mirror of
https://github.com/s1lentq/ReGameDLL_CS.git
synced 2025-01-14 23:58:06 +03:00
3d252fe527
Fixed some critical bugs and typos (carrer_task, tutor, zbot and other) Added command line option `-bots` to run bots in CS 1.6 Removed the tests demo record/player from myself the project and also dependency of the steam library. Fixed the progress bar when generating a nav file.
497 lines
10 KiB
C++
497 lines
10 KiB
C++
/*
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at
|
|
* your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* In addition, as a special exception, the author gives permission to
|
|
* link the code of this program with the Half-Life Game Engine ("HL
|
|
* Engine") and Modified Game Libraries ("MODs") developed by Valve,
|
|
* L.L.C ("Valve"). You must obey the GNU General Public License in all
|
|
* respects for all of the code used other than the HL Engine and MODs
|
|
* from Valve. If you modify this file, you may extend this exception
|
|
* to your version of the file, but you are not obligated to do so. If
|
|
* you do not wish to do so, delete this exception statement from your
|
|
* version.
|
|
*
|
|
*/
|
|
|
|
#ifndef VECTOR_H
|
|
#define VECTOR_H
|
|
#ifdef _WIN32
|
|
#pragma once
|
|
#endif
|
|
|
|
class Vector2D
|
|
{
|
|
public:
|
|
vec_t x, y;
|
|
Vector2D() : x(0.0), y(0.0) {}
|
|
Vector2D(float X, float Y) : x(0.0), y(0.0)
|
|
{
|
|
x = X;
|
|
y = Y;
|
|
}
|
|
Vector2D operator+(const Vector2D &v) const
|
|
{
|
|
return Vector2D(x + v.x, y + v.y);
|
|
}
|
|
Vector2D operator-(const Vector2D &v) const
|
|
{
|
|
return Vector2D(x - v.x, y - v.y);
|
|
}
|
|
#ifdef PLAY_GAMEDLL
|
|
Vector2D operator*(float_precision fl) const
|
|
{
|
|
return Vector2D(vec_t(x * fl), vec_t(y * fl));
|
|
}
|
|
Vector2D operator/(float_precision fl) const
|
|
{
|
|
return Vector2D(vec_t(x / fl), vec_t(y / fl));
|
|
}
|
|
Vector2D operator/=(float_precision fl) const
|
|
{
|
|
return Vector2D(vec_t(x / fl), vec_t(y / fl));
|
|
}
|
|
#else
|
|
Vector2D operator*(float fl) const
|
|
{
|
|
return Vector2D(x * fl, y * fl);
|
|
}
|
|
Vector2D operator/(float fl) const
|
|
{
|
|
return Vector2D(x / fl, y / fl);
|
|
}
|
|
Vector2D operator/=(float fl) const
|
|
{
|
|
return Vector2D(x / fl, y / fl);
|
|
}
|
|
#endif // PLAY_GAMEDLL
|
|
float_precision Length() const
|
|
{
|
|
return Q_sqrt(float_precision(x * x + y * y));
|
|
}
|
|
float LengthSquared() const
|
|
{
|
|
return (x * x + y * y);
|
|
}
|
|
operator float*()
|
|
{
|
|
return &x;
|
|
}
|
|
operator const float*() const
|
|
{
|
|
return &x;
|
|
}
|
|
Vector2D Normalize() const
|
|
{
|
|
float_precision flLen = Length();
|
|
if (!flLen)
|
|
return Vector2D(0, 0);
|
|
|
|
flLen = 1 / flLen;
|
|
|
|
#ifdef PLAY_GAMEDLL
|
|
return Vector2D(vec_t(x * flLen), vec_t(y * flLen));
|
|
#else
|
|
return Vector2D(x * flLen, y * flLen);
|
|
#endif // PLAY_GAMEDLL
|
|
}
|
|
bool IsLengthLessThan(float length) const
|
|
{
|
|
return (LengthSquared() < length * length);
|
|
}
|
|
bool IsLengthGreaterThan(float length) const
|
|
{
|
|
return (LengthSquared() > length * length);
|
|
}
|
|
float_precision NormalizeInPlace()
|
|
{
|
|
float_precision flLen = Length();
|
|
if (flLen > 0.0)
|
|
{
|
|
x = vec_t(1 / flLen * x);
|
|
y = vec_t(1 / flLen * y);
|
|
}
|
|
else
|
|
{
|
|
x = 1.0;
|
|
y = 0.0;
|
|
}
|
|
return flLen;
|
|
}
|
|
bool IsZero(float tolerance = 0.01f) const
|
|
{
|
|
return (x > -tolerance && x < tolerance &&
|
|
y > -tolerance && y < tolerance);
|
|
}
|
|
};
|
|
|
|
inline float_precision DotProduct(const Vector2D &a, const Vector2D &b)
|
|
{
|
|
return (a.x * b.x + a.y * b.y);
|
|
}
|
|
|
|
inline Vector2D operator*(float fl, const Vector2D &v)
|
|
{
|
|
return v * fl;
|
|
}
|
|
|
|
class Vector
|
|
{
|
|
public:
|
|
vec_t x, y, z;
|
|
Vector() : x(0.0), y(0.0), z(0.0) {}
|
|
Vector(float X, float Y, float Z) : x(0.0), y(0.0), z(0.0)
|
|
{
|
|
x = X;
|
|
y = Y;
|
|
z = Z;
|
|
}
|
|
Vector(const Vector &v) : x(0.0), y(0.0), z(0.0)
|
|
{
|
|
x = v.x;
|
|
y = v.y;
|
|
z = v.z;
|
|
}
|
|
Vector(const float rgfl[3]) : x(0.0), y(0.0), z(0.0)
|
|
{
|
|
x = rgfl[0];
|
|
y = rgfl[1];
|
|
z = rgfl[2];
|
|
}
|
|
Vector operator-() const
|
|
{
|
|
return Vector(-x, -y, -z);
|
|
}
|
|
int operator==(const Vector &v) const
|
|
{
|
|
return x == v.x && y == v.y && z == v.z;
|
|
}
|
|
int operator!=(const Vector &v) const
|
|
{
|
|
return !(*this == v);
|
|
}
|
|
Vector operator+(const Vector &v) const
|
|
{
|
|
return Vector(x + v.x, y + v.y, z + v.z);
|
|
}
|
|
Vector operator-(const Vector &v) const
|
|
{
|
|
return Vector(x - v.x, y - v.y, z - v.z);
|
|
}
|
|
#ifdef PLAY_GAMEDLL
|
|
Vector operator*(float_precision fl) const
|
|
{
|
|
return Vector(vec_t(x * fl), vec_t(y * fl), vec_t(z * fl));
|
|
}
|
|
Vector operator/(float_precision fl) const
|
|
{
|
|
return Vector(vec_t(x / fl), vec_t(y / fl), vec_t(z / fl));
|
|
}
|
|
Vector operator/=(float_precision fl) const
|
|
{
|
|
return Vector(vec_t(x / fl), vec_t(y / fl), vec_t(z / fl));
|
|
}
|
|
#else
|
|
Vector operator*(float fl) const
|
|
{
|
|
return Vector(x * fl, y * fl, z * fl);
|
|
}
|
|
Vector operator/(float fl) const
|
|
{
|
|
return Vector(x / fl, y / fl, z / fl);
|
|
}
|
|
Vector operator/=(float fl) const
|
|
{
|
|
return Vector(x / fl, y / fl, z / fl);
|
|
}
|
|
#endif // PLAY_GAMEDLL
|
|
void CopyToArray(float *rgfl) const
|
|
{
|
|
rgfl[0] = x;
|
|
rgfl[1] = y;
|
|
rgfl[2] = z;
|
|
}
|
|
float_precision Length() const
|
|
{
|
|
float_precision x1 = float_precision(x);
|
|
float_precision y1 = float_precision(y);
|
|
float_precision z1 = float_precision(z);
|
|
|
|
return Q_sqrt(x1 * x1 + y1 * y1 + z1 * z1);
|
|
}
|
|
float_precision LengthSquared() const
|
|
{
|
|
return (x * x + y * y + z * z);
|
|
}
|
|
operator float*()
|
|
{
|
|
return &x;
|
|
}
|
|
operator const float*() const
|
|
{
|
|
return &x;
|
|
}
|
|
#ifndef PLAY_GAMEDLL
|
|
Vector Normalize()
|
|
{
|
|
float flLen = Length();
|
|
if (flLen == 0)
|
|
return Vector(0, 0, 1);
|
|
|
|
flLen = 1 / flLen;
|
|
return Vector(x * flLen, y * flLen, z * flLen);
|
|
}
|
|
#else
|
|
Vector Normalize()
|
|
{
|
|
float_precision flLen = Length();
|
|
if (flLen == 0)
|
|
return Vector(0, 0, 1);
|
|
|
|
vec_t fTemp = vec_t(1 / flLen);
|
|
return Vector(x * fTemp, y * fTemp, z * fTemp);
|
|
}
|
|
#endif // PLAY_GAMEDLL
|
|
// for out precision normalize
|
|
Vector NormalizePrecision()
|
|
{
|
|
#ifndef PLAY_GAMEDLL
|
|
return Normalize();
|
|
#else
|
|
float_precision flLen = Length();
|
|
if (flLen == 0)
|
|
return Vector(0, 0, 1);
|
|
|
|
flLen = 1 / flLen;
|
|
return Vector(vec_t(x * flLen), vec_t(y * flLen), vec_t(z * flLen));
|
|
#endif // PLAY_GAMEDLL
|
|
}
|
|
Vector2D Make2D() const
|
|
{
|
|
Vector2D Vec2;
|
|
Vec2.x = x;
|
|
Vec2.y = y;
|
|
return Vec2;
|
|
}
|
|
float_precision Length2D() const
|
|
{
|
|
return Q_sqrt(float_precision(x * x + y * y));
|
|
}
|
|
bool IsLengthLessThan(float length) const
|
|
{
|
|
return (LengthSquared() < length * length);
|
|
}
|
|
bool IsLengthGreaterThan(float length) const
|
|
{
|
|
return (LengthSquared() > length * length);
|
|
}
|
|
#ifdef PLAY_GAMEDLL
|
|
float_precision NormalizeInPlace()
|
|
{
|
|
float_precision flLen = Length();
|
|
|
|
if (flLen > 0)
|
|
{
|
|
x = vec_t(1 / flLen * x);
|
|
y = vec_t(1 / flLen * y);
|
|
z = vec_t(1 / flLen * z);
|
|
}
|
|
else
|
|
{
|
|
x = 0;
|
|
y = 0;
|
|
z = 1;
|
|
}
|
|
|
|
return flLen;
|
|
}
|
|
template<typename T>
|
|
float_precision NormalizeInPlace()
|
|
{
|
|
T flLen = Length();
|
|
|
|
if (flLen > 0)
|
|
{
|
|
x = vec_t(1 / flLen * x);
|
|
y = vec_t(1 / flLen * y);
|
|
z = vec_t(1 / flLen * z);
|
|
}
|
|
else
|
|
{
|
|
x = 0;
|
|
y = 0;
|
|
z = 1;
|
|
}
|
|
|
|
return flLen;
|
|
}
|
|
#else // PLAY_GAMEDLL
|
|
float NormalizeInPlace()
|
|
{
|
|
float flLen = Length();
|
|
if (flLen > 0)
|
|
{
|
|
x /= flLen;
|
|
y /= flLen;
|
|
z /= flLen;
|
|
}
|
|
else
|
|
{
|
|
x = 0;
|
|
y = 0;
|
|
z = 1;
|
|
}
|
|
return flLen;
|
|
}
|
|
#endif // PLAY_GAMEDLL
|
|
bool IsZero(float tolerance = 0.01f) const
|
|
{
|
|
return (x > -tolerance && x < tolerance &&
|
|
y > -tolerance && y < tolerance &&
|
|
z > -tolerance && z < tolerance);
|
|
}
|
|
};
|
|
|
|
inline Vector operator*(float fl, const Vector &v)
|
|
{
|
|
return v * fl;
|
|
}
|
|
|
|
inline float_precision DotProduct(const Vector &a, const Vector &b)
|
|
{
|
|
return (a.x * b.x + a.y * b.y + a.z * b.z);
|
|
}
|
|
|
|
inline float_precision DotProduct2D(const Vector &a, const Vector &b)
|
|
{
|
|
return (a.x * b.x + a.y * b.y);
|
|
}
|
|
|
|
inline Vector CrossProduct(const Vector &a, const Vector &b)
|
|
{
|
|
return Vector(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
|
|
}
|
|
|
|
template<class T>
|
|
inline void SWAP(T &first, T &second)
|
|
{
|
|
T temp = first;
|
|
first = second;
|
|
second = temp;
|
|
}
|
|
|
|
template<
|
|
typename X,
|
|
typename Y,
|
|
typename Z,
|
|
typename LenType
|
|
>
|
|
inline LenType LengthSubtract(Vector vecStart, Vector vecDest)
|
|
{
|
|
X floatX = (vecDest.x - vecStart.x);
|
|
Y floatY = (vecDest.y - vecStart.y);
|
|
Z floatZ = (vecDest.z - vecStart.z);
|
|
|
|
return Q_sqrt(float_precision(floatX * floatX + floatY * floatY + floatZ * floatZ));
|
|
}
|
|
|
|
template<
|
|
typename X,
|
|
typename Y,
|
|
typename Z,
|
|
typename LenType
|
|
>
|
|
inline Vector NormalizeSubtract(Vector vecStart, Vector vecDest)
|
|
{
|
|
Vector dir;
|
|
|
|
#ifdef PLAY_GAMEDLL
|
|
|
|
X floatX = (vecDest.x - vecStart.x);
|
|
Y floatY = (vecDest.y - vecStart.y);
|
|
Z floatZ = (vecDest.z - vecStart.z);
|
|
|
|
LenType flLen = Q_sqrt(float_precision(floatX * floatX + floatY * floatY + floatZ * floatZ));
|
|
|
|
if (flLen == 0.0)
|
|
{
|
|
dir = Vector(0, 0, 1);
|
|
}
|
|
else
|
|
{
|
|
flLen = 1.0 / flLen;
|
|
|
|
dir.x = vec_t(floatX * flLen);
|
|
dir.y = vec_t(floatY * flLen);
|
|
dir.z = vec_t(floatZ * flLen);
|
|
}
|
|
#else
|
|
dir = (vecDest - vecStart).Normalize();
|
|
#endif // PLAY_GAMEDLL
|
|
|
|
return dir;
|
|
}
|
|
|
|
#ifdef PLAY_GAMEDLL
|
|
template<typename X, typename Y, typename LenType>
|
|
inline Vector NormalizeMulScalar(Vector2D vec, float scalar)
|
|
{
|
|
LenType flLen;
|
|
X floatX;
|
|
Y floatY;
|
|
|
|
flLen = (LenType)vec.Length();
|
|
|
|
if (flLen <= 0.0)
|
|
{
|
|
floatX = 1;
|
|
floatY = 0;
|
|
}
|
|
else
|
|
{
|
|
flLen = 1 / flLen;
|
|
|
|
floatX = vec.x * flLen;
|
|
floatY = vec.y * flLen;
|
|
}
|
|
|
|
return Vector(vec_t(floatX * scalar), vec_t(floatY * scalar), 0);
|
|
}
|
|
template<typename X, typename Y, typename LenType, typename LenCast>
|
|
inline Vector NormalizeMulScalar(Vector vec, float scalar)
|
|
{
|
|
LenType flLen;
|
|
X floatX = vec.x;
|
|
Y floatY = vec.y;
|
|
|
|
flLen = (LenType)vec.Length();
|
|
|
|
if (flLen <= 0.0)
|
|
{
|
|
floatX = 1;
|
|
floatY = 0;
|
|
}
|
|
else
|
|
{
|
|
floatX = floatX * LenCast(1 / flLen);
|
|
floatY = floatY * LenCast(1 / flLen);
|
|
}
|
|
|
|
return Vector(vec_t(floatX * scalar), vec_t(floatY * scalar), 0);
|
|
}
|
|
#endif // PLAY_GAMEDLL
|
|
|
|
#endif // VECTOR_H
|