - m_swZ);
return northZ + v * (southZ - northZ);
}
float CNavArea::GetZ(float x, float y) const
{
Vector pos(x, y, 0.0f);
return GetZ(&pos);
}
// Return closest point to 'pos' on 'area'.
// Returned point is in 'close'.
void CNavArea::GetClosestPointOnArea(const Vector *pos, Vector *close) const
{
const Extent *extent = GetExtent();
if (pos->x < extent->lo.x)
{
if (pos->y < extent->lo.y)
{
// position is north-west of area
*close = extent->lo;
}
else if (pos->y > extent->hi.y)
{
// position is south-west of area
close->x = extent->lo.x;
close->y = extent->hi.y;
}
else
{
// position is west of area
close->x = extent->lo.x;
close->y = pos->y;
}
}
else if (pos->x > extent->hi.x)
{
if (pos->y < extent->lo.y)
{
// position is north-east of area
close->x = extent->hi.x;
close->y = extent->lo.y;
}
else if (pos->y > extent->hi.y)
{
// position is south-east of area
*close = extent->hi;
}
else
{
// position is east of area
close->x = extent->hi.x;
close->y = pos->y;
}
}
else if (pos->y < extent->lo.y)
{
// position is north of area
close->x = pos->x;
close->y = extent->lo.y;
}
else if (pos->y > extent->hi.y)
{
// position is south of area
close->x = pos->x;
close->y = extent->hi.y;
}
else
{
// position is inside of area - it is the 'closest point' to itself
*close = *pos;
}
close->z = GetZ(close);
}
// Return shortest distance squared between point and this area
float CNavArea::GetDistanceSquaredToPoint(const Vector *pos) const
{
const Extent *extent = GetExtent();
if (pos->x < extent->lo.x)
{
if (pos->y < extent->lo.y)
{
// position is north-west of area
return (extent->lo - *pos).LengthSquared();
}
else if (pos->y > extent->hi.y)
{
// position is south-west of area
Vector d;
d.x = extent->lo.x - pos->x;
d.y = extent->hi.y - pos->y;
d.z = m_swZ - pos->z;
return d.LengthSquared();
}
else
{
// position is west of area
float d = extent->lo.x - pos->x;
return d * d;
}
}
else if (pos->x > extent->hi.x)
{
if (pos->y < extent->lo.y)
{
// position is north-east of area
Vector d;
d.x = extent->hi.x - pos->x;
d.y = extent->lo.y - pos->y;
d.z = m_neZ - pos->z;
return d.LengthSquared();
}
else if (pos->y > extent->hi.y)
{
// position is south-east of area
return (extent->hi - *pos).LengthSquared();
}
else
{
// position is east of area
float d = pos->z - extent->hi.x;
return d * d;
}
}
else if (pos->y < extent->lo.y)
{
// position is north of area
float d = extent->lo.y - pos->y;
return d * d;
}
else if (pos->y > extent->hi.y)
{
// position is south of area
float d = pos->y - extent->hi.y;
return d * d;
}
else
{
// position is inside of 2D extent of area - find delta Z
float z = GetZ(pos);
float d = z - pos->z;
return d * d;
}
}
CNavArea *CNavArea::GetRandomAdjacentArea(NavDirType dir) const
{
int count = m_connect[dir].size();
int which = RANDOM_LONG(0, count - 1);
int i = 0;
NavConnectList::const_iterator iter;
for (iter = m_connect[dir].begin(); iter != m_connect[dir].end(); iter++)
{
if (i == which)
return (*iter).area;
i++;
}
return nullptr;
}
// Compute "portal" between to adjacent areas.
// Return center of portal opening, and half-width defining sides of portal from center.
// NOTE: center->z is unset.
void CNavArea::ComputePortal(const CNavArea *to, NavDirType dir, Vector *center, float *halfWidth) const
{
if (dir == NORTH || dir == SOUTH)
{
if (dir == NORTH)
center->y = m_extent.lo.y;
else
center->y = m_extent.hi.y;
float left = Q_max(m_extent.lo.x, to->m_extent.lo.x);
float right = Q_min(m_extent.hi.x, to->m_extent.hi.x);
// clamp to our extent in case areas are disjoint
if (left < m_extent.lo.x)
left = m_extent.lo.x;
else if (left > m_extent.hi.x)
left = m_extent.hi.x;
if (right < m_extent.lo.x)
right = m_extent.lo.x;
else if (right > m_extent.hi.x)
right = m_extent.hi.x;
center->x = (left + right) / 2.0f;
*halfWidth = (right - left) / 2.0f;
}
else // EAST or WEST
{
if (dir == WEST)
center->x = m_extent.lo.x;
else
center->x = m_extent.hi.x;
float top = Q_max(m_extent.lo.y, to->m_extent.lo.y);
float bottom = Q_min(m_extent.hi.y, to->m_extent.hi.y);
// clamp to our extent in case areas are disjoint
if (top < m_extent.lo.y)
top = m_extent.lo.y;
else if (top > m_extent.hi.y)
top = m_extent.hi.y;
if (bottom < m_extent.lo.y)
bottom = m_extent.lo.y;
else if (bottom > m_extent.hi.y)
bottom = m_extent.hi.y;
center->y = (top + bottom) / 2.0f;
*halfWidth = (bottom - top) / 2.0f;
}
}
// Compute closest point within the "portal" between to adjacent areas.
void CNavArea::ComputeClosestPointInPortal(const CNavArea *to, NavDirType dir, const Vector *fromPos, Vector *closePos) const
{
const float margin = GenerationStepSize / 2.0f;
if (dir == NORTH || dir == SOUTH)
{
if (dir == NORTH)
closePos->y = m_extent.lo.y;
else
closePos->y = m_extent.hi.y;
float left = Q_max(m_extent.lo.x, to->m_extent.lo.x);
float right = Q_min(m_extent.hi.x, to->m_extent.hi.x);
// clamp to our extent in case areas are disjoint
if (left < m_extent.lo.x)
left = m_extent.lo.x;
else if (left > m_extent.hi.x)
left = m_extent.hi.x;
if (right < m_extent.lo.x)
right = m_extent.lo.x;
else if (right > m_extent.hi.x)
right = m_extent.hi.x;
// keep margin if against edge
const float leftMargin = (to->IsEdge(WEST)) ? (left + margin) : left;
const float rightMargin = (to->IsEdge(EAST)) ? (right - margin) : right;
// limit x to within portal
if (fromPos->x < leftMargin)
closePos->x = leftMargin;
else if (fromPos->x > rightMargin)
closePos->x = rightMargin;
else
closePos->x = fromPos->x;
}
else // EAST or WEST
{
if (dir == WEST)
closePos->x = m_extent.lo.x;
else
closePos->x = m_extent.hi.x;
float top = Q_max(m_extent.lo.y, to->m_extent.lo.y);
float bottom = Q_min(m_extent.hi.y, to->m_extent.hi.y);
// clamp to our extent in case areas are disjoint
if (top < m_extent.lo.y)
top = m_extent.lo.y;
else if (top > m_extent.hi.y)
top = m_extent.hi.y;
if (bottom < m_extent.lo.y)
bottom = m_extent.lo.y;
else if (bottom > m_extent.hi.y)
bottom = m_extent.hi.y;
// keep margin if against edge
const float topMargin = (to->IsEdge(NORTH)) ? (top + margin) : top;
const float bottomMargin = (to->IsEdge(SOUTH)) ? (bottom - margin) : bottom;
// limit y to within portal
if (fromPos->y < topMargin)
closePos->y = topMargin;
else if (fromPos->y > bottomMargin)
closePos->y = bottomMargin;
else
closePos->y = fromPos->y;
}
}
// Return true if there are no bi-directional links on the given side
bool CNavArea::IsEdge(NavDirType dir) const
{
for (NavConnectList::const_iterator it = m_connect[dir].begin(); it != m_connect[dir].end(); it++)
{
const NavConnect connect = (*it);
if (connect.area->IsConnected(this, OppositeDirection(dir)))
return false;
}
return true;
}
// Return direction from this area to the given point
NavDirType CNavArea::ComputeDirection(Vector *point) const
{
if (point->x >= m_extent.lo.x && point->x <= m_extent.hi.x)
{
if (point->y < m_extent.lo.y)
return NORTH;
else if (point->y > m_extent.hi.y)
return SOUTH;
}
else if (point->y >= m_extent.lo.y && point->y <= m_extent.hi.y)
{
if (point->x < m_extent.lo.x)
return WEST;
else if (point->x > m_extent.hi.x)
return EAST;
}
// find closest direction
Vector to = *point - m_center;
if (Q_abs(to.x) > Q_abs(to.y))
{
if (to.x > 0.0f)
return EAST;
return WEST;
}
else
{
if (to.y > 0.0f)
return SOUTH;
return NORTH;
}
return NUM_DIRECTIONS;
}
// Draw area for debugging
void CNavArea::Draw(byte red, byte green, byte blue, int duration)
{
Vector nw, ne, sw, se;
nw = m_extent.lo;
se = m_extent.hi;
ne.x = se.x;
ne.y = nw.y;
ne.z = m_neZ;
sw.x = nw.x;
sw.y = se.y;
sw.z = m_swZ;
nw.z += cv_bot_nav_zdraw.value;
ne.z += cv_bot_nav_zdraw.value;
sw.z += cv_bot_nav_zdraw.value;
se.z += cv_bot_nav_zdraw.value;
float border = 2.0f;
nw.x += border;
nw.y += border;
ne.x -= border;
ne.y += border;
sw.x += border;
sw.y -= border;
se.x -= border;
se.y -= border;
UTIL_DrawBeamPoints(nw, ne, duration, red, green, blue);
UTIL_DrawBeamPoints(ne, se, duration, red, green, blue);
UTIL_DrawBeamPoints(se, sw, duration, red, green, blue);
UTIL_DrawBeamPoints(sw, nw, duration, red, green, blue);
if (GetAttributes() & NAV_CROUCH)
UTIL_DrawBeamPoints(nw, se, duration, red, green, blue);
if (GetAttributes() & NAV_JUMP)
{
UTIL_DrawBeamPoints(nw, se, duration, red, green, blue);
UTIL_DrawBeamPoints(ne, sw, duration, red, green, blue);
}
if (GetAttributes() & NAV_PRECISE)
{
float size = 8.0f;
Vector up(m_center.x, m_center.y - size, m_center.z + cv_bot_nav_zdraw.value);
Vector down(m_center.x, m_center.y + size, m_center.z + cv_bot_nav_zdraw.value);
UTIL_DrawBeamPoints(up, down, duration, red, green, blue);
Vector left(m_center.x - size, m_center.y, m_center.z + cv_bot_nav_zdraw.value);
Vector right(m_center.x + size, m_center.y, m_center.z + cv_bot_nav_zdraw.value);
UTIL_DrawBeamPoints(left, right, duration, red, green, blue);
}
if (GetAttributes() & NAV_NO_JUMP)
{
float size = 8.0f;
Vector up(m_center.x, m_center.y - size, m_center.z + cv_bot_nav_zdraw.value);
Vector down(m_center.x, m_center.y + size, m_center.z + cv_bot_nav_zdraw.value);
Vector left(m_center.x - size, m_center.y, m_center.z + cv_bot_nav_zdraw.value);
Vector right(m_center.x + size, m_center.y, m_center.z + cv_bot_nav_zdraw.value);
UTIL_DrawBeamPoints(up, right, duration, red, green, blue);
UTIL_DrawBeamPoints(right, down, duration, red, green, blue);
UTIL_DrawBeamPoints(down, left, duration, red, green, blue);
UTIL_DrawBeamPoints(left, up, duration, red, green, blue);
}
}
// Draw selected corner for debugging
void CNavArea::DrawMarkedCorner(NavCornerType corner, byte red, byte green, byte blue, int duration)
{
Vector nw, ne, sw, se;
nw = m_extent.lo;
se = m_extent.hi;
ne.x = se.x;
ne.y = nw.y;
ne.z = m_neZ;
sw.x = nw.x;
sw.y = se.y;
sw.z = m_swZ;
nw.z += cv_bot_nav_zdraw.value;
ne.z += cv_bot_nav_zdraw.value;
sw.z += cv_bot_nav_zdraw.value;
se.z += cv_bot_nav_zdraw.value;
float border = 2.0f;
nw.x += border;
nw.y += border;
ne.x -= border;
ne.y += border;
sw.x += border;
sw.y -= border;
se.x -= border;
se.y -= border;
switch (corner)
{
case NORTH_WEST:
UTIL_DrawBeamPoints(nw + Vector(0, 0, 10), nw, duration, red, green, blue);
break;
case NORTH_EAST:
UTIL_DrawBeamPoints(ne + Vector(0, 0, 10), ne, duration, red, green, blue);
break;
case SOUTH_EAST:
UTIL_DrawBeamPoints(se + Vector(0, 0, 10), se, duration, red, green, blue);
break;
case SOUTH_WEST:
UTIL_DrawBeamPoints(sw + Vector(0, 0, 10), sw, duration, red, green, blue);
break;
}
}
// Add to open list in decreasing value order
void CNavArea::AddToOpenList()
{
// mark as being on open list for quick check
m_openMarker = m_masterMarker;
// if list is empty, add and return
if (!m_openList)
{
m_openList = this;
this->m_prevOpen = nullptr;
this->m_nextOpen = nullptr;
return;
}
// insert self in ascending cost order
CNavArea *area, *last = nullptr;
for (area = m_openList; area; area = area->m_nextOpen)
{
if (this->GetTotalCost() < area->GetTotalCost())
break;
last = area;
}
if (area)
{
// insert before this area
this->m_prevOpen = area->m_prevOpen;
if (this->m_prevOpen)
this->m_prevOpen->m_nextOpen = this;
else
m_openList = this;
this->m_nextOpen = area;
area->m_prevOpen = this;
}
else
{
// append to end of list
last->m_nextOpen = this;
this->m_prevOpen = last;
this->m_nextOpen = nullptr;
}
}
// A smaller value has been found, update this area on the open list
// TODO: "bubbling" does unnecessary work, since the order of all other nodes will be unchanged - only this node is altered
void CNavArea::UpdateOnOpenList()
{
// since value can only decrease, bubble this area up from current spot
while (m_prevOpen && this->GetTotalCost() < m_prevOpen->GetTotalCost())
{
// swap position with predecessor
CNavArea *other = m_prevOpen;
CNavArea *before = other->m_prevOpen;
CNavArea *after = this->m_nextOpen;
this->m_nextOpen = other;
this->m_prevOpen = before;
other->m_prevOpen = this;
other->m_nextOpen = after;
if (before)
before->m_nextOpen = this;
else
m_openList = this;
if (after)
after->m_prevOpen = other;
}
}
void CNavArea::RemoveFromOpenList()
{
if (m_prevOpen)
m_prevOpen->m_nextOpen = m_nextOpen;
else
m_openList = m_nextOpen;
if (m_nextOpen)
m_nextOpen->m_prevOpen = m_prevOpen;
// zero is an invalid marker
m_openMarker = 0;
}
// Clears the open and closed lists for a new search
void CNavArea::ClearSearchLists()
{
CNavArea::MakeNewMarker();
m_openList = nullptr;
}
// Return the coordinates of the area's corner.
// NOTE: Do not retain the returned pointer - it is temporary.
const Vector *CNavArea::GetCorner(NavCornerType corner) const
{
static Vector pos;
switch (corner)
{
case NORTH_WEST:
return &m_extent.lo;
case NORTH_EAST:
pos.x = m_extent.hi.x;
pos.y = m_extent.lo.y;
pos.z = m_neZ;
return &pos;
case SOUTH_WEST:
pos.x = m_extent.lo.x;
pos.y = m_extent.hi.y;
pos.z = m_swZ;
return &pos;
case SOUTH_EAST:
return &m_extent.hi;
}
return nullptr;
}
// Returns true if an existing hiding spot is too close to given position
bool CNavArea::IsHidingSpotCollision(const Vector *pos) const
{
const float collisionRange = 30.0f;
for (HidingSpotList::const_iterator iter = m_hidingSpotList.begin(); iter != m_hidingSpotList.end(); iter++)
{
const HidingSpot *spot = (*iter);
if ((*spot->GetPosition() - *pos).IsLengthLessThan(collisionRange))
return true;
}
return false;
}
bool IsHidingSpotInCover(const Vector *spot)
{
int coverCount = 0;
TraceResult result;
Vector from = *spot;
from.z += HalfHumanHeight;
Vector to;
// if we are crouched underneath something, that counts as good cover
to = from + Vector(0, 0, 20.0f);
UTIL_TraceLine(from, to, ignore_monsters, nullptr, &result);
if (result.flFraction != 1.0f)
return true;
const float coverRange = 100.0f;
const float inc = M_PI / 8.0f;
for (float angle = 0.0f; angle < 2.0f * M_PI; angle += inc)
{
to = from + Vector(coverRange * Q_cos(angle), coverRange * Q_sin(angle), HalfHumanHeight);
UTIL_TraceLine(from, to, ignore_monsters, nullptr, &result);
// if traceline hit something, it hit "cover"
if (result.flFraction != 1.0f)
coverCount++;
}
// if more than half of the circle has no cover, the spot is not "in cover"
const int halfCover = 8;
if (coverCount < halfCover)
return false;
return true;
}
// Analyze local area neighborhood to find "hiding spots" for this area
void CNavArea::ComputeHidingSpots()
{
struct
{
float lo, hi;
} extent;
// "jump areas" cannot have hiding spots
if (GetAttributes() & NAV_JUMP)
return;
int cornerCount[NUM_CORNERS];
for (int i = 0; i < NUM_CORNERS; i++)
cornerCount[i] = 0;
const float cornerSize = 20.0f;
// for each direction, find extents of adjacent areas along the wall
for (int d = 0; d < NUM_DIRECTIONS; d++)
{
extent.lo = 999999.9f;
extent.hi = -999999.9f;
bool isHoriz = (d == NORTH || d == SOUTH) ? true : false;
for (auto &connect : m_connect[d])
{
// if connection is only one-way, it's a "jump down" connection (ie: a discontinuity that may mean cover)
// ignore it
if (connect.area->IsConnected(this, OppositeDirection(static_cast<NavDirType>(d))) == false)
continue;
// ignore jump areas
if (connect.area->GetAttributes() & NAV_JUMP)
continue;
if (isHoriz)
{
if (connect.area->m_extent.lo.x < extent.lo)
extent.lo = connect.area->m_extent.lo.x;
if (connect.area->m_extent.hi.x > extent.hi)
extent.hi = connect.area->m_extent.hi.x;
}
else
{
if (connect.area->m_extent.lo.y < extent.lo)
extent.lo = connect.area->m_extent.lo.y;
if (connect.area->m_extent.hi.y > extent.hi)
extent.hi = connect.area->m_extent.hi.y;
}
}
switch (d)
{
case NORTH:
if (extent.lo - m_extent.lo.x >= cornerSize)
cornerCount[NORTH_WEST]++;
if (m_extent.hi.x - extent.hi >= cornerSize)
cornerCount[NORTH_EAST]++;
break;
case SOUTH:
if (extent.lo - m_extent.lo.x >= cornerSize)
cornerCount[SOUTH_WEST]++;
if (m_extent.hi.x - extent.hi >= cornerSize)
cornerCount[SOUTH_EAST]++;
break;
case EAST:
if (extent.lo - m_extent.lo.y >= cornerSize)
cornerCount[NORTH_EAST]++;
if (m_extent.hi.y - extent.hi >= cornerSize)
cornerCount[SOUTH_EAST]++;
break;
case WEST:
if (extent.lo - m_extent.lo.y >= cornerSize)
cornerCount[NORTH_WEST]++;
if (m_extent.hi.y - extent.hi >= cornerSize)
cornerCount[SOUTH_WEST]++;
break;
}
}
// if a corner count is 2, then it really is a corner (walls on both sides)
float offset = 12.5f;
if (cornerCount[NORTH_WEST] == 2)
{
Vector pos = *GetCorner(NORTH_WEST) + Vector(offset, offset, 0.0f);
m_hidingSpotList.push_back(new HidingSpot(&pos, (IsHidingSpotInCover(&pos)) ? HidingSpot::IN_COVER : 0));
}
if (cornerCount[NORTH_EAST] == 2)
{
Vector pos = *GetCorner(NORTH_EAST) + Vector(-offset, offset, 0.0f);
if (!IsHidingSpotCollision(&pos))
m_hidingSpotList.push_back(new HidingSpot(&pos, (IsHidingSpotInCover(&pos)) ? HidingSpot::IN_COVER : 0));
}
if (cornerCount[SOUTH_WEST] == 2)
{
Vector pos = *GetCorner(SOUTH_WEST) + Vector(offset, -offset, 0.0f);
if (!IsHidingSpotCollision(&pos))
m_hidingSpotList.push_back(new HidingSpot(&pos, (IsHidingSpotInCover(&pos)) ? HidingSpot::IN_COVER : 0));
}
if (cornerCount[SOUTH_EAST] == 2)
{
Vector pos = *GetCorner(SOUTH_EAST) + Vector(-offset, -offset, 0.0f);
if (!IsHidingSpotCollision(&pos))
m_hidingSpotList.push_back(new HidingSpot(&pos, (IsHidingSpotInCover(&pos)) ? HidingSpot::IN_COVER : 0));
}
}
// Determine how much walkable area we can see from the spot, and how far away we can see.
void ClassifySniperSpot(HidingSpot *spot)
{
// assume we are crouching
Vector eye = *spot->GetPosition() + Vector(0, 0, HalfHumanHeight);
Vector walkable;
TraceResult result;
Extent sniperExtent;
float farthestRangeSq = 0.0f;
const float minSniperRangeSq = 1000.0f * 1000.0f;
bool found = false;
for (NavAreaList::iterator iter = TheNavAreaList.begin(); iter != TheNavAreaList.end(); iter++)
{
CNavArea *area = (*iter);
const Extent *extent = area->GetExtent();
// scan this area
for (walkable.y = extent->lo.y + GenerationStepSize / 2.0f; walkable.y < extent->hi.y; walkable.y += GenerationStepSize)
{
for (walkable.x = extent->lo.x + GenerationStepSize / 2.0f; walkable.x < extent->hi.x; walkable.x += GenerationStepSize)
{
walkable.z = area->GetZ(&walkable) + HalfHumanHeight;
// check line of sight
UTIL_TraceLine(eye, walkable, ignore_monsters, ignore_glass, nullptr, &result);
if (result.flFraction == 1.0f && !result.fStartSolid)
{
// can see this spot
// keep track of how far we can see
float rangeSq = (eye - walkable).LengthSquared();
if (rangeSq > farthestRangeSq)
{
farthestRangeSq = rangeSq;
if (rangeSq >= minSniperRangeSq)
{
// this is a sniper spot
// determine how good of a sniper spot it is by keeping track of the snipable area
if (found)
{
if (walkable.x < sniperExtent.lo.x)
sniperExtent.lo.x = walkable.x;
if (walkable.x > sniperExtent.hi.x)
sniperExtent.hi.x = walkable.x;
if (walkable.y < sniperExtent.lo.y)
sniperExtent.lo.y = walkable.y;
if (walkable.y > sniperExtent.hi.y)
sniperExtent.hi.y = walkable.y;
}
else
{
sniperExtent.lo = walkable;
sniperExtent.hi = walkable;
found = true;
}
}
}
}
}
}
}
if (found)
{
// if we can see a large snipable area, it is an "ideal" spot
float snipableArea = sniperExtent.Area();
const float minIdealSniperArea = 200.0f * 200.0f;
const float longSniperRangeSq = 1500.0f * 1500.0f;
if (snipableArea >= minIdealSniperArea || farthestRangeSq >= longSniperRangeSq)
spot->SetFlags(HidingSpot::IDEAL_SNIPER_SPOT);
else
spot->SetFlags(HidingSpot::GOOD_SNIPER_SPOT);
}
}
// Analyze local area neighborhood to find "sniper spots" for this area
void CNavArea::ComputeSniperSpots()
{
if (cv_bot_quicksave.value > 0.0f)
return;
for (HidingSpotList::iterator iter = m_hidingSpotList.begin(); iter != m_hidingSpotList.end(); iter++)
{
HidingSpot *spot = (*iter);
ClassifySniperSpot(spot);
}
}
// Given the areas we are moving between, return the spots we will encounter
SpotEncounter *CNavArea::GetSpotEncounter(const CNavArea *from, const CNavArea *to)
{
if (from && to)
{
SpotEncounter *e;
for (SpotEncounterList::iterator iter = m_spotEncounterList.begin(); iter != m_spotEncounterList.end(); iter++)
{
e = &(*iter);
if (e->from.area == from && e->to.area == to)
return e;
}
}
return nullptr;
}
// Add spot encounter data when moving from area to area
void CNavArea::AddSpotEncounters(const class CNavArea *from, NavDirType fromDir, const CNavArea *to, NavDirType toDir)
{
SpotEncounter e;
e.from.area = const_cast<CNavArea *>(from);
e.fromDir = fromDir;
e.to.area = const_cast<CNavArea *>(to);
e.toDir = toDir;
float halfWidth;
ComputePortal(to, toDir, &e.path.to, &halfWidth);
ComputePortal(from, fromDir, &e.path.from, &halfWidth);
const float eyeHeight = HalfHumanHeight;
e.path.from.z = from->GetZ(&e.path.from) + eyeHeight;
e.path.to.z = to->GetZ(&e.path.to) + eyeHeight;
// step along ray and track which spots can be seen
Vector dir = e.path.to - e.path.from;
float length = dir.NormalizeInPlace();
// create unique marker to flag used spots
HidingSpot::ChangeMasterMarker();
const float stepSize = 25.0f; // 50
const float seeSpotRange = 2000.0f; // 3000
TraceResult result;
Vector eye, delta;
HidingSpot *spot;
SpotOrder spotOrder;
// step along path thru this area
bool done = false;
for (float along = 0.0f; !done; along += stepSize)
{
// make sure we check the endpoint of the path segment
if (along >= length)
{
along = length;
done = true;
}
// move the eyepoint along the path segment
eye = e.path.from + along * dir;
// check each hiding spot for visibility
for (HidingSpotList::iterator iter = TheHidingSpotList.begin(); iter != TheHidingSpotList.end(); iter++)
{
spot = (*iter);
// only look at spots with cover (others are out in the open and easily seen)
if (!spot->HasGoodCover())
continue;
if (spot->IsMarked())
continue;
const Vector *spotPos = spot->GetPosition();
delta.x = spotPos->x - eye.x;
delta.y = spotPos->y - eye.y;
delta.z = (spotPos->z + eyeHeight) - eye.z;
// check if in range
if (delta.IsLengthGreaterThan(seeSpotRange))
continue;
// check if we have LOS
UTIL_TraceLine(eye, Vector(spotPos->x, spotPos->y, spotPos->z + HalfHumanHeight), ignore_monsters, ignore_glass, nullptr, &result);
if (result.flFraction != 1.0f)
continue;
// if spot is in front of us along our path, ignore it
delta.NormalizeInPlace();
float dot = DotProduct(dir, delta);
if (dot < 0.7071f && dot > -0.7071f)
{
// we only want to keep spots that BECOME visible as we walk past them
// therefore, skip ALL visible spots at the start of the path segment
if (along > 0.0f)
{
// add spot to encounter
spotOrder.spot = spot;
spotOrder.t = along / length;
e.spotList.push_back(spotOrder);
}
}
// mark spot as encountered
spot->Mark();
}
}
// add encounter to list
m_spotEncounterList.push_back(e);
}
// Compute "spot encounter" data. This is an ordered list of spots to look at
// for each possible path thru a nav area.
void CNavArea::ComputeSpotEncounters()
{
m_spotEncounterList.clear();
if (cv_bot_quicksave.value > 0.0f)
return;
// for each adjacent area
for (int fromDir = 0; fromDir < NUM_DIRECTIONS; fromDir++)
{
for (NavConnectList::iterator fromIter = m_connect[fromDir].begin(); fromIter != m_connect[fromDir].end(); fromIter++)
{
NavConnect *fromCon = &(*fromIter);
// compute encounter data for path to each adjacent area
for (int toDir = 0; toDir < NUM_DIRECTIONS; toDir++)
{
for (NavConnectList::iterator toIter = m_connect[toDir].begin(); toIter != m_connect[toDir].end(); toIter++)
{
NavConnect *toCon = &(*toIter);
if (toCon == fromCon)
continue;
// just do our direction, as we'll loop around for other direction
AddSpotEncounters(fromCon->area, (NavDirType)fromDir, toCon->area, (NavDirType)toDir);
}
}
}
}
}
// Decay the danger values
void CNavArea::DecayDanger()
{
// one kill == 1.0, which we will forget about in two minutes
const float decayRate = 1.0f / 120.0f;
for (int i = 0; i < MAX_AREA_TEAMS; i++)
{
float deltaT = gpGlobals->time - m_dangerTimestamp[i];
float decayAmount = decayRate * deltaT;
m_danger[i] -= decayAmount;
if (m_danger[i] < 0.0f)
m_danger[i] = 0.0f;
// update timestamp
m_dangerTimestamp[i] = gpGlobals->time;
}
}
// Increase the danger of this area for the given team
void CNavArea::IncreaseDanger(int teamID, float amount)
{
// before we add the new value, decay what's there
DecayDanger();
m_danger[teamID] += amount;
m_dangerTimestamp[teamID] = gpGlobals->time;
}
// Return the danger of this area (decays over time)
float CNavArea::GetDanger(int teamID)
{
DecayDanger();
return m_danger[teamID];
}
// Increase the danger of nav areas containing and near the given position
void IncreaseDangerNearby(int teamID, float amount, class CNavArea *startArea, const Vector *pos, float maxRadius)
{
if (!startArea)
return;
CNavArea::MakeNewMarker();
CNavArea::ClearSearchLists();
startArea->AddToOpenList();
startArea->SetTotalCost(0.0f);
startArea->Mark();
startArea->IncreaseDanger(teamID, amount);
while (!CNavArea::IsOpenListEmpty())
{
// get next area to check
CNavArea *area = CNavArea::PopOpenList();
// area has no hiding spots, explore adjacent areas
for (int dir = 0; dir < NUM_DIRECTIONS; dir++)
{
int count = area->GetAdjacentCount((NavDirType)dir);
for (int i = 0; i < count; i++)
{
CNavArea *adjArea = area->GetAdjacentArea((NavDirType)dir, i);
if (!adjArea->IsMarked())
{
// compute distance from danger source
float cost = (*adjArea->GetCenter() - *pos).Length();
if (cost <= maxRadius)
{
adjArea->AddToOpenList();
adjArea->SetTotalCost(cost);
adjArea->Mark();
adjArea->IncreaseDanger(teamID, amount * cost/maxRadius);
}
}
}
}
}
}
// Show danger levels for debugging
void DrawDanger()
{
for (NavAreaList::iterator iter = TheNavAreaList.begin(); iter != TheNavAreaList.end(); iter++)
{
CNavArea *area = (*iter);
Vector center = *area->GetCenter();
Vector top;
center.z = area->GetZ(&center);
float danger = area->GetDanger(0);
if (danger > 0.1f)
{
top.x = center.x;
top.y = center.y;
top.z = center.z + 10.0f * danger;
UTIL_DrawBeamPoints(center, top, 3.0f, 255, 0, 0);
}
danger = area->GetDanger(1);
if (danger > 0.1f)
{
top.x = center.x;
top.y = center.y;
top.z = center.z + 10.0f * danger;
UTIL_DrawBeamPoints(center, top, 3.0f, 0, 0, 255);
}
}
}
// If a player is at the given spot, return true
bool IsSpotOccupied(CBaseEntity *pEntity, const Vector *pos)
{
const float closeRange = 75.0f;
// is there a player in this spot
float range;
CBasePlayer *pClosest = UTIL_GetClosestPlayer(pos, &range);
if (pEntity != pClosest)
{
if (pClosest && range < closeRange)
return true;
}
// is there is a hostage in this spot
if (g_pHostages)
{
CHostage *pHostage = g_pHostages->GetClosestHostage(*pos, &range);
if (pHostage && pEntity != pHostage && range < closeRange)
return true;
}
return false;
}
class CollectHidingSpotsFunctor
{
public:
CollectHidingSpotsFunctor(CBaseEntity *me, const Vector *origin, float range, unsigned char flags, Place place = UNDEFINED_PLACE, bool useCrouchAreas = true)
{
m_me = me;
m_count = 0;
m_origin = origin;
m_range = range;
m_flags = flags;
m_place = place;
m_useCrouchAreas = useCrouchAreas;
}
enum { MAX_SPOTS = 256 };
bool operator()(CNavArea *area)
{
// if a place is specified, only consider hiding spots from areas in that place
if (m_place != UNDEFINED_PLACE && area->GetPlace() != m_place)
return true;
// collect all the hiding spots in this area
const HidingSpotList *list = area->GetHidingSpotList();
for (HidingSpotList::const_iterator iter = list->begin(); iter != list->end() && m_count < MAX_SPOTS; iter++)
{
const HidingSpot *spot = (*iter);
if (m_useCrouchAreas == false)
{
CNavArea *area = TheNavAreaGrid.GetNavArea(spot->GetPosition());
if (area && (area->GetAttributes() & NAV_CROUCH))
continue;
}
// make sure hiding spot is in range
if (m_range > 0.0f)
{
if ((*spot->GetPosition() - *m_origin).IsLengthGreaterThan(m_range))
continue;
}
// if a Player is using this hiding spot, don't consider it
if (IsSpotOccupied(m_me, spot->GetPosition()))
{
// player is in hiding spot
// TODO: Check if player is moving or sitting still
continue;
}
// only collect hiding spots with matching flags
if (m_flags & spot->GetFlags())
{
m_hidingSpot[m_count++] = spot->GetPosition();
}
}
// if we've filled up, stop searching
if (m_count == MAX_SPOTS)
return false;
return true;
}
// Remove the spot at index "i"
void RemoveSpot(int i)
{
if (m_count == 0)
return;
for (int j = i + 1; j < m_count; j++)
m_hidingSpot[j - 1] = m_hidingSpot[j];
m_count--;
}
CBaseEntity *m_me;
const Vector *m_origin;
float m_range;
const Vector *m_hidingSpot[MAX_SPOTS];
int m_count;
unsigned char m_flags;
Place m_place;
bool m_useCrouchAreas;
};
// Do a breadth-first search to find a nearby hiding spot and return it.
// Don't pick a hiding spot that a Player is currently occupying.
// TODO: Clean up this mess
const Vector *FindNearbyHidingSpot(CBaseEntity *me, const Vector *pos, CNavArea *startArea, float maxRange, bool isSniper, bool useNearest)
{
if (!startArea)
return nullptr;
// collect set of nearby hiding spots
if (isSniper)
{
CollectHidingSpotsFunctor collector(me, pos, maxRange, HidingSpot::IDEAL_SNIPER_SPOT);
SearchSurroundingAreas(startArea, pos, collector, maxRange);
if (collector.m_count)
{
int which = RANDOM_LONG(0, collector.m_count - 1);
return collector.m_hidingSpot[which];
}
else
{
// no ideal sniping spots, look for "good" sniping spots
CollectHidingSpotsFunctor collector(me, pos, maxRange, HidingSpot::GOOD_SNIPER_SPOT);
SearchSurroundingAreas(startArea, pos, collector, maxRange);
if (collector.m_count)
{
int which = RANDOM_LONG(0, collector.m_count - 1);
return collector.m_hidingSpot[which];
}
// no sniping spots at all.. fall through and pick a normal hiding spot
}
}
// collect hiding spots with decent "cover"
CollectHidingSpotsFunctor collector(me, pos, maxRange, HidingSpot::IN_COVER);
SearchSurroundingAreas(startArea, pos, collector, maxRange);
if (collector.m_count == 0)
return nullptr;
if (useNearest)
{
// return closest hiding spot
const Vector *closest = nullptr;
float closeRangeSq = 9999999999.9f;
for (int i = 0; i < collector.m_count; i++)
{
float rangeSq = (*collector.m_hidingSpot[i] - *pos).LengthSquared();
if (rangeSq < closeRangeSq)
{
closeRangeSq = rangeSq;
closest = collector.m_hidingSpot[i];
}
}
return closest;
}
// select a hiding spot at random
int which = RANDOM_LONG(0, collector.m_count - 1);
return collector.m_hidingSpot[which];
}
// Return true if moving from "start" to "finish" will cross a player's line of fire
// The path from "start" to "finish" is assumed to be a straight line
// "start" and "finish" are assumed to be points on the ground
bool IsCrossingLineOfFire(const Vector &start, const Vector &finish, CBaseEntity *pEntIgnore, int ignoreTeam)
{
for (int i = 1; i <= gpGlobals->maxClients; i++)
{
CBasePlayer *pPlayer = UTIL_PlayerByIndex(i);
if (!IsEntityValid(pPlayer))
continue;
if (pPlayer == pEntIgnore)
continue;
if (!pPlayer->IsAlive())
continue;
if (ignoreTeam && pPlayer->m_iTeam == ignoreTeam)
continue;
UTIL_MakeVectors(pPlayer->pev->v_angle + pPlayer->pev->punchangle);
const float longRange = 5000.0f;
Vector playerTarget = pPlayer->pev->origin + longRange * gpGlobals->v_forward;
Vector result;
if (IsIntersecting2D(start, finish, pPlayer->pev->origin, playerTarget, &result))
{
float loZ, hiZ;
if (start.z < finish.z)
{
loZ = start.z;
hiZ = finish.z;
}
else
{
loZ = finish.z;
hiZ = start.z;
}
if (result.z >= loZ && result.z <= hiZ + HumanHeight)
return true;
}
}
return false;
}
// Select a random hiding spot among the nav areas that are tagged with the given place
const Vector *FindRandomHidingSpot(CBaseEntity *me, Place place, bool isSniper)
{
// collect set of nearby hiding spots
if (isSniper)
{
CollectHidingSpotsFunctor collector(me, nullptr, -1.0f, HidingSpot::IDEAL_SNIPER_SPOT, place);
ForAllAreas(collector);
if (collector.m_count)
{
int which = RANDOM_LONG(0, collector.m_count - 1);
return collector.m_hidingSpot[which];
}
else
{
// no ideal sniping spots, look for "good" sniping spots
CollectHidingSpotsFunctor collector(me, nullptr, -1.0f, HidingSpot::GOOD_SNIPER_SPOT, place);
ForAllAreas(collector);
if (collector.m_count)
{
int which = RANDOM_LONG(0, collector.m_count - 1);
return collector.m_hidingSpot[which];
}
// no sniping spots at all.. fall through and pick a normal hiding spot
}
}
// collect hiding spots with decent "cover"
CollectHidingSpotsFunctor collector(me, nullptr, -1.0f, HidingSpot::IN_COVER, place);
ForAllAreas(collector);
if (collector.m_count == 0)
return nullptr;
// select a hiding spot at random
int which = RANDOM_LONG(0, collector.m_count - 1);
return collector.m_hidingSpot[which];
}
// Select a nearby retreat spot.
// Don't pick a hiding spot that a Player is currently occupying.
// If "avoidTeam" is nonzero, avoid getting close to members of that team.
const Vector *FindNearbyRetreatSpot(CBaseEntity *me, const Vector *start, CNavArea *startArea, float maxRange, int avoidTeam, bool useCrouchAreas)
{
if (!startArea)
return nullptr;
// collect hiding spots with decent "cover"
CollectHidingSpotsFunctor collector(me, start, maxRange, HidingSpot::IN_COVER, UNDEFINED_PLACE, useCrouchAreas);
SearchSurroundingAreas(startArea, start, collector, maxRange);
if (collector.m_count == 0)
return nullptr;
// find the closest unoccupied hiding spot that crosses the least lines of fire and has the best cover
for (int i = 0; i < collector.m_count; i++)
{
// check if we would have to cross a line of fire to reach this hiding spot
if (IsCrossingLineOfFire(*start, *collector.m_hidingSpot[i], me))
{
collector.RemoveSpot(i);
// back up a step, so iteration won't skip a spot
i--;
continue;
}
// check if there is someone on the avoidTeam near this hiding spot
if (avoidTeam)
{
float range;
if (UTIL_GetClosestPlayer(collector.m_hidingSpot[i], avoidTeam, &range))
{
const float dangerRange = 150.0f;
if (range < dangerRange)
{
// there is an avoidable player too near this spot - remove it
collector.RemoveSpot(i);
// back up a step, so iteration won't skip a spot
i--;
continue;
}
}
}
}
if (collector.m_count <= 0)
return nullptr;
// all remaining spots are ok - pick one at random
int which = RANDOM_LONG(0, collector.m_count - 1);
return collector.m_hidingSpot[which];
}
// Return number of players with given teamID in this area (teamID == 0 means any/all)
// TODO: Keep pointers to contained Players to make this a zero-time query
int CNavArea::GetPlayerCount(int teamID, CBasePlayer *pEntIgnore) const
{
int nCount = 0;
for (int i = 1; i <= gpGlobals->maxClients; i++)
{
CBasePlayer *pPlayer = UTIL_PlayerByIndex(i);
if (pPlayer == pEntIgnore)
continue;
if (!IsEntityValid(pPlayer))
continue;
if (!pPlayer->IsPlayer())
continue;
if (!pPlayer->IsAlive())
continue;
if (teamID == UNASSIGNED || pPlayer->m_iTeam == teamID)
{
if (Contains(&pPlayer->pev->origin))
nCount++;
}
}
return nCount;
}
CNavArea *GetMarkedArea()
{
return markedArea;
}
void EditNavAreasReset()
{
markedArea = nullptr;
lastSelectedArea = nullptr;
isCreatingNavArea = false;
isPlacePainting = false;
editTimestamp = 0.0f;
lastDrawTimestamp = 0.0f;
}
void DrawHidingSpots(const class CNavArea *area)
{
const HidingSpotList *list = area->GetHidingSpotList();
for (HidingSpotList::const_iterator iter = list->begin(); iter != list->end(); iter++)
{
const HidingSpot *spot = (*iter);
int r, g, b;
if (spot->IsIdealSniperSpot())
{
r = 255; g = 0; b = 0;
}
else if (spot->IsGoodSniperSpot())
{
r = 255; g = 0; b = 255;
}
else if (spot->HasGoodCover())
{
r = 0; g = 255; b = 0;
}
else
{
r = 0; g = 0; b = 1;
}
UTIL_DrawBeamPoints(*spot->GetPosition(), *spot->GetPosition() + Vector(0, 0, 50), 3, r, g, b);
}
}
// Draw ourselves and adjacent areas
void CNavArea::DrawConnectedAreas()
{
CBasePlayer *pLocalPlayer = UTIL_GetLocalPlayer();
if (!pLocalPlayer)
return;
const float maxRange = 500.0f;
// draw self
if (isPlaceMode)
{
if (GetPlace() == 0)
Draw(50, 0, 0, 3);
else if (GetPlace() != TheCSBots()->GetNavPlace())
Draw(0, 0, 200, 3);
else
Draw(0, 255, 0, 3);
}
else
{
Draw(255, 255, 0, 3);
DrawHidingSpots(this);
}
// randomize order of directions to make sure all connected areas are
// drawn, since we may have too many to render all at once
int dirSet[NUM_DIRECTIONS];
int i;
for (i = 0; i < NUM_DIRECTIONS; i++)
dirSet[i] = i;
// shuffle dirSet[]
for (int swapCount = 0; swapCount < 3; swapCount++)
{
int swapI = RANDOM_LONG(0, NUM_DIRECTIONS - 1);
int nextI = swapI + 1;
if (nextI >= NUM_DIRECTIONS)
nextI = 0;
int tmp = dirSet[nextI];
dirSet[nextI] = dirSet[swapI];
dirSet[swapI] = tmp;
}
// draw connected areas
for (i = 0; i < NUM_DIRECTIONS; i++)
{
NavDirType dir = (NavDirType)dirSet[i];
int count = GetAdjacentCount(dir);
for (int a = 0; a < count; a++)
{
CNavArea *adj = GetAdjacentArea(dir, a);
if (isPlaceMode)
{
if (adj->GetPlace() == 0)
adj->Draw(50, 0, 0, 3);
else if (adj->GetPlace() != TheCSBots()->GetNavPlace())
adj->Draw(0, 0, 200, 3);
else
adj->Draw(0, 255, 0, 3);
}
else
{
if (adj->IsDegenerate())
{
static IntervalTimer blink;
static bool blinkOn = false;
if (blink.GetElapsedTime() > 1.0f)
{
blink.Reset();
blinkOn = !blinkOn;
}
if (blinkOn)
adj->Draw(255, 255, 255, 3);
else
adj->Draw(255, 0, 255, 3);
}
else
{
adj->Draw(255, 0, 0, 3);
}
DrawHidingSpots(adj);
Vector from, to;
Vector hookPos;
float halfWidth;
float size = 5.0f;
ComputePortal(adj, dir, &hookPos, &halfWidth);
switch (dir)
{
case NORTH:
from = hookPos + Vector(0.0f, size, 0.0f);
to = hookPos + Vector(0.0f, -size, 0.0f);
break;
case SOUTH:
from = hookPos + Vector(0.0f, -size, 0.0f);
to = hookPos + Vector(0.0f, size, 0.0f);
break;
case EAST:
from = hookPos + Vector(-size, 0.0f, 0.0f);
to = hookPos + Vector(+size, 0.0f, 0.0f);
break;
case WEST:
from = hookPos + Vector(size, 0.0f, 0.0f);
to = hookPos + Vector(-size, 0.0f, 0.0f);
break;
}
from.z = GetZ(&from) + cv_bot_nav_zdraw.value;
to.z = adj->GetZ(&to) + cv_bot_nav_zdraw.value;
Vector drawTo;
adj->GetClosestPointOnArea(&to, &drawTo);
if (adj->IsConnected(this, OppositeDirection(dir)))
UTIL_DrawBeamPoints(from, drawTo, 3, 0, 255, 255);
else
UTIL_DrawBeamPoints(from, drawTo, 3, 0, 0, 255);
}
}
}
}
// Raise/lower a corner
void CNavArea::RaiseCorner(NavCornerType corner, int amount)
{
if (corner == NUM_CORNERS)
{
m_extent.lo.z += amount;
m_extent.hi.z += amount;
m_neZ += amount;
m_swZ += amount;
}
else
{
switch (corner)
{
case NORTH_WEST:
m_extent.lo.z += amount;
break;
case NORTH_EAST:
m_neZ += amount;
break;
case SOUTH_WEST:
m_swZ += amount;
break;
case SOUTH_EAST:
m_extent.hi.z += amount;
break;
}
}
m_center.x = (m_extent.lo.x + m_extent.hi.x) / 2.0f;
m_center.y = (m_extent.lo.y + m_extent.hi.y) / 2.0f;
m_center.z = (m_extent.lo.z + m_extent.hi.z) / 2.0f;
}
// Flood fills all areas with current place
class PlaceFloodFillFunctor
{
public:
PlaceFloodFillFunctor(CNavArea *area)
{
m_initialPlace = area->GetPlace();
}
bool operator()(CNavArea *area)
{
if (area->GetPlace() != m_initialPlace)
return false;
area->SetPlace(TheCSBots()->GetNavPlace());
return true;
}
private:
unsigned int m_initialPlace;
};
// Draw navigation areas and edit them
void EditNavAreas(NavEditCmdType cmd)
{
CBasePlayer *pLocalPlayer = UTIL_GetLocalPlayer();
if (!pLocalPlayer)
return;
// don't draw too often on fast video cards or the areas may not appear (odd video effect)
float drawTimestamp = gpGlobals->time;
const float maxDrawRate = 0.05f;
bool doDraw;
if (drawTimestamp - lastDrawTimestamp < maxDrawRate)
{
doDraw = false;
}
else
{
doDraw = true;
lastDrawTimestamp = drawTimestamp;
}
const float maxRange = 1000.0f;
int beamTime = 1;
if (doDraw)
{
// show ladder connections
for (NavLadderList::iterator iter = TheNavLadderList.begin(); iter != TheNavLadderList.end(); iter++)
{
CNavLadder *ladder = (*iter);
float dx = pLocalPlayer->pev->origin.x - ladder->m_bottom.x;
float dy = pLocalPlayer->pev->origin.y - ladder->m_bottom.y;
if (dx * dx + dy * dy > maxRange*maxRange)
continue;
UTIL_DrawBeamPoints(ladder->m_top, ladder->m_bottom, beamTime, 255, 0, 255);
Vector bottom = ladder->m_bottom;
Vector top = ladder->m_top;
AddDirectionVector(&top, ladder->m_dir, HalfHumanWidth);
AddDirectionVector(&bottom, ladder->m_dir, HalfHumanWidth);
UTIL_DrawBeamPoints(top, bottom, beamTime, 0, 0, 255);
if (ladder->m_bottomArea)
UTIL_DrawBeamPoints(bottom + Vector(0, 0, GenerationStepSize), *ladder->m_bottomArea->GetCenter(), beamTime, 0, 0, 255);
if (ladder->m_topForwardArea)
UTIL_DrawBeamPoints(top, *ladder->m_topForwardArea->GetCenter(), beamTime, 0, 0, 255);
if (ladder->m_topLeftArea)
UTIL_DrawBeamPoints(top, *ladder->m_topLeftArea->GetCenter(), beamTime, 0, 0, 255);
if (ladder->m_topRightArea)
UTIL_DrawBeamPoints(top, *ladder->m_topRightArea->GetCenter(), beamTime, 0, 0, 255);
if (ladder->m_topBehindArea)
UTIL_DrawBeamPoints(top, *ladder->m_topBehindArea->GetCenter(), beamTime, 0, 0, 255);
}
// draw approach points for marked area
if (cv_bot_traceview.value == 3 && markedArea)
{
Vector ap;
float halfWidth;
for (int i = 0; i < markedArea->GetApproachInfoCount(); i++)
{
const CNavArea::ApproachInfo *info = markedArea->GetApproachInfo(i);
// compute approach point
if (info->hereToNextHow <= GO_WEST)
{
info->here.area->ComputePortal(info->next.area, (NavDirType)info->hereToNextHow, &ap, &halfWidth);
ap.z = info->next.area->GetZ(&ap);
}
else
{
// use the area's center as an approach point
ap = *info->here.area->GetCenter();
}
UTIL_DrawBeamPoints(ap + Vector(0, 0, 50), ap + Vector(10, 0, 0), beamTime, 255, 100, 0);
UTIL_DrawBeamPoints(ap + Vector(0, 0, 50), ap + Vector(-10, 0, 0), beamTime, 255, 100, 0);
UTIL_DrawBeamPoints(ap + Vector(0, 0, 50), ap + Vector(0, 10, 0), beamTime, 255, 100, 0);
UTIL_DrawBeamPoints(ap + Vector(0, 0, 50), ap + Vector(0, -10, 0), beamTime, 255, 100, 0);
}
}
}
Vector dir;
UTIL_MakeVectorsPrivate(pLocalPlayer->pev->v_angle, dir, nullptr, nullptr);
// eye position
Vector from = pLocalPlayer->pev->origin + pLocalPlayer->pev->view_ofs;
Vector to = from + maxRange * dir;
TraceResult result;
UTIL_TraceLine(from, to, ignore_monsters, ignore_glass, ENT(pLocalPlayer->pev), &result);
if (result.flFraction != 1.0f)
{
// draw cursor
Vector cursor = result.vecEndPos;
float cursorSize = 10.0f;
if (doDraw)
{
UTIL_DrawBeamPoints(cursor + Vector(0, 0, cursorSize), cursor, beamTime, 255, 255, 255);
UTIL_DrawBeamPoints(cursor + Vector(cursorSize, 0, 0), cursor + Vector(-cursorSize, 0, 0), beamTime, 255, 255, 255);
UTIL_DrawBeamPoints(cursor + Vector(0, cursorSize, 0), cursor + Vector(0, -cursorSize, 0), beamTime, 255, 255, 255);
// show surface normal
// UTIL_DrawBeamPoints(cursor + 50.0f * result.vecPlaneNormal, cursor, beamTime, 255, 0, 255);
}
if (isCreatingNavArea)
{
if (isAnchored)
{
// show drag rectangle
if (doDraw)
{
float z = anchor.z + 2.0f;
UTIL_DrawBeamPoints(Vector(cursor.x, cursor.y, z), Vector(anchor.x, cursor.y, z), beamTime, 0, 255, 255);
UTIL_DrawBeamPoints(Vector(anchor.x, anchor.y, z), Vector(anchor.x, cursor.y, z), beamTime, 0, 255, 255);
UTIL_DrawBeamPoints(Vector(anchor.x, anchor.y, z), Vector(cursor.x, anchor.y, z), beamTime, 0, 255, 255);
UTIL_DrawBeamPoints(Vector(cursor.x, cursor.y, z), Vector(cursor.x, anchor.y, z), beamTime, 0, 255, 255);
}
}
else
{
// anchor starting corner
anchor = cursor;
isAnchored = true;
}
}
// find the area the player is pointing at
CNavArea *area = TheNavAreaGrid.GetNearestNavArea(&result.vecEndPos);
if (area)
{
// if area changed, print its ID
if (area != lastSelectedArea)
{
lastSelectedArea = area;
char buffer[190];
char attrib[80];
char locName[80];
if (area->GetPlace())
{
const char *name = TheBotPhrases->IDToName(area->GetPlace());
if (!TheBotPhrases->IsValid() && !name)
name = TheNavAreaGrid.IDToName(area->GetPlace());
if (name)
Q_strlcpy(locName, name);
else
Q_strlcpy(locName, "ERROR");
}
else
{
locName[0] = '\0';
}
if (isPlaceMode)
{
attrib[0] = '\0';
}
else
{
Q_snprintf(attrib, sizeof(attrib), "%s%s%s%s",
(area->GetAttributes() & NAV_CROUCH) ? "CROUCH " : "",
(area->GetAttributes() & NAV_JUMP) ? "JUMP " : "",
(area->GetAttributes() & NAV_PRECISE) ? "PRECISE " : "",
(area->GetAttributes() & NAV_NO_JUMP) ? "NO_JUMP " : "");
}
Q_snprintf(buffer, sizeof(buffer), "Area #%d %s %s\n", area->GetID(), locName, attrib);
UTIL_SayTextAll(buffer, pLocalPlayer);
// do "place painting"
if (isPlacePainting)
{
if (area->GetPlace() != TheCSBots()->GetNavPlace())
{
area->SetPlace(TheCSBots()->GetNavPlace());
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/lightswitch2.wav", 1, ATTN_NORM, 0, 100);
}
}
}
if (isPlaceMode)
{
area->DrawConnectedAreas();
switch (cmd)
{
case EDIT_TOGGLE_PLACE_MODE:
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/blip1.wav", 1, ATTN_NORM, 0, 100);
isPlaceMode = false;
return;
case EDIT_TOGGLE_PLACE_PAINTING:
{
if (isPlacePainting)
{
isPlacePainting = false;
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/latchunlocked2.wav", 1, ATTN_NORM, 0, 100);
}
else
{
isPlacePainting = true;
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/lightswitch2.wav", 1, ATTN_NORM, 0, 100);
// paint the initial area
area->SetPlace(TheCSBots()->GetNavPlace());
}
break;
}
case EDIT_PLACE_PICK:
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/blip1.wav", 1, ATTN_NORM, 0, 100);
TheCSBots()->SetNavPlace(area->GetPlace());
break;
case EDIT_PLACE_FLOODFILL:
PlaceFloodFillFunctor pff(area);
SearchSurroundingAreas(area, area->GetCenter(), pff);
break;
}
}
else // normal editing mode
{
// draw the "marked" area
if (markedArea && doDraw)
{
markedArea->Draw(0, 255, 255, beamTime);
if (markedCorner != NUM_CORNERS)
markedArea->DrawMarkedCorner(markedCorner, 0, 0, 255, beamTime);
if (cv_bot_traceview.value == 11)
{
// draw areas connected to the marked area
markedArea->DrawConnectedAreas();
}
}
// draw split line
const Extent *extent = area->GetExtent();
float yaw = pLocalPlayer->pev->v_angle.y;
while (yaw > 360.0f)
yaw -= 360.0f;
while (yaw < 0.0f)
yaw += 360.0f;
float splitEdge;
bool splitAlongX;
if ((yaw < 45.0f || yaw > 315.0f) || (yaw > 135.0f && yaw < 225.0f))
{
splitEdge = GenerationStepSize * int(result.vecEndPos.y / GenerationStepSize);
from.x = extent->lo.x;
from.y = splitEdge;
from.z = area->GetZ(&from) + cv_bot_nav_zdraw.value;
to.x = extent->hi.x;
to.y = splitEdge;
to.z = area->GetZ(&to) + cv_bot_nav_zdraw.value;
splitAlongX = true;
}
else
{
splitEdge = GenerationStepSize * int(result.vecEndPos.x / GenerationStepSize);
from.x = splitEdge;
from.y = extent->lo.y;
from.z = area->GetZ(&from) + cv_bot_nav_zdraw.value;
to.x = splitEdge;
to.y = extent->hi.y;
to.z = area->GetZ(&to) + cv_bot_nav_zdraw.value;
splitAlongX = false;
}
if (doDraw)
UTIL_DrawBeamPoints(from, to, beamTime, 255, 255, 255);
// draw the area we are pointing at and all connected areas
if (doDraw && (cv_bot_traceview.value != 11 || !markedArea))
area->DrawConnectedAreas();
// do area-dependant edit commands, if any
switch (cmd)
{
case EDIT_TOGGLE_PLACE_MODE:
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/blip1.wav", 1, ATTN_NORM, 0, 100);
isPlaceMode = true;
return;
case EDIT_DELETE:
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/blip1.wav", 1, ATTN_NORM, 0, 100);
TheNavAreaList.remove(area);
delete area;
return;
case EDIT_ATTRIB_CROUCH:
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/bell1.wav", 1, ATTN_NORM, 0, 100);
area->SetAttributes(area->GetAttributes() ^ NAV_CROUCH);
break;
case EDIT_ATTRIB_JUMP:
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/bell1.wav", 1, ATTN_NORM, 0, 100);
area->SetAttributes(area->GetAttributes() ^ NAV_JUMP);
break;
case EDIT_ATTRIB_PRECISE:
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/bell1.wav", 1, ATTN_NORM, 0, 100);
area->SetAttributes(area->GetAttributes() ^ NAV_PRECISE);
break;
case EDIT_ATTRIB_NO_JUMP:
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/bell1.wav", 1, ATTN_NORM, 0, 100);
area->SetAttributes(area->GetAttributes() ^ NAV_NO_JUMP);
break;
case EDIT_SPLIT:
if (area->SplitEdit(splitAlongX, splitEdge))
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "weapons/knife_hitwall1.wav", 1, ATTN_NORM, 0, 100);
else
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/button11.wav", 1, ATTN_NORM, 0, 100);
break;
case EDIT_MERGE:
if (markedArea)
{
if (area->MergeEdit(markedArea))
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/blip1.wav", 1, ATTN_NORM, 0, 100);
else
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/button11.wav", 1, ATTN_NORM, 0, 100);
}
else
{
HintMessageToAllPlayers("To merge, mark an area, highlight a second area, then invoke the merge command");
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/button11.wav", 1, ATTN_NORM, 0, 100);
}
break;
case EDIT_MARK:
if (markedArea)
{
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/blip1.wav", 1, ATTN_NORM, 0, 100);
markedArea = nullptr;
}
else
{
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/blip2.wav", 1, ATTN_NORM, 0, 100);
markedArea = area;
int connected = 0;
connected += markedArea->GetAdjacentCount(NORTH);
connected += markedArea->GetAdjacentCount(SOUTH);
connected += markedArea->GetAdjacentCount(EAST);
connected += markedArea->GetAdjacentCount(WEST);
char buffer[190];
Q_snprintf(buffer, sizeof(buffer), "Marked Area is connected to %d other Areas\n", connected);
UTIL_SayTextAll(buffer, pLocalPlayer);
}
break;
case EDIT_MARK_UNNAMED:
if (markedArea)
{
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/blip1.wav", 1, ATTN_NORM, 0, 100);
markedArea = nullptr;
}
else
{
markedArea = nullptr;
for (NavAreaList::iterator iter = TheNavAreaList.begin(); iter != TheNavAreaList.end(); iter++)
{
CNavArea *area = (*iter);
if (area->GetPlace() == 0)
{
markedArea = area;
break;
}
}
if (!markedArea)
{
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/blip1.wav", 1, ATTN_NORM, 0, 100);
}
else
{
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/blip2.wav", 1, ATTN_NORM, 0, 100);
int connected = 0;
connected += markedArea->GetAdjacentCount(NORTH);
connected += markedArea->GetAdjacentCount(SOUTH);
connected += markedArea->GetAdjacentCount(EAST);
connected += markedArea->GetAdjacentCount(WEST);
int totalUnnamedAreas = 0;
for (NavAreaList::iterator iter = TheNavAreaList.begin(); iter != TheNavAreaList.end(); iter++)
{
CNavArea *area = (*iter);
if (area->GetPlace() == 0)
{
totalUnnamedAreas++;
}
}
char buffer[190];
Q_snprintf(buffer, sizeof(buffer), "Marked Area is connected to %d other Areas - there are %d total unnamed areas\n", connected, totalUnnamedAreas);
UTIL_SayTextAll(buffer, pLocalPlayer);
}
}
break;
case EDIT_WARP_TO_MARK:
if (markedArea)
{
if (pLocalPlayer->m_iTeam == SPECTATOR && pLocalPlayer->pev->iuser1 == OBS_ROAMING)
{
Vector origin = *markedArea->GetCenter() + Vector(0, 0, 0.75f * HumanHeight);
UTIL_SetOrigin(pLocalPlayer->pev, origin);
}
}
else
{
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/button11.wav", 1, ATTN_NORM, 0, 100);
}
break;
case EDIT_CONNECT:
if (markedArea)
{
NavDirType dir = markedArea->ComputeDirection(&cursor);
if (dir == NUM_DIRECTIONS)
{
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/button11.wav", 1, ATTN_NORM, 0, 100);
}
else
{
markedArea->ConnectTo(area, dir);
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/blip1.wav", 1, ATTN_NORM, 0, 100);
}
}
else
{
HintMessageToAllPlayers("To connect areas, mark an area, highlight a second area, then invoke the connect command. Make sure the cursor is directly north, south, east, or west of the marked area.");
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/button11.wav", 1, ATTN_NORM, 0, 100);
}
break;
case EDIT_DISCONNECT:
if (markedArea)
{
markedArea->Disconnect(area);
area->Disconnect(markedArea);
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/blip1.wav", 1, ATTN_NORM, 0, 100);
}
else
{
HintMessageToAllPlayers("To disconnect areas, mark an area, highlight a second area, then invoke the disconnect command. This will remove all connections between the two areas.");
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/button11.wav", 1, ATTN_NORM, 0, 100);
}
break;
case EDIT_SPLICE:
if (markedArea)
{
if (area->SpliceEdit(markedArea))
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/blip1.wav", 1, ATTN_NORM, 0, 100);
else
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/button11.wav", 1, ATTN_NORM, 0, 100);
}
else
{
HintMessageToAllPlayers("To splice, mark an area, highlight a second area, then invoke the splice command to create an area between them");
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/button11.wav", 1, ATTN_NORM, 0, 100);
}
break;
case EDIT_SELECT_CORNER:
if (markedArea)
{
int corner = (markedCorner + 1) % (NUM_CORNERS + 1);
markedCorner = (NavCornerType)corner;
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/blip1.wav", 1, ATTN_NORM, 0, 100);
}
else
{
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/button11.wav", 1, ATTN_NORM, 0, 100);
}
break;
case EDIT_RAISE_CORNER:
if (markedArea)
{
markedArea->RaiseCorner(markedCorner, 1);
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/blip1.wav", 1, ATTN_NORM, 0, 100);
}
else
{
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/button11.wav", 1, ATTN_NORM, 0, 100);
}
break;
case EDIT_LOWER_CORNER:
if (markedArea)
{
markedArea->RaiseCorner(markedCorner, -1);
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/blip1.wav", 1, ATTN_NORM, 0, 100);
}
else
{
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/button11.wav", 1, ATTN_NORM, 0, 100);
}
break;
}
}
}
// do area-independant edit commands, if any
switch (cmd)
{
case EDIT_BEGIN_AREA:
{
if (isCreatingNavArea)
{
isCreatingNavArea = false;
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/button11.wav", 1, ATTN_NORM, 0, 100);
}
else
{
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/blip2.wav", 1, ATTN_NORM, 0, 100);
isCreatingNavArea = true;
isAnchored = false;
}
break;
}
case EDIT_END_AREA:
{
if (isCreatingNavArea)
{
// create the new nav area
CNavArea *newArea = new CNavArea(&anchor, &cursor);
#ifdef REGAMEDLL_FIXES
if (TheNavAreaList.empty())
{
// first add the areas to the grid
TheNavAreaGrid.Initialize(8192.0f, -8192.0f, 8192.0f, -8192.0f);
}
#endif
TheNavAreaList.push_back(newArea);
TheNavAreaGrid.AddNavArea(newArea);
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/blip1.wav", 1, ATTN_NORM, 0, 100);
// if we have a marked area, inter-connect the two
if (markedArea)
{
const Extent *extent = markedArea->GetExtent();
if (anchor.x > extent->hi.x && cursor.x > extent->hi.x)
{
markedArea->ConnectTo(newArea, EAST);
newArea->ConnectTo(markedArea, WEST);
}
else if (anchor.x < extent->lo.x && cursor.x < extent->lo.x)
{
markedArea->ConnectTo(newArea, WEST);
newArea->ConnectTo(markedArea, EAST);
}
else if (anchor.y > extent->hi.y && cursor.y > extent->hi.y)
{
markedArea->ConnectTo(newArea, SOUTH);
newArea->ConnectTo(markedArea, NORTH);
}
else if (anchor.y < extent->lo.y && cursor.y < extent->lo.y)
{
markedArea->ConnectTo(newArea, NORTH);
newArea->ConnectTo(markedArea, SOUTH);
}
// propogate marked area to new area
markedArea = newArea;
}
isCreatingNavArea = false;
}
else
{
EMIT_SOUND_DYN(ENT(pLocalPlayer->pev), CHAN_ITEM, "buttons/button11.wav", 1, ATTN_NORM, 0, 100);
}
break;
}
}
}
// if our last command was not mark (or no command), clear the mark area
if (cmd != EDIT_MARK && cmd != EDIT_BEGIN_AREA && cmd != EDIT_END_AREA &&
cmd != EDIT_MARK_UNNAMED && cmd != EDIT_WARP_TO_MARK &&
cmd != EDIT_SELECT_CORNER && cmd != EDIT_RAISE_CORNER && cmd != EDIT_LOWER_CORNER &&
cmd != EDIT_NONE)
markedArea = nullptr;
// if our last command was not affecting the corner, clear the corner selection
if (cmd != EDIT_SELECT_CORNER && cmd != EDIT_RAISE_CORNER && cmd != EDIT_LOWER_CORNER && cmd != EDIT_NONE)
markedCorner = NUM_CORNERS;
if (isCreatingNavArea && cmd != EDIT_BEGIN_AREA && cmd != EDIT_END_AREA && cmd != EDIT_NONE)
isCreatingNavArea = false;
}
bool GetGroundHeight(const Vector *pos, float *height, Vector *normal)
{
Vector to;
to.x = pos->x;
to.y = pos->y;
to.z = pos->z - 9999.9f;
float offset;
Vector from;
TraceResult result;
edict_t *ignore = nullptr;
float ground = 0.0f;
const float maxOffset = 100.0f;
const float inc = 10.0f;
const int MAX_GROUND_LAYERS = 16;
struct GroundLayerInfo
{
float ground;
Vector normal;
} layer[MAX_GROUND_LAYERS];
int layerCount = 0;
for (offset = 1.0f; offset < maxOffset; offset += inc)
{
from = *pos + Vector(0, 0, offset);
UTIL_TraceLine(from, to, ignore_monsters, dont_ignore_glass, ignore, &result);
if (result.flFraction != 1.0f && result.pHit)
{
// ignoring any entities that we can walk through
if (IsEntityWalkable(VARS(result.pHit), WALK_THRU_DOORS | WALK_THRU_BREAKABLES))
{
ignore = result.pHit;
continue;
}
}
if (!result.fStartSolid)
{
if (layerCount == 0 || result.vecEndPos.z > layer[layerCount - 1].ground)
{
layer[layerCount].ground = result.vecEndPos.z;
layer[layerCount].normal = result.vecPlaneNormal;
layerCount++;
if (layerCount == MAX_GROUND_LAYERS)
break;
}
}
}
if (layerCount == 0)
return false;
int i;
for (i = 0; i < layerCount - 1; i++)
{
if (layer[i + 1].ground - layer[i].ground >= HalfHumanHeight)
break;
}
*height = layer[i].ground;
if (normal)
{
*normal = layer[i].normal;
}
return true;
}
// Return the "simple" ground height below this point in "height".
// This function is much faster, but less tolerant. Make sure the give position is "well behaved".
// Return false if position is invalid (outside of map, in a solid area, etc).
bool GetSimpleGroundHeight(const Vector *pos, float *height, Vector *normal)
{
Vector to;
to.x = pos->x;
to.y = pos->y;
to.z = pos->z - 9999.9f;
TraceResult result;
UTIL_TraceLine(*pos, to, ignore_monsters, dont_ignore_glass, nullptr, &result);
if (result.fStartSolid)
return false;
*height = result.vecEndPos.z;
if (normal)
{
*normal = result.vecPlaneNormal;
}
return true;
}
// Shortest path cost, paying attention to "blocked" areas
class ApproachAreaCost
{
public:
float operator()(CNavArea *area, CNavArea *fromArea, const CNavLadder *ladder)
{
// check if this area is "blocked"
for (int i = 0; i < BlockedIDCount; i++)
{
if (area->GetID() == BlockedID[i])
return -1.0f;
}
// first area in path, no cost
if (!fromArea)
return 0.0f;
else
{
// compute distance travelled along path so far
float dist;
if (ladder)
dist = ladder->m_length;
else
dist = (*area->GetCenter() - *fromArea->GetCenter()).Length();
float cost = dist + fromArea->GetCostSoFar();
return cost;
}
}
};
// Can we see this area?
// For now, if we can see any corner, we can see the area
// TODO: Need to check LOS to more than the corners for large and/or long areas
inline bool IsAreaVisible(const Vector *pos, const CNavArea *area)
{
Vector corner;
TraceResult result;
for (int c = 0; c < NUM_CORNERS; c++)
{
corner = *area->GetCorner((NavCornerType)c);
corner.z += 0.75f * HumanHeight;
UTIL_TraceLine(*pos, corner, ignore_monsters, nullptr, &result);
if (result.flFraction == 1.0f)
{
// we can see this area
return true;
}
}
return false;
}
// Determine the set of "approach areas".
// An approach area is an area representing a place where players
// move into/out of our local neighborhood of areas.
// @todo Optimize by search from eye outward and modifying pathfinder to treat all links as bi-directional
void CNavArea::ComputeApproachAreas()
{
m_approachCount = 0;
if (cv_bot_quicksave.value > 0.0f)
return;
// use the center of the nav area as the "view" point
Vector eye = m_center;
if (GetGroundHeight(&eye, &eye.z) == false)
return;
// approximate eye position
if (GetAttributes() & NAV_CROUCH)
eye.z += 0.9f * HalfHumanHeight;
else
eye.z += 0.9f * HumanHeight;
enum { MAX_PATH_LENGTH = 256 };
CNavArea *path[MAX_PATH_LENGTH];
enum SearchType
{
FROM_EYE, ///< start search from our eyepoint outward to farArea
TO_EYE, ///< start search from farArea beack towards our eye
SEARCH_FINISHED
};
// In order to *completely* enumerate all of the approach areas, we
// need to search from our eyepoint outward, as well as from outwards
// towards our eyepoint
for (int searchType = FROM_EYE; searchType != SEARCH_FINISHED; searchType++)
{
// In order to enumerate all of the approach areas, we need to
// run the algorithm many times, once for each "far away" area
// and keep the union of the approach area sets
for (auto farArea : goodSizedAreaList)
{
BlockedIDCount = 0;
// if we can see 'farArea', try again - the whole point is to go "around the bend", so to speak
if (IsAreaVisible(&eye, farArea))
continue;
ApproachAreaCost cost;
//
// Keep building paths to farArea and blocking them off until we
// cant path there any more.
// As areas are blocked off, all exits will be enumerated.
//
while (m_approachCount < MAX_APPROACH_AREAS)
{
CNavArea *from, *to;
if (searchType == FROM_EYE)
{
// find another path *to* 'farArea'
// we must pathfind from us in order to pick up one-way paths OUT OF our area
from = this;
to = farArea;
}
else // TO_EYE
{
// find another path *from* 'farArea'
// we must pathfind to us in order to pick up one-way paths INTO our area
from = farArea;
to = this;
}
// build the actual path
if (NavAreaBuildPath(from, to, NULL, cost) == false)
break;
// find number of areas on path
int count = 0;
CNavArea *area;
for (area = to; area; area = area->GetParent())
count++;
if (count > MAX_PATH_LENGTH)
count = MAX_PATH_LENGTH;
// if the path is only two areas long, there can be no approach points
if (count <= 2)
break;
// build path starting from eye
int i = 0;
if (searchType == FROM_EYE)
{
for(area = to; i < count && area; area = area->GetParent())
{
path[count - i - 1] = area;
++i;
}
}
else // TO_EYE
{
for(area = to; i < count && area; area = area->GetParent())
path[i++] = area;
}
// traverse path to find first area we cannot see (skip the first area)
for (i = 1; i < count; i++)
{
// if we see this area, continue on
if (IsAreaVisible(&eye, path[i]))
continue;
// we can't see this area.
// mark this area as "blocked" and unusable by subsequent approach paths
if (BlockedIDCount == MAX_BLOCKED_AREAS)
{
CONSOLE_ECHO("Overflow computing approach areas for area #%d.\n", m_id);
return;
}
// if the area to be blocked is actually farArea, block the one just prior
// (blocking farArea will cause all subsequent pathfinds to fail)
int block = (path[i] == farArea) ? i - 1 : i;
if (block == 0)
continue;
BlockedID[BlockedIDCount++] = path[block]->GetID();
// store new approach area if not already in set
int a;
for (a = 0; a < m_approachCount; a++)
if (m_approach[a].here.area == path[block-1])
break;
if (a == m_approachCount)
{
m_approach[m_approachCount].prev.area = (block >= 2) ? path[block-2] : nullptr;
m_approach[m_approachCount].here.area = path[block - 1];
m_approach[m_approachCount].prevToHereHow = path[block - 1]->GetParentHow();
m_approach[m_approachCount].next.area = path[block];
m_approach[m_approachCount].hereToNextHow = path[block]->GetParentHow();
m_approachCount++;
}
// we are done with this path
break;
}
}
}
}
}
CNavAreaGrid::CNavAreaGrid() : m_cellSize(300.0f)
{
m_grid = nullptr;
Reset();
}
CNavAreaGrid::~CNavAreaGrid()
{
delete[] m_grid;
m_grid = nullptr;
}
// Clear the grid
void CNavAreaGrid::Reset()
{
if (m_grid)
{
delete[] m_grid;
m_grid = nullptr;
}
m_gridSizeX = 0;
m_gridSizeY = 0;
// clear the hash table
for (int i = 0; i < HASH_TABLE_SIZE; i++)
m_hashTable[i] = nullptr;
m_areaCount = 0;
// reset static vars
EditNavAreasReset();
}
// Allocate the grid and define its extents
void CNavAreaGrid::Initialize(float minX, float maxX, float minY, float maxY)
{
if (m_grid)
Reset();
m_minX = minX;
m_minY = minY;
m_gridSizeX = int((maxX - minX) / m_cellSize + 1);
m_gridSizeY = int((maxY - minY) / m_cellSize + 1);
m_grid = new NavAreaList[m_gridSizeX * m_gridSizeY];
}
// Add an area to the grid
void CNavAreaGrid::AddNavArea(CNavArea *area)
{
// add to grid
const Extent *extent = area->GetExtent();
int loX = WorldToGridX(extent->lo.x);
int loY = WorldToGridY(extent->lo.y);
int hiX = WorldToGridX(extent->hi.x);
int hiY = WorldToGridY(extent->hi.y);
for (int y = loY; y <= hiY; y++)
{
for (int x = loX; x <= hiX; x++)
m_grid[x + y * m_gridSizeX].push_back(const_cast<CNavArea *>(area));
}
// add to hash table
int key = ComputeHashKey(area->GetID());
if (m_hashTable[key])
{
// add to head of list in this slot
area->m_prevHash = nullptr;
area->m_nextHash = m_hashTable[key];
m_hashTable[key]->m_prevHash = area;
m_hashTable[key] = area;
}
else
{
// first entry in this slot
m_hashTable[key] = area;
area->m_nextHash = nullptr;
area->m_prevHash = nullptr;
}
m_areaCount++;
}
// Remove an area from the grid
void CNavAreaGrid::RemoveNavArea(CNavArea *area)
{
// add to grid
const Extent *extent = area->GetExtent();
int loX = WorldToGridX(extent->lo.x);
int loY = WorldToGridY(extent->lo.y);
int hiX = WorldToGridX(extent->hi.x);
int hiY = WorldToGridY(extent->hi.y);
for (int y = loY; y <= hiY; y++)
{
for (int x = loX; x <= hiX; x++)
{
m_grid[x + y * m_gridSizeX].remove(area);
}
}
// remove from hash table
int key = ComputeHashKey(area->GetID());
if (area->m_prevHash)
{
area->m_prevHash->m_nextHash = area->m_nextHash;
}
else
{
// area was at start of list
m_hashTable[key] = area->m_nextHash;
if (m_hashTable[key])
m_hashTable[key]->m_prevHash = nullptr;
}
if (area->m_nextHash)
{
area->m_nextHash->m_prevHash = area->m_prevHash;
}
m_areaCount--;
}
bool CNavAreaGrid::IsValid() const
{
return m_grid && m_areaCount > 0;
}
// Given a position, return the nav area that IsOverlapping and is *immediately* beneath it
CNavArea *CNavAreaGrid::GetNavArea(const Vector *pos, float beneathLimit) const
{
if (!m_grid)
return nullptr;
// get list in cell that contains position
int x = WorldToGridX(pos->x);
int y = WorldToGridY(pos->y);
NavAreaList *list = &m_grid[x + y * m_gridSizeX];
// search cell list to find correct area
CNavArea *use = nullptr;
float useZ = -99999999.9f;
Vector testPos = *pos + Vector(0, 0, 5);
for (NavAreaList::iterator iter = list->begin(); iter != list->end(); iter++)
{
CNavArea *area = (*iter);
// check if position is within 2D boundaries of this area
if (area->IsOverlapping(&testPos))
{
// project position onto area to get Z
float z = area->GetZ(&testPos);
// if area is above us, skip it
if (z > testPos.z)
continue;
// if area is too far below us, skip it
if (z < pos->z - beneathLimit)
continue;
// if area is higher than the one we have, use this instead
if (z > useZ)
{
use = area;
useZ = z;
}
}
}
return use;
}
// Given a position in the world, return the nav area that is closest
// and at the same height, or beneath it.
// Used to find initial area if we start off of the mesh.
CNavArea *CNavAreaGrid::GetNearestNavArea(const Vector *pos, bool anyZ) const
{
if (!m_grid)
return nullptr;
CNavArea *close = nullptr;
float closeDistSq = 100000000.0f;
// quick check
close = GetNavArea(pos);
if (close)
return close;
// ensure source position is well behaved
Vector source;
source.x = pos->x;
source.y = pos->y;
if (GetGroundHeight(pos, &source.z) == false)
return nullptr;
source.z += HalfHumanHeight;
// TODO: Step incrementally using grid for speed
// find closest nav area
for (NavAreaList::iterator iter = TheNavAreaList.begin(); iter != TheNavAreaList.end(); iter++)
{
CNavArea *area = (*iter);
Vector areaPos;
area->GetClosestPointOnArea(&source, &areaPos);
float distSq = (areaPos - source).LengthSquared();
// keep the closest area
if (distSq < closeDistSq)
{
// check LOS to area
if (!anyZ)
{
TraceResult result;
UTIL_TraceLine(source, areaPos + Vector(0, 0, HalfHumanHeight), ignore_monsters, ignore_glass, nullptr, &result);
if (result.flFraction != 1.0f)
continue;
}
closeDistSq = distSq;
close = area;
}
}
return close;
}
// Given an ID, return the associated area
CNavArea *CNavAreaGrid::GetNavAreaByID(unsigned int id) const
{
if (id == 0)
return nullptr;
int key = ComputeHashKey(id);
for (CNavArea *area = m_hashTable[key]; area; area = area->m_nextHash)
{
if (area->GetID() == id)
return area;
}
return nullptr;
}
// Return radio chatter place for given coordinate
Place CNavAreaGrid::GetPlace(const Vector *pos) const
{
CNavArea *area = GetNearestNavArea(pos, true);
if (area)
{
return area->GetPlace();
}
return UNDEFINED_PLACE;
}
static const char *g_pszDefaultPlaceNames[] =
{
"BombsiteA",
"BombsiteB",
"BombsiteC",
"Hostages",
"HostageRescueZone",
"VipRescueZone",
"CTSpawn",
"TSpawn",
"Bridge",
"Middle",
"House",
"Apartment",
"Apartments",
"Market",
"Sewers",
"Tunnel",
"Ducts",
"Village",
"Roof",
"Upstairs",
"Downstairs",
"Basement",
"Crawlspace",
"Kitchen",
"Inside",
"Outside",
"Tower",
"WineCellar",
"Garage",
"Courtyard",
"Water",
"FrontDoor",
"BackDoor",
"SideDoor",
"BackWay",
"FrontYard",
"BackYard",
"SideYard",
"Lobby",
"Vault",
"Elevator",
"DoubleDoors",
"SecurityDoors",
"LongHall",
"SideHall",
"FrontHall",
"BackHall",
"MainHall",
"FarSide",
"Windows",
"Window",
"Attic",
"StorageRoom",
"ProjectorRoom",
"MeetingRoom",
"ConferenceRoom",
"ComputerRoom",
"BigOffice",
"LittleOffice",
"Dumpster",
"Airplane",
"Underground",
"Bunker",
"Mines",
"Front",
"Back",
"Rear",
"Side",
"Ramp",
"Underpass",
"Overpass",
"Stairs",
"Ladder",
"Gate",
"GateHouse",
"LoadingDock",
"GuardHouse",
"Entrance",
"VendingMachines",
"Loft",
"Balcony",
"Alley",
"BackAlley",
"SideAlley",
"FrontRoom",
"BackRoom",
"SideRoom",
"Crates",
"Truck",
"Bedroom",
"FamilyRoom",
"Bathroom",
"LivingRoom",
"Den",
"Office",
"Atrium",
"Entryway",
"Foyer",
"Stairwell",
"Fence",
"Deck",
"Porch",
"Patio",
"Wall"
};
// Return fallback place name for given place id
const char *CNavAreaGrid::IDToName(Place place) const
{
if (place <= 0 || place > ARRAYSIZE(g_pszDefaultPlaceNames))
return nullptr;
return g_pszDefaultPlaceNames[place - 1];
}
// Return place id for given place name
Place CNavAreaGrid::NameToID(const char *name) const
{
for (unsigned int place = 0; place < ARRAYSIZE(g_pszDefaultPlaceNames); place++)
{
const char *placeName = g_pszDefaultPlaceNames[place];
if (!Q_stricmp(placeName, name))
return place + 1;
}
return UNDEFINED_PLACE;
}