2017-11-01 18:30:47 +03:00

1097 lines
28 KiB
C++

#include "precompiled.h"
// Determine actual path positions
bool CNavPath::ComputePathPositions()
{
if (m_segmentCount == 0)
return false;
// start in first area's center
m_path[0].pos = *m_path[0].area->GetCenter();
m_path[0].ladder = nullptr;
m_path[0].how = NUM_TRAVERSE_TYPES;
for (int i = 1; i < m_segmentCount; i++)
{
const PathSegment *from = &m_path[i - 1];
PathSegment *to = &m_path[i];
// walk along the floor to the next area
if (to->how <= GO_WEST)
{
to->ladder = nullptr;
// compute next point, keeping path as straight as possible
from->area->ComputeClosestPointInPortal(to->area, (NavDirType)to->how, &from->pos, &to->pos);
// move goal position into the goal area a bit
// how far to "step into" an area - must be less than min area size
const float stepInDist = 5.0f;
AddDirectionVector(&to->pos, (NavDirType)to->how, stepInDist);
// we need to walk out of "from" area, so keep Z where we can reach it
to->pos.z = from->area->GetZ(&to->pos);
// if this is a "jump down" connection, we must insert an additional point on the path
if (to->area->IsConnected(from->area, NUM_DIRECTIONS) == false)
{
// this is a "jump down" link
// compute direction of path just prior to "jump down"
Vector2D dir;
DirectionToVector2D((NavDirType)to->how, &dir);
// shift top of "jump down" out a bit to "get over the ledge"
const float pushDist = 25.0f;
to->pos.x += pushDist * dir.x;
to->pos.y += pushDist * dir.y;
// insert a duplicate node to represent the bottom of the fall
if (m_segmentCount < MAX_PATH_SEGMENTS - 1)
{
// copy nodes down
for (int j = m_segmentCount; j > i; j--)
m_path[j] = m_path[j - 1];
// path is one node longer
m_segmentCount++;
// move index ahead into the new node we just duplicated
i++;
m_path[i].pos.x = to->pos.x + pushDist * dir.x;
m_path[i].pos.y = to->pos.y + pushDist * dir.y;
// put this one at the bottom of the fall
m_path[i].pos.z = to->area->GetZ(&m_path[i].pos);
}
}
}
// to get to next area, must go up a ladder
else if (to->how == GO_LADDER_UP)
{
// find our ladder
const NavLadderList *list = from->area->GetLadderList(LADDER_UP);
NavLadderList::const_iterator iter;
for (iter = list->begin(); iter != list->end(); iter++)
{
CNavLadder *ladder = (*iter);
// can't use "behind" area when ascending...
if (ladder->m_topForwardArea == to->area || ladder->m_topLeftArea == to->area || ladder->m_topRightArea == to->area)
{
to->ladder = ladder;
to->pos = ladder->m_bottom;
AddDirectionVector(&to->pos, ladder->m_dir, 2.0f * HalfHumanWidth);
break;
}
}
if (iter == list->end())
{
//PrintIfWatched( "ERROR: Can't find ladder in path\n" );
return false;
}
}
// to get to next area, must go down a ladder
else if (to->how == GO_LADDER_DOWN)
{
// find our ladder
const NavLadderList *list = from->area->GetLadderList(LADDER_DOWN);
NavLadderList::const_iterator iter;
for (iter = list->begin(); iter != list->end(); iter++)
{
CNavLadder *ladder = (*iter);
if (ladder->m_bottomArea == to->area)
{
to->ladder = ladder;
to->pos = ladder->m_top;
AddDirectionVector(&to->pos, OppositeDirection(ladder->m_dir), 2.0f * HalfHumanWidth);
break;
}
}
if (iter == list->end())
{
//PrintIfWatched( "ERROR: Can't find ladder in path\n" );
return false;
}
}
}
return true;
}
// Return true if position is at the end of the path
bool CNavPath::IsAtEnd(const Vector &pos) const
{
if (!IsValid())
return false;
const float epsilon = 20.0f;
return (pos - GetEndpoint()).IsLengthLessThan(epsilon);
}
// Return length of path from start to finish
float CNavPath::GetLength() const
{
float length = 0.0f;
for (int i = 1; i < GetSegmentCount(); i++)
{
length += (m_path[i].pos - m_path[i - 1].pos).Length();
}
return length;
}
// Return point a given distance along the path - if distance is out of path bounds, point is clamped to start/end
// TODO: Be careful of returning "positions" along one-way drops, ladders, etc.
NOXREF bool CNavPath::GetPointAlongPath(float distAlong, Vector *pointOnPath) const
{
if (!IsValid() || !pointOnPath)
return false;
if (distAlong <= 0.0f)
{
*pointOnPath = m_path[0].pos;
return true;
}
float lengthSoFar = 0.0f;
float segmentLength;
Vector dir;
for (int i = 1; i < GetSegmentCount(); i++)
{
dir = m_path[i].pos - m_path[i - 1].pos;
segmentLength = dir.Length();
if (segmentLength + lengthSoFar >= distAlong)
{
// desired point is on this segment of the path
float delta = distAlong - lengthSoFar;
float t = delta / segmentLength;
*pointOnPath = m_path[i].pos + t * dir;
return true;
}
lengthSoFar += segmentLength;
}
*pointOnPath = m_path[GetSegmentCount() - 1].pos;
return true;
}
// Return the node index closest to the given distance along the path without going over - returns (-1) if error
int CNavPath::GetSegmentIndexAlongPath(float distAlong) const
{
if (!IsValid())
return -1;
if (distAlong <= 0.0f)
{
return 0;
}
float lengthSoFar = 0.0f;
Vector dir;
for (int i = 1; i < GetSegmentCount(); i++)
{
lengthSoFar += (m_path[i].pos - m_path[i - 1].pos).Length();
if (lengthSoFar > distAlong)
{
return i - 1;
}
}
return GetSegmentCount() - 1;
}
// Compute closest point on path to given point
// NOTE: This does not do line-of-sight tests, so closest point may be thru the floor, etc
NOXREF bool CNavPath::FindClosestPointOnPath(const Vector *worldPos, int startIndex, int endIndex, Vector *close) const
{
if (!IsValid() || !close)
return false;
Vector along, toWorldPos;
Vector pos;
const Vector *from, *to;
float length;
float closeLength;
float closeDistSq = 9999999999.9;
float distSq;
for (int i = startIndex; i <= endIndex; i++)
{
from = &m_path[i - 1].pos;
to = &m_path[i].pos;
// compute ray along this path segment
along = *to - *from;
// make it a unit vector along the path
length = along.NormalizeInPlace();
// compute vector from start of segment to our point
toWorldPos = *worldPos - *from;
// find distance of closest point on ray
closeLength = DotProduct(toWorldPos, along);
// constrain point to be on path segment
if (closeLength <= 0.0f)
pos = *from;
else if (closeLength >= length)
pos = *to;
else
pos = *from + closeLength * along;
distSq = (pos - *worldPos).LengthSquared();
// keep the closest point so far
if (distSq < closeDistSq)
{
closeDistSq = distSq;
*close = pos;
}
}
return true;
}
// Build trivial path when start and goal are in the same nav area
bool CNavPath::BuildTrivialPath(const Vector *start, const Vector *goal)
{
m_segmentCount = 0;
CNavArea *startArea = TheNavAreaGrid.GetNearestNavArea(start);
if (!startArea)
return false;
CNavArea *goalArea = TheNavAreaGrid.GetNearestNavArea(goal);
if (!goalArea)
return false;
m_segmentCount = 2;
m_path[0].area = startArea;
m_path[0].pos.x = start->x;
m_path[0].pos.y = start->y;
m_path[0].pos.z = startArea->GetZ(start);
m_path[0].ladder = nullptr;
m_path[0].how = NUM_TRAVERSE_TYPES;
m_path[1].area = goalArea;
m_path[1].pos.x = goal->x;
m_path[1].pos.y = goal->y;
m_path[1].pos.z = goalArea->GetZ(goal);
m_path[1].ladder = nullptr;
m_path[1].how = NUM_TRAVERSE_TYPES;
return true;
}
// Draw the path for debugging
void CNavPath::Draw()
{
if (!IsValid())
return;
for (int i = 1; i < m_segmentCount; i++)
{
UTIL_DrawBeamPoints(m_path[i - 1].pos + Vector(0, 0, HalfHumanHeight), m_path[i].pos + Vector(0, 0, HalfHumanHeight), 2, 255, 75, 0);
}
}
// Check line of sight from 'anchor' node on path to subsequent nodes until
// we find a node that can't been seen from 'anchor'
int CNavPath::FindNextOccludedNode(int anchor_)
{
int lastVisible = anchor_;
for (int i = anchor_ + 1; i < m_segmentCount; i++)
{
// don't remove ladder nodes
if (m_path[i].ladder)
return i;
if (!IsWalkableTraceLineClear(m_path[anchor_].pos, m_path[i].pos))
{
// cant see this node from anchor node
return i;
}
Vector anchorPlusHalf = m_path[anchor_].pos + Vector(0, 0, HalfHumanHeight);
Vector iPlusHalf = m_path[i].pos + Vector(0, 0, HalfHumanHeight);
if (!IsWalkableTraceLineClear(anchorPlusHalf, iPlusHalf))
{
// cant see this node from anchor node
return i;
}
Vector anchorPlusFull = m_path[anchor_].pos + Vector(0, 0, HumanHeight);
Vector iPlusFull = m_path[i].pos + Vector(0, 0, HumanHeight);
if (!IsWalkableTraceLineClear(anchorPlusFull, iPlusFull))
{
// cant see this node from anchor node
return i;
}
}
return m_segmentCount;
}
// Smooth out path, removing redundant nodes
void CNavPath::Optimize()
{
// DONT USE THIS: Optimizing the path results in cutting thru obstacles
#if 0
if (m_segmentCount < 3)
return;
int anchor_ = 0;
while (anchor_ < m_segmentCount)
{
int occluded = FindNextOccludedNode(anchor_);
int nextAnchor = occluded - 1;
if (nextAnchor > anchor_)
{
// remove redundant nodes between anchor and nextAnchor
int removeCount = nextAnchor - anchor_ - 1;
if (removeCount > 0)
{
for (int i = nextAnchor; i < m_segmentCount; i++)
{
m_path[i - removeCount] = m_path[i];
}
m_segmentCount -= removeCount;
}
}
anchor_++;
}
#endif
}
CNavPathFollower::CNavPathFollower()
{
m_improv = nullptr;
m_path = nullptr;
m_segmentIndex = 0;
m_isLadderStarted = false;
m_isDebug = false;
}
void CNavPathFollower::Reset()
{
m_segmentIndex = 1;
m_isLadderStarted = false;
m_stuckMonitor.Reset();
}
// Move improv along path
void CNavPathFollower::Update(float deltaT, bool avoidObstacles)
{
if (!m_path || m_path->IsValid() == false)
return;
const CNavPath::PathSegment *node = (*m_path)[m_segmentIndex];
if (!node)
{
m_improv->OnMoveToFailure(m_path->GetEndpoint(), IImprovEvent::FAIL_INVALID_PATH);
m_path->Invalidate();
return;
}
// handle ladders
if (node->ladder)
{
const Vector *approachPos = nullptr;
const Vector *departPos = nullptr;
if (m_segmentIndex)
approachPos = &(*m_path)[m_segmentIndex - 1]->pos;
if (m_segmentIndex < m_path->GetSegmentCount() - 1)
departPos = &(*m_path)[m_segmentIndex + 1]->pos;
if (!m_isLadderStarted)
{
// set up ladder movement
m_improv->StartLadder(node->ladder, node->how, approachPos, departPos);
m_isLadderStarted = true;
}
// move improv along ladder
if (m_improv->TraverseLadder(node->ladder, node->how, approachPos, departPos, deltaT))
{
// completed ladder
m_segmentIndex++;
}
return;
}
// reset ladder init flag
m_isLadderStarted = false;
// Check if we reached the end of the path
const float closeRange = 20.0f;
if ((m_improv->GetFeet() - node->pos).IsLengthLessThan(closeRange))
{
m_segmentIndex++;
if (m_segmentIndex >= m_path->GetSegmentCount())
{
m_improv->OnMoveToSuccess(m_path->GetEndpoint());
m_path->Invalidate();
return;
}
}
m_goal = node->pos;
const float aheadRange = 300.0f;
m_segmentIndex = FindPathPoint(aheadRange, &m_goal, &m_behindIndex);
if (m_segmentIndex >= m_path->GetSegmentCount())
m_segmentIndex = m_path->GetSegmentCount() - 1;
bool isApproachingJumpArea = false;
// Crouching
if (!m_improv->IsUsingLadder())
{
// because hostage crouching is not really supported by the engine,
// if we are standing in a crouch area, we must crouch to avoid collisions
if (m_improv->GetLastKnownArea() && (m_improv->GetLastKnownArea()->GetAttributes() & NAV_CROUCH) && !(m_improv->GetLastKnownArea()->GetAttributes() & NAV_JUMP))
{
m_improv->Crouch();
}
// if we are approaching a crouch area, crouch
// if there are no crouch areas coming up, stand
const float crouchRange = 50.0f;
bool didCrouch = false;
for (int i = m_segmentIndex; i < m_path->GetSegmentCount(); i++)
{
const CNavArea *to = (*m_path)[i]->area;
// if there is a jump area on the way to the crouch area, don't crouch as it messes up the jump
if (to->GetAttributes() & NAV_JUMP)
{
isApproachingJumpArea = true;
break;
}
Vector close;
to->GetClosestPointOnArea(&m_improv->GetCentroid(), &close);
if ((close - m_improv->GetFeet()).Make2D().IsLengthGreaterThan(crouchRange))
break;
if (to->GetAttributes() & NAV_CROUCH)
{
m_improv->Crouch();
didCrouch = true;
break;
}
}
if (!didCrouch && !m_improv->IsJumping())
{
// no crouch areas coming up
m_improv->StandUp();
}
}
// end crouching logic
if (m_isDebug)
{
m_path->Draw();
UTIL_DrawBeamPoints(m_improv->GetCentroid(), m_goal + Vector(0, 0, StepHeight), 1, 255, 0, 255);
UTIL_DrawBeamPoints(m_goal + Vector(0, 0, StepHeight), m_improv->GetCentroid(), 1, 255, 0, 255);
}
// check if improv becomes stuck
m_stuckMonitor.Update(m_improv);
// if improv has been stuck for too long, give up
const float giveUpTime = 2.0f;
if (m_stuckMonitor.GetDuration() > giveUpTime)
{
m_improv->OnMoveToFailure(m_path->GetEndpoint(), IImprovEvent::FAIL_STUCK);
m_path->Invalidate();
return;
}
// if our goal is high above us, we must have fallen
if (m_goal.z - m_improv->GetFeet().z > JumpCrouchHeight)
{
const float closeRange = 75.0f;
Vector2D to(m_improv->GetFeet().x - m_goal.x, m_improv->GetFeet().y - m_goal.y);
if (to.IsLengthLessThan(closeRange))
{
// we can't reach the goal position
// check if we can reach the next node, in case this was a "jump down" situation
const CNavPath::PathSegment *nextNode = (*m_path)[m_behindIndex + 1];
if (m_behindIndex >= 0 && nextNode)
{
if (nextNode->pos.z - m_improv->GetFeet().z > JumpCrouchHeight)
{
// the next node is too high, too - we really did fall of the path
m_improv->OnMoveToFailure(m_path->GetEndpoint(), IImprovEvent::FAIL_FELL_OFF);
m_path->Invalidate();
return;
}
}
else
{
// fell trying to get to the last node in the path
m_improv->OnMoveToFailure(m_path->GetEndpoint(), IImprovEvent::FAIL_FELL_OFF);
m_path->Invalidate();
return;
}
}
}
// avoid small obstacles
if (avoidObstacles && !isApproachingJumpArea && !m_improv->IsJumping() && m_segmentIndex < m_path->GetSegmentCount() - 1)
{
FeelerReflexAdjustment(&m_goal);
// currently, this is only used for hostages, and their collision physics stinks
// do more feeler checks to avoid short obstacles
/*
const float inc = 0.25f;
for (float t = 0.5f; t < 1.0f; t += inc)
{
FeelerReflexAdjustment(&m_goal, t * StepHeight);
}
*/
}
// move improv along path
m_improv->TrackPath(m_goal, deltaT);
}
// Return the closest point to our current position on our current path
// If "local" is true, only check the portion of the path surrounding m_pathIndex
int CNavPathFollower::FindOurPositionOnPath(Vector *close, bool local) const
{
Vector along, toFeet;
Vector feet = m_improv->GetFeet();
Vector eyes = m_improv->GetEyes();
Vector pos;
const Vector *from, *to;
float_precision length;
float closeLength;
float closeDistSq = 1.0e10;
int closeIndex = -1;
float_precision distSq;
int start, end;
if (!m_path->IsValid())
return -1;
if (local)
{
start = m_segmentIndex - 3;
if (start < 1)
start = 1;
end = m_segmentIndex + 3;
if (end > m_path->GetSegmentCount())
end = m_path->GetSegmentCount();
}
else
{
start = 1;
end = m_path->GetSegmentCount();
}
for (int i = start; i < end; i++)
{
from = &(*m_path)[i - 1]->pos;
to = &(*m_path)[i]->pos;
// compute ray along this path segment
along = *to - *from;
// make it a unit vector along the path
length = along.NormalizeInPlace();
// compute vector from start of segment to our point
toFeet = feet - *from;
// find distance of closest point on ray
closeLength = DotProduct(toFeet, along);
// constrain point to be on path segment
if (closeLength <= 0.0f)
pos = *from;
else if (closeLength >= length)
pos = *to;
else
pos = *from + closeLength * along;
distSq = (pos - feet).LengthSquared();
// keep the closest point so far
if (distSq < closeDistSq)
{
// don't use points we cant see
Vector probe = pos + Vector(0, 0, HalfHumanHeight);
if (!IsWalkableTraceLineClear(eyes, probe, WALK_THRU_DOORS | WALK_THRU_BREAKABLES))
continue;
// don't use points we cant reach
//if (!IsStraightLinePathWalkable(&pos))
// continue;
closeDistSq = distSq;
if (close)
*close = pos;
closeIndex = i - 1;
}
}
return closeIndex;
}
// Compute a point a fixed distance ahead along our path
// Returns path index just after point
int CNavPathFollower::FindPathPoint(float aheadRange, Vector *point, int *prevIndex)
{
// find path index just past aheadRange
int afterIndex;
// finds the closest point on local area of path, and returns the path index just prior to it
Vector close;
int startIndex = FindOurPositionOnPath(&close, true);
if (prevIndex)
*prevIndex = startIndex;
if (startIndex <= 0)
{
// went off the end of the path
// or next point in path is unwalkable (ie: jump-down)
// keep same point
return m_segmentIndex;
}
// if we are crouching, just follow the path exactly
if (m_improv->IsCrouching())
{
// we want to move to the immediately next point along the path from where we are now
int index = startIndex + 1;
if (index >= m_path->GetSegmentCount())
index = m_path->GetSegmentCount() - 1;
*point = (*m_path)[index]->pos;
// if we are very close to the next point in the path, skip ahead to the next one to avoid wiggling
// we must do a 2D check here, in case the goal point is floating in space due to jump down, etc
const float closeEpsilon = 20.0f;
while ((*point - close).Make2D().IsLengthLessThan(closeEpsilon))
{
index++;
if (index >= m_path->GetSegmentCount())
{
index = m_path->GetSegmentCount() - 1;
break;
}
*point = (*m_path)[index]->pos;
}
return index;
}
// make sure we use a node a minimum distance ahead of us, to avoid wiggling
while (startIndex < m_path->GetSegmentCount() - 1)
{
Vector pos = (*m_path)[startIndex + 1]->pos;
// we must do a 2D check here, in case the goal point is floating in space due to jump down, etc
const float closeEpsilon = 20.0f;
if ((pos - close).Make2D().IsLengthLessThan(closeEpsilon))
{
startIndex++;
}
else
{
break;
}
}
// if we hit a ladder or jump area, must stop (dont use ladder behind us)
if (startIndex > m_segmentIndex && startIndex < m_path->GetSegmentCount() && ((*m_path)[startIndex]->ladder || ((*m_path)[startIndex]->area->GetAttributes() & NAV_JUMP)))
{
*point = (*m_path)[startIndex]->pos;
return startIndex;
}
// we need the point just *ahead* of us
if (++startIndex >= m_path->GetSegmentCount())
startIndex = m_path->GetSegmentCount() - 1;
// if we hit a ladder or jump area, must stop
if (startIndex < m_path->GetSegmentCount() && ((*m_path)[startIndex]->ladder || ((*m_path)[startIndex]->area->GetAttributes() & NAV_JUMP)))
{
*point = (*m_path)[startIndex]->pos;
return startIndex;
}
// note direction of path segment we are standing on
Vector initDir = (*m_path)[startIndex]->pos - (*m_path)[startIndex - 1]->pos;
initDir.NormalizeInPlace();
Vector feet = m_improv->GetFeet();
Vector eyes = m_improv->GetEyes();
float rangeSoFar = 0;
// this flag is true if our ahead point is visible
bool visible = true;
Vector prevDir = initDir;
// step along the path until we pass aheadRange
bool isCorner = false;
int i;
for (i = startIndex; i < m_path->GetSegmentCount(); i++)
{
Vector pos = (*m_path)[i]->pos;
Vector to = pos - (*m_path)[i - 1]->pos;
Vector dir = to.Normalize();
// don't allow path to double-back from our starting direction (going upstairs, down curved passages, etc)
if (DotProduct(dir, initDir) < 0.0f) // -0.25f
{
i--;
break;
}
// if the path turns a corner, we want to move towards the corner, not into the wall/stairs/etc
if (DotProduct(dir, prevDir) < 0.5f)
{
isCorner = true;
i--;
break;
}
prevDir = dir;
// don't use points we cant see
Vector probe = pos + Vector(0, 0, HalfHumanHeight);
if (!IsWalkableTraceLineClear(eyes, probe, WALK_THRU_BREAKABLES))
{
// presumably, the previous point is visible, so we will interpolate
visible = false;
break;
}
// if we encounter a ladder or jump area, we must stop
if (i < m_path->GetSegmentCount() && ((*m_path)[i]->ladder || (*m_path)[i]->area->GetAttributes() & NAV_JUMP))
break;
// Check straight-line path from our current position to this position
// Test for un-jumpable height change, or unrecoverable fall
//if (!IsStraightLinePathWalkable(&pos))
//{
// i--;
// break;
//}
Vector along = (i == startIndex) ? (pos - feet) : (pos - (*m_path)[i - 1]->pos);
rangeSoFar += along.Length2D();
// stop if we have gone farther than aheadRange
if (rangeSoFar >= aheadRange)
break;
}
if (i < startIndex)
afterIndex = startIndex;
else if (i < m_path->GetSegmentCount())
afterIndex = i;
else
afterIndex = m_path->GetSegmentCount() - 1;
// compute point on the path at aheadRange
if (afterIndex == 0)
{
*point = (*m_path)[0]->pos;
}
else
{
// interpolate point along path segment
const Vector *afterPoint = &(*m_path)[afterIndex]->pos;
const Vector *beforePoint = &(*m_path)[afterIndex - 1]->pos;
Vector to = *afterPoint - *beforePoint;
float length = to.Length2D();
float t = 1.0f - ((rangeSoFar - aheadRange) / length);
if (t < 0.0f)
t = 0.0f;
else if (t > 1.0f)
t = 1.0f;
*point = *beforePoint + t * to;
// if afterPoint wasn't visible, slide point backwards towards beforePoint until it is
if (!visible)
{
const float sightStepSize = 25.0f;
float dt = sightStepSize / length;
Vector probe = *point + Vector(0, 0, HalfHumanHeight);
while (t > 0.0f && !IsWalkableTraceLineClear(eyes, probe, WALK_THRU_BREAKABLES))
{
t -= dt;
*point = *beforePoint + t * to;
}
if (t <= 0.0f)
*point = *beforePoint;
}
}
// if position found is too close to us, or behind us, force it farther down the path so we don't stop and wiggle
if (!isCorner)
{
const float epsilon = 50.0f;
Vector2D toPoint;
Vector2D centroid(m_improv->GetCentroid().x, m_improv->GetCentroid().y);
toPoint.x = point->x - centroid.x;
toPoint.y = point->y - centroid.y;
if (DotProduct(toPoint, initDir.Make2D()) < 0.0f || toPoint.IsLengthLessThan(epsilon))
{
int i;
for (i = startIndex; i < m_path->GetSegmentCount(); i++)
{
toPoint.x = (*m_path)[i]->pos.x - centroid.x;
toPoint.y = (*m_path)[i]->pos.y - centroid.y;
if ((*m_path)[i]->ladder || ((*m_path)[i]->area->GetAttributes() & NAV_JUMP) || toPoint.IsLengthGreaterThan(epsilon))
{
*point = (*m_path)[i]->pos;
startIndex = i;
break;
}
}
if (i == m_path->GetSegmentCount())
{
*point = m_path->GetEndpoint();
startIndex = m_path->GetSegmentCount() - 1;
}
}
}
// m_pathIndex should always be the next point on the path, even if we're not moving directly towards it
if (startIndex < m_path->GetSegmentCount())
return startIndex;
return m_path->GetSegmentCount() - 1;
}
// Do reflex avoidance movements if our "feelers" are touched
// TODO: Parameterize feeler spacing
void CNavPathFollower::FeelerReflexAdjustment(Vector *goalPosition, float height)
{
// if we are in a "precise" area, do not do feeler adjustments
if (m_improv->GetLastKnownArea() && (m_improv->GetLastKnownArea()->GetAttributes() & NAV_PRECISE))
return;
Vector dir(BotCOS(m_improv->GetMoveAngle()), BotSIN(m_improv->GetMoveAngle()), 0.0f);
dir.z = 0.0f;
#ifndef PLAY_GAMEDLL
dir.NormalizeInPlace();
#else
// TODO: fix test demo
float_precision flLen = dir.Length();
if (flLen > 0)
dir = dir * float(1 / flLen);
else
dir = Vector(0, 0, 0);
#endif
Vector lat(-dir.y, dir.x, 0.0f);
const float feelerOffset = (m_improv->IsCrouching()) ? 20.0f : 25.0f; // 15, 20
const float feelerLengthRun = 50.0f; // 100 - too long for tight hallways (cs_747)
const float feelerLengthWalk = 30.0f;
// if obstacle is lower than StepHeight, we'll walk right over it
const float feelerHeight = (height > 0.0f) ? height : StepHeight + 0.1f;
float feelerLength = (m_improv->IsRunning()) ? feelerLengthRun : feelerLengthWalk;
feelerLength = (m_improv->IsCrouching()) ? 20.0f : feelerLength;
// Feelers must follow floor slope
float ground;
Vector normal;
if (m_improv->GetSimpleGroundHeightWithFloor(&m_improv->GetEyes(), &ground, &normal) == false)
return;
// get forward vector along floor
dir = CrossProduct(lat, normal);
// correct the sideways vector
lat = CrossProduct(dir, normal);
Vector feet = m_improv->GetFeet();
feet.z += feelerHeight;
Vector from = feet + feelerOffset * lat;
Vector to = from + feelerLength * dir;
bool leftClear = IsWalkableTraceLineClear(from, to, WALK_THRU_DOORS | WALK_THRU_BREAKABLES);
// draw debug beams
if (m_isDebug)
{
if (leftClear)
UTIL_DrawBeamPoints(from, to, 1, 0, 255, 0);
else
UTIL_DrawBeamPoints(from, to, 1, 255, 0, 0);
}
from = feet - feelerOffset * lat;
to = from + feelerLength * dir;
bool rightClear = IsWalkableTraceLineClear(from, to, WALK_THRU_DOORS | WALK_THRU_BREAKABLES);
// draw debug beams
if (m_isDebug)
{
if (rightClear)
UTIL_DrawBeamPoints(from, to, 1, 0, 255, 0);
else
UTIL_DrawBeamPoints(from, to, 1, 255, 0, 0);
}
const float_precision avoidRange = (m_improv->IsCrouching()) ? 150.0f : 300.0f;
if (!rightClear)
{
if (leftClear)
{
// right hit, left clear - veer left
*goalPosition = *goalPosition + avoidRange * lat;
//*goalPosition = m_improv->GetFeet() + avoidRange * lat;
//m_improv->StrafeLeft();
}
}
else if (!leftClear)
{
// right clear, left hit - veer right
*goalPosition = *goalPosition - avoidRange * lat;
//*goalPosition = m_improv->GetFeet() - avoidRange * lat;
//m_improv->StrafeRight();
}
}
// Reset the stuck-checker
CStuckMonitor::CStuckMonitor()
{
m_isStuck = false;
m_avgVelIndex = 0;
m_avgVelCount = 0;
}
// Reset the stuck-checker
void CStuckMonitor::Reset()
{
m_isStuck = false;
m_avgVelIndex = 0;
m_avgVelCount = 0;
}
// Test if the improv has become stuck
void CStuckMonitor::Update(CImprov *improv)
{
if (m_isStuck)
{
// improv is stuck - see if it has moved far enough to be considered unstuck
const float unstuckRange = 75.0f;
if ((improv->GetCentroid() - m_stuckSpot).IsLengthGreaterThan(unstuckRange))
{
// no longer stuck
Reset();
//PrintIfWatched( "UN-STUCK\n" );
}
}
else
{
// check if improv has become stuck
// compute average velocity over a short period (for stuck check)
Vector vel = improv->GetCentroid() - m_lastCentroid;
// if we are jumping, ignore Z
//if (improv->IsJumping())
// vel.z = 0.0f;
// ignore Z unless we are on a ladder (which is only Z)
if (!improv->IsUsingLadder())
vel.z = 0.0f;
// cannot be Length2D, or will break ladder movement (they are only Z)
float moveDist = vel.Length();
float deltaT = gpGlobals->time - m_lastTime;
if (deltaT <= 0.0f)
return;
m_lastTime = gpGlobals->time;
// compute current velocity
m_avgVel[m_avgVelIndex++] = moveDist / deltaT;
if (m_avgVelIndex == MAX_VEL_SAMPLES)
m_avgVelIndex = 0;
if (m_avgVelCount < MAX_VEL_SAMPLES)
{
m_avgVelCount++;
}
else
{
// we have enough samples to know if we're stuck
float avgVel = 0.0f;
for (int t = 0; t < m_avgVelCount; t++)
avgVel += m_avgVel[t];
avgVel /= m_avgVelCount;
// cannot make this velocity too high, or actors will get "stuck" when going down ladders
float stuckVel = (improv->IsUsingLadder()) ? 10.0f : 20.0f;
if (avgVel < stuckVel)
{
// note when and where we initially become stuck
m_stuckTimer.Start();
m_stuckSpot = improv->GetCentroid();
m_isStuck = true;
}
}
}
// always need to track this
m_lastCentroid = improv->GetCentroid();
}