mirror of
https://github.com/rehlds/rehlds.git
synced 2025-01-04 02:55:50 +03:00
Merge pull request #164 from theAsmodai/master
Finished mathlib optimization
This commit is contained in:
commit
7b2cc0249c
@ -28,6 +28,9 @@
|
||||
|
||||
#include "precompiled.h"
|
||||
|
||||
// Intrisics guide: https://software.intel.com/sites/landingpage/IntrinsicsGuide/
|
||||
// Shufps calculator: http://wurstcaptures.untergrund.net/assembler_tricks.html
|
||||
|
||||
vec3_t vec3_origin;
|
||||
//int nanmask;
|
||||
//short int new_cw;
|
||||
@ -36,6 +39,7 @@ vec3_t vec3_origin;
|
||||
|
||||
// aligned vec4_t
|
||||
typedef ALIGN16 vec4_t avec4_t;
|
||||
typedef ALIGN16 int aivec4_t[4];
|
||||
|
||||
// conversion multiplier
|
||||
const avec4_t deg2rad =
|
||||
@ -46,11 +50,35 @@ const avec4_t deg2rad =
|
||||
M_PI / 180.f
|
||||
};
|
||||
|
||||
// save 4d xmm to 3d vector. we can't optimize many simple vector3 functions because saving back to 3d is slow.
|
||||
void xmm2vec(vec_t *v, const __m128 m)
|
||||
const aivec4_t negmask[4] =
|
||||
{
|
||||
_mm_store_ss(v, m);
|
||||
_mm_storel_pi((__m64*)(v + 1), _mm_shuffle_ps(m, m, _MM_SHUFFLE(3, 2, 2, 1)));
|
||||
0x80000000,
|
||||
0x80000000,
|
||||
0x80000000,
|
||||
0x80000000
|
||||
};
|
||||
|
||||
const aivec4_t negmask_1001 =
|
||||
{
|
||||
0x80000000,
|
||||
0,
|
||||
0,
|
||||
0x80000000
|
||||
};
|
||||
|
||||
const aivec4_t negmask_0010 =
|
||||
{
|
||||
0,
|
||||
0,
|
||||
0x80000000,
|
||||
0
|
||||
};
|
||||
|
||||
// save 4d xmm to 3d vector. we can't optimize many simple vector3 functions because saving back to 3d is slow.
|
||||
static inline void xmm2vec(vec_t *v, const __m128 m)
|
||||
{
|
||||
_mm_storel_pi((__m64*)v, m);
|
||||
_mm_store_ss(v + 2, _mm_shuffle_ps(m, m, 0x02));
|
||||
}
|
||||
|
||||
/* <46ebf> ../engine/mathlib.c:14 */
|
||||
@ -65,6 +93,80 @@ void BOPS_Error(void)
|
||||
Sys_Error("BoxOnPlaneSide: Bad signbits");
|
||||
}
|
||||
|
||||
#ifdef REHLDS_OPT_PEDANTIC
|
||||
int BoxOnPlaneSide(vec_t *emins, vec_t *emaxs, mplane_t *p)
|
||||
{
|
||||
double dist1, dist2;
|
||||
int sides = 0;
|
||||
|
||||
__m128 emin = _mm_loadu_ps(emins);
|
||||
__m128 emax = _mm_loadu_ps(emaxs);;
|
||||
avec4_t d1, d2;
|
||||
|
||||
// general case
|
||||
switch (p->signbits)
|
||||
{
|
||||
case 0:
|
||||
_mm_store_ps(d1, emax);
|
||||
_mm_store_ps(d2, emin);
|
||||
break;
|
||||
case 1:
|
||||
_mm_store_ps(d1, emax);
|
||||
_mm_store_ps(d2, emin);
|
||||
d1[0] = emins[0];
|
||||
d2[0] = emaxs[0];
|
||||
break;
|
||||
case 2:
|
||||
_mm_store_ps(d1, emax);
|
||||
_mm_store_ps(d2, emin);
|
||||
d1[1] = emins[1];
|
||||
d2[1] = emaxs[1];
|
||||
break;
|
||||
case 3:
|
||||
_mm_store_ps(d1, emin);
|
||||
_mm_store_ps(d2, emax);
|
||||
d1[2] = emaxs[2];
|
||||
d2[2] = emins[2];
|
||||
break;
|
||||
case 4:
|
||||
_mm_store_ps(d1, emax);
|
||||
_mm_store_ps(d2, emin);
|
||||
d1[2] = emins[2];
|
||||
d2[2] = emaxs[2];
|
||||
break;
|
||||
case 5:
|
||||
_mm_store_ps(d1, emin);
|
||||
_mm_store_ps(d2, emax);
|
||||
d1[1] = emaxs[1];
|
||||
d2[1] = emins[1];
|
||||
break;
|
||||
case 6:
|
||||
_mm_store_ps(d1, emin);
|
||||
_mm_store_ps(d2, emax);
|
||||
d1[0] = emaxs[0];
|
||||
d2[0] = emins[0];
|
||||
break;
|
||||
case 7:
|
||||
_mm_store_ps(d1, emin);
|
||||
_mm_store_ps(d2, emax);
|
||||
break;
|
||||
default:
|
||||
BOPS_Error();
|
||||
dist1 = dist2 = 0.0;
|
||||
break;
|
||||
}
|
||||
|
||||
dist1 = _DotProduct(p->normal, d1);
|
||||
dist2 = _DotProduct(p->normal, d2);
|
||||
|
||||
if (dist1 >= p->dist)
|
||||
sides = 1;
|
||||
if (dist2 < p->dist)
|
||||
sides |= 2;
|
||||
|
||||
return sides;
|
||||
}
|
||||
#else
|
||||
/* <46f05> ../engine/mathlib.c:48 */
|
||||
int BoxOnPlaneSide(vec_t *emins, vec_t *emaxs, mplane_t *p)
|
||||
{
|
||||
@ -125,6 +227,7 @@ int BoxOnPlaneSide(vec_t *emins, vec_t *emaxs, mplane_t *p)
|
||||
|
||||
return sides;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* <46f8d> ../engine/mathlib.c:157 */
|
||||
NOBODY int InvertMatrix(const float *m, float *out);
|
||||
@ -145,6 +248,53 @@ void EXT_FUNC AngleVectors_ext(const vec_t *angles, vec_t *forward, vec_t *right
|
||||
AngleVectors(angles, forward, right, up);
|
||||
}
|
||||
|
||||
#ifdef REHLDS_FIXES
|
||||
// parallel SSE version
|
||||
void AngleVectors(const vec_t *angles, vec_t *forward, vec_t *right, vec_t *up)
|
||||
{
|
||||
#ifndef SWDS
|
||||
g_engdstAddrs.pfnAngleVectors(&angles, &forward, &right, &up);
|
||||
#endif // SWDS
|
||||
|
||||
__m128 s, c;
|
||||
sincos_ps(_mm_mul_ps(_mm_loadu_ps(angles), _mm_load_ps(deg2rad)), &s, &c);
|
||||
|
||||
__m128 m1 = _mm_shuffle_ps(c, s, 0x90); // [cp][cp][sy][sr]
|
||||
__m128 m2 = _mm_shuffle_ps(c, c, 0x09); // [cy][cr][cp][cp]
|
||||
__m128 cp_mults = _mm_mul_ps(m1, m2); // [cp * cy][cp * cr][cp * sy][cp * sr];
|
||||
|
||||
m1 = _mm_shuffle_ps(c, s, 0x15); // [cy][cy][sy][sp]
|
||||
m2 = _mm_shuffle_ps(s, c, 0xA0); // [sp][sp][cr][cr]
|
||||
m1 = _mm_shuffle_ps(m1, m1, 0xC8); // [cy][sy][cy][sp]
|
||||
|
||||
__m128 m3 = _mm_shuffle_ps(s, s, 0x4A); // [sr][sr][sp][sy];
|
||||
m3 = _mm_mul_ps(m3, _mm_mul_ps(m1, m2)); // [sp*cy*sr][sp*sy*sr][cr*cy*sp][cr*sp*sy]
|
||||
|
||||
m2 = _mm_shuffle_ps(s, c, 0x65); // [sy][sy][cr][cy]
|
||||
m1 = _mm_shuffle_ps(c, s, 0xA6); // [cr][cy][sr][sr]
|
||||
m2 = _mm_shuffle_ps(m2, m2, 0xD8); // [sy][cr][sy][cy]
|
||||
m1 = _mm_xor_ps(m1, _mm_load_ps((float *)&negmask_1001)); // [-cr][cy][sr][-sr]
|
||||
m1 = _mm_mul_ps(m1, m2); // [-cr*sy][cy*cr][sr*sy][-sr*cy]
|
||||
|
||||
m3 = _mm_add_ps(m3, m1);
|
||||
|
||||
if (forward)
|
||||
{
|
||||
_mm_storel_pi((__m64 *)forward, _mm_shuffle_ps(cp_mults, cp_mults, 0x08));
|
||||
forward[2] = -_mm_cvtss_f32(s);
|
||||
}
|
||||
if (right)
|
||||
{
|
||||
__m128 r = _mm_shuffle_ps(m3, cp_mults, 0xF4); // [m3(0)][m3(1)][cp(3)][cp(3)]
|
||||
xmm2vec(right, _mm_xor_ps(r, _mm_load_ps((float *)&negmask)));
|
||||
}
|
||||
if (up)
|
||||
{
|
||||
_mm_storel_pi((__m64 *)up, _mm_shuffle_ps(m3, m3, 0x0E));
|
||||
up[2] = _mm_cvtss_f32(_mm_shuffle_ps(cp_mults, cp_mults, 0x01));
|
||||
}
|
||||
}
|
||||
#else // REHLDS_FIXES
|
||||
/* <47067> ../engine/mathlib.c:267 */
|
||||
void AngleVectors(const vec_t *angles, vec_t *forward, vec_t *right, vec_t *up)
|
||||
{
|
||||
@ -154,18 +304,6 @@ void AngleVectors(const vec_t *angles, vec_t *forward, vec_t *right, vec_t *up)
|
||||
g_engdstAddrs.pfnAngleVectors(&angles, &forward, &right, &up);
|
||||
#endif // SWDS
|
||||
|
||||
#ifdef REHLDS_FIXES
|
||||
// convert to radians
|
||||
avec4_t rad_angles;
|
||||
_mm_store_ps(rad_angles, _mm_mul_ps(_mm_loadu_ps(angles), _mm_load_ps(deg2rad)));
|
||||
|
||||
sy = sin(rad_angles[YAW]);
|
||||
cy = cos(rad_angles[YAW]);
|
||||
sp = sin(rad_angles[PITCH]);
|
||||
cp = cos(rad_angles[PITCH]);
|
||||
sr = sin(rad_angles[ROLL]);
|
||||
cr = cos(rad_angles[ROLL]);
|
||||
#else
|
||||
float angle;
|
||||
angle = (float)(angles[YAW] * (M_PI * 2 / 360));
|
||||
sy = sin(angle);
|
||||
@ -176,7 +314,6 @@ void AngleVectors(const vec_t *angles, vec_t *forward, vec_t *right, vec_t *up)
|
||||
angle = (float)(angles[ROLL] * (M_PI * 2 / 360));
|
||||
sr = sin(angle);
|
||||
cr = cos(angle);
|
||||
#endif
|
||||
|
||||
if (forward)
|
||||
{
|
||||
@ -197,24 +334,57 @@ void AngleVectors(const vec_t *angles, vec_t *forward, vec_t *right, vec_t *up)
|
||||
up[2] = cr*cp;
|
||||
}
|
||||
}
|
||||
#endif // REHLDS_FIXES
|
||||
|
||||
#ifdef REHLDS_FIXES
|
||||
// parallel SSE version
|
||||
void AngleVectorsTranspose(const vec_t *angles, vec_t *forward, vec_t *right, vec_t *up)
|
||||
{
|
||||
__m128 s, c;
|
||||
sincos_ps(_mm_mul_ps(_mm_loadu_ps(angles), _mm_load_ps(deg2rad)), &s, &c);
|
||||
|
||||
__m128 m1 = _mm_shuffle_ps(c, s, 0x90); // [cp][cp][sy][sr]
|
||||
__m128 m2 = _mm_shuffle_ps(c, c, 0x09); // [cy][cr][cp][cp]
|
||||
__m128 cp_mults = _mm_mul_ps(m1, m2); // [cp * cy][cp * cr][cp * sy][cp * sr];
|
||||
|
||||
m1 = _mm_shuffle_ps(s, s, 0x50); // [sp][sp][sy][sy]
|
||||
m2 = _mm_shuffle_ps(c, s, 0x05); // [cy][cy][sp][sp]
|
||||
|
||||
__m128 m3 = _mm_shuffle_ps(s, c, 0xAA); // [sr][sr][cr][cr]
|
||||
m1 = _mm_mul_ps(m1, m2);
|
||||
m3 = _mm_shuffle_ps(m3, m3, 0xD8); // [sr][cr][sr][cr]
|
||||
m3 = _mm_mul_ps(m3, m1); // [sp*cy*sr][sp*cy*cr][sy*sp*sr][sy*sp*cr]
|
||||
|
||||
m2 = _mm_shuffle_ps(c, s, 0xA6); // [cr][cy][sr][sr]
|
||||
m1 = _mm_shuffle_ps(s, c, 0x65); // [sy][sy][cr][cy]
|
||||
m2 = _mm_shuffle_ps(m2, m2, 0xD8); // [cr][sr][cy][sr]
|
||||
m1 = _mm_xor_ps(m1, _mm_load_ps((float *)&negmask_1001)); // [-cr][cy][sr][-sr]
|
||||
m1 = _mm_mul_ps(m1, m2); // [-cr*sy][sr*sy][cy*cr][-sr*cy]
|
||||
|
||||
m3 = _mm_add_ps(m3, m1);
|
||||
|
||||
if (forward)
|
||||
{
|
||||
forward[0] = _mm_cvtss_f32(cp_mults);
|
||||
_mm_storel_pi((__m64*)(forward + 1), m3); // (sr*sp*cy + cr*-sy);
|
||||
}
|
||||
if (right)
|
||||
{
|
||||
right[0] = _mm_cvtss_f32(_mm_shuffle_ps(cp_mults, cp_mults, 0x02));
|
||||
_mm_storel_pi((__m64*)(right + 1), _mm_shuffle_ps(m3, m3, 0x0E));
|
||||
}
|
||||
if (up)
|
||||
{
|
||||
up[0] = -_mm_cvtss_f32(s);
|
||||
_mm_storel_pi((__m64 *)&up[1], _mm_shuffle_ps(cp_mults, cp_mults, 0x07));
|
||||
}
|
||||
}
|
||||
#else // REHLDS_FIXES
|
||||
/* <4712e> ../engine/mathlib.c:304 */
|
||||
void AngleVectorsTranspose(const vec_t *angles, vec_t *forward, vec_t *right, vec_t *up)
|
||||
{
|
||||
float sr, sp, sy, cr, cp, cy;
|
||||
|
||||
#ifdef REHLDS_FIXES
|
||||
// convert to radians
|
||||
avec4_t rad_angles;
|
||||
_mm_store_ps(rad_angles, _mm_mul_ps(_mm_loadu_ps(angles), _mm_load_ps(deg2rad)));
|
||||
|
||||
sy = sin(rad_angles[YAW]);
|
||||
cy = cos(rad_angles[YAW]);
|
||||
sp = sin(rad_angles[PITCH]);
|
||||
cp = cos(rad_angles[PITCH]);
|
||||
sr = sin(rad_angles[ROLL]);
|
||||
cr = cos(rad_angles[ROLL]);
|
||||
#else
|
||||
float angle;
|
||||
angle = (float)(angles[YAW] * (M_PI * 2 / 360));
|
||||
sy = sin(angle);
|
||||
@ -225,7 +395,6 @@ void AngleVectorsTranspose(const vec_t *angles, vec_t *forward, vec_t *right, ve
|
||||
angle = (float)(angles[ROLL] * (M_PI * 2 / 360));
|
||||
sr = sin(angle);
|
||||
cr = cos(angle);
|
||||
#endif
|
||||
|
||||
if (forward)
|
||||
{
|
||||
@ -246,24 +415,71 @@ void AngleVectorsTranspose(const vec_t *angles, vec_t *forward, vec_t *right, ve
|
||||
up[2] = cr*cp;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef REHLDS_FIXES
|
||||
// parallel SSE version
|
||||
void AngleMatrix(const vec_t *angles, float(*matrix)[4])
|
||||
{
|
||||
__m128 s, c;
|
||||
sincos_ps(_mm_mul_ps(_mm_loadu_ps(angles), _mm_load_ps(deg2rad)), &s, &c);
|
||||
|
||||
/*
|
||||
matrix[0][1] = sr * sp * cy - cr * sy;
|
||||
matrix[1][1] = sr * sp * sy + cr * cy;
|
||||
matrix[0][2] = cr * sp * cy + sr * sy;
|
||||
matrix[1][2] = cr * sp * sy - sr * cy;
|
||||
*/
|
||||
__m128 m1;
|
||||
__m128 m2 = _mm_shuffle_ps(s, c, 0x00); // [sp][sp][cp][cp]
|
||||
__m128 m3 = _mm_shuffle_ps(c, s, 0x55); // [cy][cy][sy][sy]
|
||||
|
||||
m1 = _mm_shuffle_ps(s, c, 0xAA); // [sr][sr][cr][cr]
|
||||
m2 = _mm_shuffle_ps(m2, m2, 0x00); // [sp][sp][sp][sp]
|
||||
m3 = _mm_shuffle_ps(m3, m3, 0xD8); // [cy][sy][cy][sy]
|
||||
|
||||
m2 = _mm_mul_ps(m2, _mm_mul_ps(m1, m3)); // m1*m2*m3
|
||||
|
||||
m1 = _mm_shuffle_ps(m1, m1, 0x1B); // [cr][cr][sr][sr]
|
||||
m3 = _mm_shuffle_ps(m3, m3, 0xB1); // [sy][cy][sy][cy]
|
||||
m3 = _mm_xor_ps(m3, _mm_load_ps((float *)&negmask_1001));
|
||||
m3 = _mm_mul_ps(m3, m1);
|
||||
|
||||
m2 = _mm_add_ps(m2, m3);
|
||||
|
||||
/*
|
||||
matrix[0][0] = cp * cy;
|
||||
matrix[1][0] = cp * sy;
|
||||
matrix[2][1] = sr * cp;
|
||||
matrix[2][2] = cr * cp;
|
||||
*/
|
||||
m1 = _mm_shuffle_ps(s, c, 0x29); // [sy][sr][cr][cp]
|
||||
c = _mm_shuffle_ps(c, c, 0x40); // [cp][cp][cp][cy]
|
||||
m1 = _mm_mul_ps(m1, c);
|
||||
|
||||
// matrix[0]
|
||||
m3 = _mm_shuffle_ps(m2, m2, 0xE1);
|
||||
_mm_storeu_ps(&matrix[0][0], m3);
|
||||
matrix[0][0] = _mm_cvtss_f32(_mm_shuffle_ps(m1, m1, 0x03));
|
||||
*(int *)&matrix[0][3] = 0;
|
||||
|
||||
// matrix[1]
|
||||
m2 = _mm_shuffle_ps(m2, m2, 0xB4);
|
||||
_mm_storeu_ps(&matrix[1][0], m2);
|
||||
matrix[1][0] = _mm_cvtss_f32(m1);
|
||||
*(int *)&matrix[1][3] = 0;
|
||||
|
||||
// matrix[2]
|
||||
_mm_storeu_ps(&matrix[2][0], m1);
|
||||
matrix[2][0] = -_mm_cvtss_f32(s);
|
||||
*(int *)&matrix[2][3] = 0;
|
||||
}
|
||||
#else // REHLDS_FIXES
|
||||
/* <471e9> ../engine/mathlib.c:340 */
|
||||
void AngleMatrix(const vec_t *angles, float(*matrix)[4])
|
||||
{
|
||||
float sr, sp, sy, cr, cp, cy;
|
||||
|
||||
#ifdef REHLDS_FIXES
|
||||
// convert to radians
|
||||
avec4_t rad_angles;
|
||||
_mm_store_ps(rad_angles, _mm_mul_ps(_mm_loadu_ps(angles), _mm_load_ps(deg2rad)));
|
||||
|
||||
sy = sin(rad_angles[ROLL]);
|
||||
cy = cos(rad_angles[ROLL]);
|
||||
sp = sin(rad_angles[YAW]);
|
||||
cp = cos(rad_angles[YAW]);
|
||||
sr = sin(rad_angles[PITCH]);
|
||||
cr = cos(rad_angles[PITCH]);
|
||||
#else
|
||||
float angle;
|
||||
angle = (float)(angles[ROLL] * (M_PI * 2 / 360));
|
||||
sy = sin(angle);
|
||||
@ -274,29 +490,23 @@ void AngleMatrix(const vec_t *angles, float(*matrix)[4])
|
||||
angle = (float)(angles[PITCH] * (M_PI * 2 / 360));
|
||||
sr = sin(angle);
|
||||
cr = cos(angle);
|
||||
#endif
|
||||
|
||||
float tmp1, tmp2;
|
||||
|
||||
matrix[0][0] = cr * cp;
|
||||
matrix[1][0] = cr * sp;
|
||||
matrix[2][0] = -sr;
|
||||
|
||||
tmp1 = sy * sr;
|
||||
matrix[0][1] = tmp1 * cp - cy * sp;
|
||||
matrix[1][1] = tmp1 * sp + cy * cp;
|
||||
matrix[2][1] = sy * cr;
|
||||
|
||||
tmp2 = cy * sr;
|
||||
matrix[0][2] = tmp2 * cp + sy * sp;
|
||||
matrix[1][2] = tmp2 * sp - sy * cp;
|
||||
matrix[2][2] = cy * cr;
|
||||
|
||||
matrix[0][1] = sy * sr * cp - cy * sp;
|
||||
matrix[0][2] = cy * sr * cp + sy * sp;
|
||||
matrix[0][3] = 0.0f;
|
||||
matrix[1][3] = 0.0f;
|
||||
matrix[2][3] = 0.0f;
|
||||
|
||||
matrix[1][0] = cr * sp;
|
||||
matrix[1][1] = sy * sr * sp + cy * cp;
|
||||
matrix[1][2] = cy * sr * sp - sy * cp;
|
||||
matrix[1][3] = 0.0f;
|
||||
|
||||
matrix[2][0] = -sr;
|
||||
matrix[2][1] = sy * cr;
|
||||
matrix[2][2] = cy * cr;
|
||||
matrix[2][3] = 0.0f;
|
||||
}
|
||||
#endif // REHLDS_FIXES
|
||||
|
||||
/* <4729e> ../engine/mathlib.c:370 */
|
||||
NOBODY void AngleIMatrix(const vec_t *angles, float *matrix);
|
||||
@ -331,22 +541,33 @@ NOBODY void InterpolateAngles(float *start, float *end, float *output, float fra
|
||||
/* <47495> ../engine/mathlib.c:457 */
|
||||
void VectorTransform(const vec_t *in1, float *in2, vec_t *out)
|
||||
{
|
||||
out[0] = in2[1] * in1[1] + in2[2] * in1[2] + in1[0] * in2[0] + in2[3];
|
||||
out[1] = in2[4] * in1[0] + in2[5] * in1[1] + in2[6] * in1[2] + in2[7];
|
||||
out[2] = in2[8] * in1[0] + in2[9] * in1[1] + in2[10] * in1[2] + in2[11];
|
||||
out[0] = _DotProduct(in1, in2 + 0) + in2[3];
|
||||
out[1] = _DotProduct(in1, in2 + 4) + in2[7];
|
||||
out[2] = _DotProduct(in1, in2 + 8) + in2[11];
|
||||
}
|
||||
|
||||
/* <474dc> ../engine/mathlib.c:465 */
|
||||
int VectorCompare(const vec_t *v1, const vec_t *v2)
|
||||
{
|
||||
#ifdef REHLDS_OPT_PEDANTIC
|
||||
__m128 cmp = _mm_cmpneq_ps(_mm_loadu_ps(v1), _mm_loadu_ps(v2));
|
||||
return !(_mm_movemask_epi8(*(__m128i *)&cmp) & 0xFFF);
|
||||
#else // REHLDS_OPT_PEDANTIC
|
||||
for (int i = 0; i < 3; i++)
|
||||
{
|
||||
if (v1[i] != v2[i]) return 0;
|
||||
}
|
||||
|
||||
return 1;
|
||||
#endif // REHLDS_OPT_PEDANTIC
|
||||
}
|
||||
|
||||
#ifdef REHLDS_FIXES
|
||||
void VectorMA(const vec_t *veca, float scale, const vec_t *vecm, vec_t *out)
|
||||
{
|
||||
xmm2vec(out, _mm_add_ps(_mm_mul_ps(_mm_set_ps1(scale), _mm_loadu_ps(vecm)), _mm_loadu_ps(veca)));
|
||||
}
|
||||
#else
|
||||
/* <47524> ../engine/mathlib.c:476 */
|
||||
void VectorMA(const vec_t *veca, float scale, const vec_t *vecm, vec_t *out)
|
||||
{
|
||||
@ -354,6 +575,7 @@ void VectorMA(const vec_t *veca, float scale, const vec_t *vecm, vec_t *out)
|
||||
out[1] = scale * vecm[1] + veca[1];
|
||||
out[2] = scale * vecm[2] + veca[2];
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef REHLDS_FIXES
|
||||
/* <4757a> ../engine/mathlib.c:484 */
|
||||
@ -384,9 +606,9 @@ NOBODY void _VectorSubtract(vec_t *veca, vec_t *vecb, vec_t *out);
|
||||
/* <475fb> ../engine/mathlib.c:496 */
|
||||
void _VectorAdd(vec_t *veca, vec_t *vecb, vec_t *out)
|
||||
{
|
||||
for (int i = 0; i < 3; i++) {
|
||||
out[i] = veca[i] + vecb[i];
|
||||
}
|
||||
out[0] = veca[0] + vecb[0];
|
||||
out[1] = veca[1] + vecb[1];
|
||||
out[2] = veca[2] + vecb[2];
|
||||
}
|
||||
|
||||
/* <47642> ../engine/mathlib.c:503 */
|
||||
@ -418,6 +640,7 @@ float Length(const vec_t *v)
|
||||
// based on dot product
|
||||
if (cpuinfo.sse4_1)
|
||||
return _mm_cvtss_f32(_mm_sqrt_ss(_mm_dp_ps(_mm_loadu_ps(v), _mm_loadu_ps(v), 0x71)));
|
||||
return sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
|
||||
#endif // REHLDS_FIXES
|
||||
|
||||
float length;
|
||||
@ -447,10 +670,10 @@ float VectorNormalize(vec3_t v)
|
||||
float length, ilength;
|
||||
|
||||
#ifdef REHLDS_FIXES
|
||||
length = Length(v);
|
||||
length = Length(v); // rsqrt is very inaccurate :(
|
||||
#else // REHLDS_FIXES
|
||||
length = v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
|
||||
length = sqrt(length); // FIXME
|
||||
length = sqrt(length);
|
||||
#endif // REHLDS_FIXES
|
||||
|
||||
if (length)
|
||||
@ -539,6 +762,19 @@ NOBODY void R_ConcatRotations(float *in1, float *in2, float *out);
|
||||
//}
|
||||
|
||||
/* <47a04> ../engine/mathlib.c:660 */
|
||||
#ifdef REHLDS_FIXES
|
||||
void R_ConcatTransforms(float in1[3][4], float in2[3][4], float out[3][4])
|
||||
{
|
||||
for (size_t i = 0; i < 3; i++)
|
||||
{
|
||||
__m128 a1 = _mm_mul_ps(_mm_set_ps1(in1[i][0]), _mm_loadu_ps(in2[0]));
|
||||
__m128 a2 = _mm_mul_ps(_mm_set_ps1(in1[i][1]), _mm_loadu_ps(in2[1]));
|
||||
__m128 a3 = _mm_mul_ps(_mm_set_ps1(in1[i][2]), _mm_loadu_ps(in2[2]));
|
||||
_mm_storeu_ps(out[i], _mm_add_ps(a1, _mm_add_ps(a2, a3)));
|
||||
out[i][3] += in1[i][3];
|
||||
}
|
||||
}
|
||||
#else // REHLDS_FIXES
|
||||
void R_ConcatTransforms(float in1[3][4], float in2[3][4], float out[3][4])
|
||||
{
|
||||
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0];
|
||||
@ -554,6 +790,7 @@ void R_ConcatTransforms(float in1[3][4], float in2[3][4], float out[3][4])
|
||||
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2];
|
||||
out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] + in1[2][2] * in2[2][3] + in1[2][3];
|
||||
}
|
||||
#endif // REHLDS_FIXES
|
||||
|
||||
/* <47a4b> ../engine/mathlib.c:699 */
|
||||
NOBODY void FloorDivMod(double numer, double denom, int *quotient, int *rem);
|
||||
|
447
rehlds/engine/sse_mathfun.cpp
Normal file
447
rehlds/engine/sse_mathfun.cpp
Normal file
@ -0,0 +1,447 @@
|
||||
/* SIMD (SSE1+MMX or SSE2) implementation of sin, cos, exp and log
|
||||
|
||||
Inspired by Intel Approximate Math library, and based on the
|
||||
corresponding algorithms of the cephes math library
|
||||
|
||||
The default is to use the SSE1 version. If you define USE_SSE2 the
|
||||
the SSE2 intrinsics will be used in place of the MMX intrinsics. Do
|
||||
not expect any significant performance improvement with SSE2.
|
||||
*/
|
||||
|
||||
/* Copyright (C) 2007 Julien Pommier
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the authors be held liable for any damages
|
||||
arising from the use of this software.
|
||||
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it
|
||||
freely, subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not
|
||||
claim that you wrote the original software. If you use this software
|
||||
in a product, an acknowledgment in the product documentation would be
|
||||
appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be
|
||||
misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
|
||||
(this is the zlib license)
|
||||
*/
|
||||
|
||||
#include "precompiled.h"
|
||||
|
||||
/* natural logarithm computed for 4 simultaneous float
|
||||
return NaN for x <= 0
|
||||
*/
|
||||
v4sf log_ps(v4sf x) {
|
||||
v4si emm0;
|
||||
|
||||
v4sf one = *(v4sf*)_ps_1;
|
||||
|
||||
v4sf invalid_mask = _mm_cmple_ps(x, _mm_setzero_ps());
|
||||
|
||||
x = _mm_max_ps(x, *(v4sf*)_ps_min_norm_pos); /* cut off denormalized stuff */
|
||||
|
||||
emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23);
|
||||
|
||||
/* keep only the fractional part */
|
||||
x = _mm_and_ps(x, *(v4sf*)_ps_inv_mant_mask);
|
||||
x = _mm_or_ps(x, *(v4sf*)_ps_0p5);
|
||||
|
||||
emm0 = _mm_sub_epi32(emm0, *(v4si*)_pi32_0x7f);
|
||||
v4sf e = _mm_cvtepi32_ps(emm0);
|
||||
|
||||
e = _mm_add_ps(e, one);
|
||||
|
||||
/* part2:
|
||||
if( x < SQRTHF ) {
|
||||
e -= 1;
|
||||
x = x + x - 1.0;
|
||||
} else { x = x - 1.0; }
|
||||
*/
|
||||
v4sf mask = _mm_cmplt_ps(x, *(v4sf*)_ps_cephes_SQRTHF);
|
||||
v4sf tmp = _mm_and_ps(x, mask);
|
||||
x = _mm_sub_ps(x, one);
|
||||
e = _mm_sub_ps(e, _mm_and_ps(one, mask));
|
||||
x = _mm_add_ps(x, tmp);
|
||||
|
||||
|
||||
v4sf z = _mm_mul_ps(x, x);
|
||||
|
||||
v4sf y = *(v4sf*)_ps_cephes_log_p0;
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p1);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p2);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p3);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p4);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p5);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p6);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p7);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p8);
|
||||
y = _mm_mul_ps(y, x);
|
||||
|
||||
y = _mm_mul_ps(y, z);
|
||||
|
||||
|
||||
tmp = _mm_mul_ps(e, *(v4sf*)_ps_cephes_log_q1);
|
||||
y = _mm_add_ps(y, tmp);
|
||||
|
||||
|
||||
tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
|
||||
y = _mm_sub_ps(y, tmp);
|
||||
|
||||
tmp = _mm_mul_ps(e, *(v4sf*)_ps_cephes_log_q2);
|
||||
x = _mm_add_ps(x, y);
|
||||
x = _mm_add_ps(x, tmp);
|
||||
x = _mm_or_ps(x, invalid_mask); // negative arg will be NAN
|
||||
return x;
|
||||
}
|
||||
|
||||
v4sf exp_ps(v4sf x) {
|
||||
v4sf tmp = _mm_setzero_ps(), fx;
|
||||
v4si emm0;
|
||||
v4sf one = *(v4sf*)_ps_1;
|
||||
|
||||
x = _mm_min_ps(x, *(v4sf*)_ps_exp_hi);
|
||||
x = _mm_max_ps(x, *(v4sf*)_ps_exp_lo);
|
||||
|
||||
/* express exp(x) as exp(g + n*log(2)) */
|
||||
fx = _mm_mul_ps(x, *(v4sf*)_ps_cephes_LOG2EF);
|
||||
fx = _mm_add_ps(fx, *(v4sf*)_ps_0p5);
|
||||
|
||||
/* how to perform a floorf with SSE: just below */
|
||||
emm0 = _mm_cvttps_epi32(fx);
|
||||
tmp = _mm_cvtepi32_ps(emm0);
|
||||
|
||||
/* if greater, substract 1 */
|
||||
v4sf mask = _mm_cmpgt_ps(tmp, fx);
|
||||
mask = _mm_and_ps(mask, one);
|
||||
fx = _mm_sub_ps(tmp, mask);
|
||||
|
||||
tmp = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C1);
|
||||
v4sf z = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C2);
|
||||
x = _mm_sub_ps(x, tmp);
|
||||
x = _mm_sub_ps(x, z);
|
||||
|
||||
z = _mm_mul_ps(x, x);
|
||||
|
||||
v4sf y = *(v4sf*)_ps_cephes_exp_p0;
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p1);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p2);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p3);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p4);
|
||||
y = _mm_mul_ps(y, x);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p5);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, x);
|
||||
y = _mm_add_ps(y, one);
|
||||
|
||||
/* build 2^n */
|
||||
emm0 = _mm_cvttps_epi32(fx);
|
||||
emm0 = _mm_add_epi32(emm0, *(v4si*)_pi32_0x7f);
|
||||
emm0 = _mm_slli_epi32(emm0, 23);
|
||||
v4sf pow2n = _mm_castsi128_ps(emm0);
|
||||
|
||||
y = _mm_mul_ps(y, pow2n);
|
||||
return y;
|
||||
}
|
||||
|
||||
/* evaluation of 4 sines at onces, using only SSE1+MMX intrinsics so
|
||||
it runs also on old athlons XPs and the pentium III of your grand
|
||||
mother.
|
||||
|
||||
The code is the exact rewriting of the cephes sinf function.
|
||||
Precision is excellent as long as x < 8192 (I did not bother to
|
||||
take into account the special handling they have for greater values
|
||||
-- it does not return garbage for arguments over 8192, though, but
|
||||
the extra precision is missing).
|
||||
|
||||
Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
|
||||
surprising but correct result.
|
||||
|
||||
Performance is also surprisingly good, 1.33 times faster than the
|
||||
macos vsinf SSE2 function, and 1.5 times faster than the
|
||||
__vrs4_sinf of amd's ACML (which is only available in 64 bits). Not
|
||||
too bad for an SSE1 function (with no special tuning) !
|
||||
However the latter libraries probably have a much better handling of NaN,
|
||||
Inf, denormalized and other special arguments..
|
||||
|
||||
On my core 1 duo, the execution of this function takes approximately 95 cycles.
|
||||
|
||||
From what I have observed on the experiments with Intel AMath lib, switching to an
|
||||
SSE2 version would improve the perf by only 10%.
|
||||
|
||||
Since it is based on SSE intrinsics, it has to be compiled at -O2 to
|
||||
deliver full speed.
|
||||
*/
|
||||
v4sf sin_ps(v4sf x) { // any x
|
||||
v4sf xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y;
|
||||
|
||||
v4si emm0, emm2;
|
||||
|
||||
sign_bit = x;
|
||||
/* take the absolute value */
|
||||
x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
|
||||
/* extract the sign bit (upper one) */
|
||||
sign_bit = _mm_and_ps(sign_bit, *(v4sf*)_ps_sign_mask);
|
||||
|
||||
/* scale by 4/Pi */
|
||||
y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
|
||||
|
||||
/* store the integer part of y in mm0 */
|
||||
emm2 = _mm_cvttps_epi32(y);
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
|
||||
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
|
||||
y = _mm_cvtepi32_ps(emm2);
|
||||
|
||||
/* get the swap sign flag */
|
||||
emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4);
|
||||
emm0 = _mm_slli_epi32(emm0, 29);
|
||||
/* get the polynom selection mask
|
||||
there is one polynom for 0 <= x <= Pi/4
|
||||
and another one for Pi/4<x<=Pi/2
|
||||
|
||||
Both branches will be computed.
|
||||
*/
|
||||
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
|
||||
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
|
||||
|
||||
v4sf swap_sign_bit = _mm_castsi128_ps(emm0);
|
||||
v4sf poly_mask = _mm_castsi128_ps(emm2);
|
||||
sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
|
||||
|
||||
/* The magic pass: "Extended precision modular arithmetic"
|
||||
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
||||
xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
|
||||
xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
|
||||
xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
|
||||
xmm1 = _mm_mul_ps(y, xmm1);
|
||||
xmm2 = _mm_mul_ps(y, xmm2);
|
||||
xmm3 = _mm_mul_ps(y, xmm3);
|
||||
x = _mm_add_ps(x, xmm1);
|
||||
x = _mm_add_ps(x, xmm2);
|
||||
x = _mm_add_ps(x, xmm3);
|
||||
|
||||
/* Evaluate the first polynom (0 <= x <= Pi/4) */
|
||||
y = *(v4sf*)_ps_coscof_p0;
|
||||
v4sf z = _mm_mul_ps(x, x);
|
||||
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_mul_ps(y, z);
|
||||
v4sf tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
|
||||
y = _mm_sub_ps(y, tmp);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_1);
|
||||
|
||||
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
|
||||
|
||||
v4sf y2 = *(v4sf*)_ps_sincof_p0;
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_mul_ps(y2, x);
|
||||
y2 = _mm_add_ps(y2, x);
|
||||
|
||||
/* select the correct result from the two polynoms */
|
||||
xmm3 = poly_mask;
|
||||
y2 = _mm_and_ps(xmm3, y2); //, xmm3);
|
||||
y = _mm_andnot_ps(xmm3, y);
|
||||
y = _mm_add_ps(y, y2);
|
||||
/* update the sign */
|
||||
y = _mm_xor_ps(y, sign_bit);
|
||||
return y;
|
||||
}
|
||||
|
||||
/* almost the same as sin_ps */
|
||||
v4sf cos_ps(v4sf x) { // any x
|
||||
v4sf xmm1, xmm2 = _mm_setzero_ps(), xmm3, y;
|
||||
|
||||
v4si emm0, emm2;
|
||||
|
||||
/* take the absolute value */
|
||||
x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
|
||||
|
||||
/* scale by 4/Pi */
|
||||
y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
|
||||
|
||||
/* store the integer part of y in mm0 */
|
||||
emm2 = _mm_cvttps_epi32(y);
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
|
||||
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
|
||||
y = _mm_cvtepi32_ps(emm2);
|
||||
|
||||
emm2 = _mm_sub_epi32(emm2, *(v4si*)_pi32_2);
|
||||
|
||||
/* get the swap sign flag */
|
||||
emm0 = _mm_andnot_si128(emm2, *(v4si*)_pi32_4);
|
||||
emm0 = _mm_slli_epi32(emm0, 29);
|
||||
/* get the polynom selection mask */
|
||||
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
|
||||
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
|
||||
|
||||
v4sf sign_bit = _mm_castsi128_ps(emm0);
|
||||
v4sf poly_mask = _mm_castsi128_ps(emm2);
|
||||
|
||||
/* The magic pass: "Extended precision modular arithmetic"
|
||||
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
||||
xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
|
||||
xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
|
||||
xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
|
||||
xmm1 = _mm_mul_ps(y, xmm1);
|
||||
xmm2 = _mm_mul_ps(y, xmm2);
|
||||
xmm3 = _mm_mul_ps(y, xmm3);
|
||||
x = _mm_add_ps(x, xmm1);
|
||||
x = _mm_add_ps(x, xmm2);
|
||||
x = _mm_add_ps(x, xmm3);
|
||||
|
||||
/* Evaluate the first polynom (0 <= x <= Pi/4) */
|
||||
y = *(v4sf*)_ps_coscof_p0;
|
||||
v4sf z = _mm_mul_ps(x, x);
|
||||
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_mul_ps(y, z);
|
||||
v4sf tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
|
||||
y = _mm_sub_ps(y, tmp);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_1);
|
||||
|
||||
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
|
||||
|
||||
v4sf y2 = *(v4sf*)_ps_sincof_p0;
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_mul_ps(y2, x);
|
||||
y2 = _mm_add_ps(y2, x);
|
||||
|
||||
/* select the correct result from the two polynoms */
|
||||
xmm3 = poly_mask;
|
||||
y2 = _mm_and_ps(xmm3, y2); //, xmm3);
|
||||
y = _mm_andnot_ps(xmm3, y);
|
||||
y = _mm_add_ps(y, y2);
|
||||
/* update the sign */
|
||||
y = _mm_xor_ps(y, sign_bit);
|
||||
|
||||
return y;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* since sin_ps and cos_ps are almost identical, sincos_ps could replace both of them..
|
||||
it is almost as fast, and gives you a free cosine with your sine */
|
||||
void sincos_ps(v4sf x, v4sf *s, v4sf *c) {
|
||||
v4sf xmm1, xmm2, xmm3 = _mm_setzero_ps(), sign_bit_sin, y;
|
||||
v4si emm0, emm2, emm4;
|
||||
|
||||
sign_bit_sin = x;
|
||||
/* take the absolute value */
|
||||
x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
|
||||
/* extract the sign bit (upper one) */
|
||||
sign_bit_sin = _mm_and_ps(sign_bit_sin, *(v4sf*)_ps_sign_mask);
|
||||
|
||||
/* scale by 4/Pi */
|
||||
y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
|
||||
|
||||
/* store the integer part of y in emm2 */
|
||||
emm2 = _mm_cvttps_epi32(y);
|
||||
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
|
||||
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
|
||||
y = _mm_cvtepi32_ps(emm2);
|
||||
|
||||
emm4 = emm2;
|
||||
|
||||
/* get the swap sign flag for the sine */
|
||||
emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4);
|
||||
emm0 = _mm_slli_epi32(emm0, 29);
|
||||
v4sf swap_sign_bit_sin = _mm_castsi128_ps(emm0);
|
||||
|
||||
/* get the polynom selection mask for the sine*/
|
||||
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
|
||||
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
|
||||
v4sf poly_mask = _mm_castsi128_ps(emm2);
|
||||
|
||||
/* The magic pass: "Extended precision modular arithmetic"
|
||||
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
||||
xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
|
||||
xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
|
||||
xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
|
||||
xmm1 = _mm_mul_ps(y, xmm1);
|
||||
xmm2 = _mm_mul_ps(y, xmm2);
|
||||
xmm3 = _mm_mul_ps(y, xmm3);
|
||||
x = _mm_add_ps(x, xmm1);
|
||||
x = _mm_add_ps(x, xmm2);
|
||||
x = _mm_add_ps(x, xmm3);
|
||||
|
||||
emm4 = _mm_sub_epi32(emm4, *(v4si*)_pi32_2);
|
||||
emm4 = _mm_andnot_si128(emm4, *(v4si*)_pi32_4);
|
||||
emm4 = _mm_slli_epi32(emm4, 29);
|
||||
v4sf sign_bit_cos = _mm_castsi128_ps(emm4);
|
||||
|
||||
sign_bit_sin = _mm_xor_ps(sign_bit_sin, swap_sign_bit_sin);
|
||||
|
||||
|
||||
/* Evaluate the first polynom (0 <= x <= Pi/4) */
|
||||
v4sf z = _mm_mul_ps(x, x);
|
||||
y = *(v4sf*)_ps_coscof_p0;
|
||||
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
|
||||
y = _mm_mul_ps(y, z);
|
||||
y = _mm_mul_ps(y, z);
|
||||
v4sf tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
|
||||
y = _mm_sub_ps(y, tmp);
|
||||
y = _mm_add_ps(y, *(v4sf*)_ps_1);
|
||||
|
||||
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
|
||||
|
||||
v4sf y2 = *(v4sf*)_ps_sincof_p0;
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
|
||||
y2 = _mm_mul_ps(y2, z);
|
||||
y2 = _mm_mul_ps(y2, x);
|
||||
y2 = _mm_add_ps(y2, x);
|
||||
|
||||
/* select the correct result from the two polynoms */
|
||||
xmm3 = poly_mask;
|
||||
v4sf ysin2 = _mm_and_ps(xmm3, y2);
|
||||
v4sf ysin1 = _mm_andnot_ps(xmm3, y);
|
||||
y2 = _mm_sub_ps(y2, ysin2);
|
||||
y = _mm_sub_ps(y, ysin1);
|
||||
|
||||
xmm1 = _mm_add_ps(ysin1, ysin2);
|
||||
xmm2 = _mm_add_ps(y, y2);
|
||||
|
||||
/* update the sign */
|
||||
*s = _mm_xor_ps(xmm1, sign_bit_sin);
|
||||
*c = _mm_xor_ps(xmm2, sign_bit_cos);
|
||||
}
|
120
rehlds/engine/sse_mathfun.h
Normal file
120
rehlds/engine/sse_mathfun.h
Normal file
@ -0,0 +1,120 @@
|
||||
/* SIMD (SSE1+MMX or SSE2) implementation of sin, cos, exp and log
|
||||
|
||||
Inspired by Intel Approximate Math library, and based on the
|
||||
corresponding algorithms of the cephes math library
|
||||
|
||||
The default is to use the SSE1 version. If you define USE_SSE2 the
|
||||
the SSE2 intrinsics will be used in place of the MMX intrinsics. Do
|
||||
not expect any significant performance improvement with SSE2.
|
||||
*/
|
||||
|
||||
/* Copyright (C) 2007 Julien Pommier
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the authors be held liable for any damages
|
||||
arising from the use of this software.
|
||||
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it
|
||||
freely, subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not
|
||||
claim that you wrote the original software. If you use this software
|
||||
in a product, an acknowledgment in the product documentation would be
|
||||
appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be
|
||||
misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
|
||||
(this is the zlib license)
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <xmmintrin.h>
|
||||
|
||||
/* yes I know, the top of this file is quite ugly */
|
||||
|
||||
#ifdef _MSC_VER /* visual c++ */
|
||||
# define ALIGN16_BEG __declspec(align(16))
|
||||
# define ALIGN16_END
|
||||
#else /* gcc or icc */
|
||||
# define ALIGN16_BEG
|
||||
# define ALIGN16_END __attribute__((aligned(16)))
|
||||
#endif
|
||||
|
||||
/* __m128 is ugly to write */
|
||||
typedef __m128 v4sf; // vector of 4 float (sse1)
|
||||
|
||||
#include <emmintrin.h>
|
||||
typedef __m128i v4si; // vector of 4 int (sse2)
|
||||
|
||||
|
||||
/* declare some SSE constants -- why can't I figure a better way to do that? */
|
||||
#define _PS_CONST(Name, Val) \
|
||||
static const ALIGN16_BEG float _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
|
||||
#define _PI32_CONST(Name, Val) \
|
||||
static const ALIGN16_BEG int _pi32_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
|
||||
#define _PS_CONST_TYPE(Name, Type, Val) \
|
||||
static const ALIGN16_BEG Type _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
|
||||
|
||||
_PS_CONST(1, 1.0f);
|
||||
_PS_CONST(0p5, 0.5f);
|
||||
/* the smallest non denormalized float number */
|
||||
_PS_CONST_TYPE(min_norm_pos, int, 0x00800000);
|
||||
_PS_CONST_TYPE(mant_mask, int, 0x7f800000);
|
||||
_PS_CONST_TYPE(inv_mant_mask, int, ~0x7f800000);
|
||||
|
||||
_PS_CONST_TYPE(sign_mask, int, (int)0x80000000);
|
||||
_PS_CONST_TYPE(inv_sign_mask, int, ~0x80000000);
|
||||
|
||||
_PI32_CONST(1, 1);
|
||||
_PI32_CONST(inv1, ~1);
|
||||
_PI32_CONST(2, 2);
|
||||
_PI32_CONST(4, 4);
|
||||
_PI32_CONST(0x7f, 0x7f);
|
||||
|
||||
_PS_CONST(cephes_SQRTHF, 0.707106781186547524f);
|
||||
_PS_CONST(cephes_log_p0, 7.0376836292E-2f);
|
||||
_PS_CONST(cephes_log_p1, -1.1514610310E-1f);
|
||||
_PS_CONST(cephes_log_p2, 1.1676998740E-1f);
|
||||
_PS_CONST(cephes_log_p3, -1.2420140846E-1f);
|
||||
_PS_CONST(cephes_log_p4, +1.4249322787E-1f);
|
||||
_PS_CONST(cephes_log_p5, -1.6668057665E-1f);
|
||||
_PS_CONST(cephes_log_p6, +2.0000714765E-1f);
|
||||
_PS_CONST(cephes_log_p7, -2.4999993993E-1f);
|
||||
_PS_CONST(cephes_log_p8, +3.3333331174E-1f);
|
||||
_PS_CONST(cephes_log_q1, -2.12194440e-4f);
|
||||
_PS_CONST(cephes_log_q2, 0.693359375f);
|
||||
|
||||
|
||||
|
||||
_PS_CONST(exp_hi, 88.3762626647949f);
|
||||
_PS_CONST(exp_lo, -88.3762626647949f);
|
||||
|
||||
_PS_CONST(cephes_LOG2EF, 1.44269504088896341f);
|
||||
_PS_CONST(cephes_exp_C1, 0.693359375f);
|
||||
_PS_CONST(cephes_exp_C2, -2.12194440e-4f);
|
||||
|
||||
_PS_CONST(cephes_exp_p0, 1.9875691500E-4f);
|
||||
_PS_CONST(cephes_exp_p1, 1.3981999507E-3f);
|
||||
_PS_CONST(cephes_exp_p2, 8.3334519073E-3f);
|
||||
_PS_CONST(cephes_exp_p3, 4.1665795894E-2f);
|
||||
_PS_CONST(cephes_exp_p4, 1.6666665459E-1f);
|
||||
_PS_CONST(cephes_exp_p5, 5.0000001201E-1f);
|
||||
|
||||
_PS_CONST(minus_cephes_DP1, -0.78515625f);
|
||||
_PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4f);
|
||||
_PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8f);
|
||||
_PS_CONST(sincof_p0, -1.9515295891E-4f);
|
||||
_PS_CONST(sincof_p1, 8.3321608736E-3f);
|
||||
_PS_CONST(sincof_p2, -1.6666654611E-1f);
|
||||
_PS_CONST(coscof_p0, 2.443315711809948E-005f);
|
||||
_PS_CONST(coscof_p1, -1.388731625493765E-003f);
|
||||
_PS_CONST(coscof_p2, 4.166664568298827E-002f);
|
||||
_PS_CONST(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
|
||||
|
||||
extern v4sf log_ps(v4sf x);
|
||||
extern v4sf exp_ps(v4sf x);
|
||||
extern v4sf sin_ps(v4sf x);
|
||||
extern v4sf cos_ps(v4sf x);
|
||||
extern void sincos_ps(v4sf x, v4sf *s, v4sf *c);
|
@ -77,6 +77,7 @@
|
||||
<ClCompile Include="..\engine\public_amalgamation.cpp" />
|
||||
<ClCompile Include="..\engine\r_studio.cpp" />
|
||||
<ClCompile Include="..\engine\snd_null.cpp" />
|
||||
<ClCompile Include="..\engine\sse_mathfun.cpp" />
|
||||
<ClCompile Include="..\engine\sv_log.cpp" />
|
||||
<ClCompile Include="..\engine\sv_main.cpp" />
|
||||
<ClCompile Include="..\engine\sv_move.cpp" />
|
||||
@ -440,6 +441,7 @@
|
||||
<ClInclude Include="..\engine\server.h" />
|
||||
<ClInclude Include="..\engine\server_static.h" />
|
||||
<ClInclude Include="..\engine\sound.h" />
|
||||
<ClInclude Include="..\engine\sse_mathfun.h" />
|
||||
<ClInclude Include="..\engine\studio_rehlds.h" />
|
||||
<ClInclude Include="..\engine\sv_log.h" />
|
||||
<ClInclude Include="..\engine\sv_move.h" />
|
||||
|
@ -346,6 +346,9 @@
|
||||
<ClCompile Include="..\rehlds\rehlds_security.cpp">
|
||||
<Filter>rehlds</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="..\engine\sse_mathfun.cpp">
|
||||
<Filter>engine</Filter>
|
||||
</ClCompile>
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<ClInclude Include="..\hookers\memory.h">
|
||||
@ -1068,6 +1071,9 @@
|
||||
<ClInclude Include="..\common\qlimits.h">
|
||||
<Filter>common</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="..\engine\sse_mathfun.h">
|
||||
<Filter>engine</Filter>
|
||||
</ClInclude>
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<None Include="..\linux\appversion.sh">
|
||||
|
@ -120,105 +120,4 @@ static inline const char * A_strstr(const char * haystack, const char * needle)
|
||||
|
||||
#endif // __cplusplus
|
||||
|
||||
|
||||
/***********************************************************************
|
||||
Function prototypes, integer division functions
|
||||
***********************************************************************/
|
||||
|
||||
// Turn off name mangling
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void setdivisori32(int buffer[2], int d); // Set divisor for repeated division
|
||||
int dividefixedi32(const int buffer[2], int x); // Fast division with previously set divisor
|
||||
void setdivisoru32(uint32_t buffer[2], uint32_t d); // Set divisor for repeated division
|
||||
uint32_t dividefixedu32(const uint32_t buffer[2], uint32_t x); // Fast division with previously set divisor
|
||||
|
||||
// Test if emmintrin.h is included and __m128i defined
|
||||
#if defined(__GNUC__) && defined(_EMMINTRIN_H_INCLUDED) && !defined(__SSE2__)
|
||||
#error Please compile with -sse2 or higher
|
||||
#endif
|
||||
|
||||
#if defined(_INCLUDED_EMM) || (defined(_EMMINTRIN_H_INCLUDED) && defined(__SSE2__))
|
||||
#define VECTORDIVISIONDEFINED
|
||||
|
||||
// Integer vector division functions. These functions divide an integer vector by a scalar:
|
||||
|
||||
// Set divisor for repeated integer vector division
|
||||
void setdivisorV8i16(__m128i buf[2], int16_t d); // Set divisor for repeated division
|
||||
void setdivisorV8u16(__m128i buf[2], uint16_t d); // Set divisor for repeated division
|
||||
void setdivisorV4i32(__m128i buf[2], int32_t d); // Set divisor for repeated division
|
||||
void setdivisorV4u32(__m128i buf[2], uint32_t d); // Set divisor for repeated division
|
||||
|
||||
// Fast division of vector by previously set divisor
|
||||
__m128i dividefixedV8i16(const __m128i buf[2], __m128i x); // Fast division with previously set divisor
|
||||
__m128i dividefixedV8u16(const __m128i buf[2], __m128i x); // Fast division with previously set divisor
|
||||
__m128i dividefixedV4i32(const __m128i buf[2], __m128i x); // Fast division with previously set divisor
|
||||
__m128i dividefixedV4u32(const __m128i buf[2], __m128i x); // Fast division with previously set divisor
|
||||
|
||||
#endif // defined(_INCLUDED_EMM) || (defined(_EMMINTRIN_H_INCLUDED) && defined(__SSE2__))
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // end of extern "C"
|
||||
#endif // __cplusplus
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
||||
// Define classes and operator '/' for fast division with fixed divisor
|
||||
class div_i32;
|
||||
class div_u32;
|
||||
static inline int32_t operator / (int32_t x, div_i32 const &D);
|
||||
static inline uint32_t operator / (uint32_t x, div_u32 const & D);
|
||||
|
||||
class div_i32 { // Signed 32 bit integer division
|
||||
public:
|
||||
div_i32() { // Default constructor
|
||||
buffer[0] = buffer[1] = 0;
|
||||
}
|
||||
div_i32(int d) { // Constructor with divisor
|
||||
setdivisor(d);
|
||||
}
|
||||
void setdivisor(int d) { // Set divisor
|
||||
setdivisori32(buffer, d);
|
||||
}
|
||||
protected:
|
||||
int buffer[2]; // Internal memory
|
||||
friend int32_t operator / (int32_t x, div_i32 const & D);
|
||||
};
|
||||
|
||||
static inline int32_t operator / (int32_t x, div_i32 const &D){// Overloaded operator '/'
|
||||
return dividefixedi32(D.buffer, x);
|
||||
}
|
||||
|
||||
static inline int32_t operator /= (int32_t &x, div_i32 const &D){// Overloaded operator '/='
|
||||
return x = x / D;
|
||||
}
|
||||
|
||||
class div_u32 { // Unsigned 32 bit integer division
|
||||
public:
|
||||
div_u32() { // Default constructor
|
||||
buffer[0] = buffer[1] = 0;
|
||||
}
|
||||
div_u32(uint32_t d) { // Constructor with divisor
|
||||
setdivisor(d);
|
||||
}
|
||||
void setdivisor(uint32_t d) { // Set divisor
|
||||
setdivisoru32(buffer, d);
|
||||
}
|
||||
protected:
|
||||
uint32_t buffer[2]; // Internal memory
|
||||
friend uint32_t operator / (uint32_t x, div_u32 const & D);
|
||||
};
|
||||
|
||||
static inline uint32_t operator / (uint32_t x, div_u32 const & D){ // Overloaded operator '/'
|
||||
return dividefixedu32(D.buffer, x);
|
||||
}
|
||||
|
||||
static inline uint32_t operator /= (uint32_t &x, div_u32 const &D){// Overloaded operator '/='
|
||||
return x = x / D;
|
||||
}
|
||||
|
||||
#endif // __cplusplus
|
||||
|
||||
#endif // ASMLIB_H
|
||||
|
@ -35,6 +35,7 @@
|
||||
#define SSSE3_FLAG (1<<9)
|
||||
#define SSE4_1_FLAG (1<<19)
|
||||
#define SSE4_2_FLAG (1<<20)
|
||||
#define POPCNT_FLAG (1<<23)
|
||||
#define AVX_FLAG (1<<28)
|
||||
#define AVX2_FLAG (1<<5)
|
||||
|
||||
@ -56,6 +57,7 @@ void Sys_CheckCpuInstructionsSupport(void)
|
||||
cpuinfo.ssse3 = (cpuid_data[2] & SSSE3_FLAG) ? 1 : 0;
|
||||
cpuinfo.sse4_1 = (cpuid_data[2] & SSE4_1_FLAG) ? 1 : 0;
|
||||
cpuinfo.sse4_2 = (cpuid_data[2] & SSE4_2_FLAG) ? 1 : 0;
|
||||
cpuinfo.popcnt = (cpuid_data[2] & POPCNT_FLAG) ? 1 : 0;
|
||||
cpuinfo.avx = (cpuid_data[2] & AVX_FLAG) ? 1 : 0;
|
||||
|
||||
#if defined ASMLIB_H
|
||||
|
@ -31,7 +31,7 @@
|
||||
|
||||
typedef struct cpuinfo_s
|
||||
{
|
||||
uint8 sse3, ssse3, sse4_1, sse4_2, avx, avx2;
|
||||
uint8 sse3, ssse3, sse4_1, sse4_2, avx, avx2, popcnt;
|
||||
} cpuinfo_t;
|
||||
|
||||
extern cpuinfo_t cpuinfo;
|
||||
|
@ -6,6 +6,7 @@
|
||||
|
||||
#include "archtypes.h"
|
||||
#include "asmlib.h"
|
||||
#include "sse_mathfun.h"
|
||||
#include "mathlib.h"
|
||||
|
||||
#include "sys_shared.h"
|
||||
|
@ -4,9 +4,6 @@
|
||||
#include <iostream>
|
||||
|
||||
TEST(AngleVectorsTest, MathLib, 1000) {
|
||||
Sys_CheckCpuInstructionsSupport();
|
||||
CHECK_WARNING_OUT("SSE4.1 Support", cpuinfo.sse4_1);
|
||||
|
||||
struct testdata_t {
|
||||
vec3_t angles;
|
||||
vec3_t forward, right, up;
|
||||
@ -17,7 +14,6 @@ TEST(AngleVectorsTest, MathLib, 1000) {
|
||||
{ { 106.0f, 142.0f, 62.0f }, { 0.21721f, -0.16970f, -0.96126f }, { 0.95785f, -0.15259f, 0.24337f }, { 0.18798f, 0.97361f, -0.12940f } }
|
||||
};
|
||||
|
||||
for (int sse = 0; sse <= 1; sse++) {
|
||||
vec3_t forward, right, up;
|
||||
|
||||
for (int i = 0; i < ARRAYSIZE(testdata); i++) {
|
||||
@ -35,15 +31,9 @@ TEST(AngleVectorsTest, MathLib, 1000) {
|
||||
DOUBLES_EQUAL("up[1] mismatch", testdata[i].up[1], up[1], 0.00001);
|
||||
DOUBLES_EQUAL("up[2] mismatch", testdata[i].up[2], up[2], 0.00001);
|
||||
}
|
||||
|
||||
cpuinfo.sse4_1 = 0;
|
||||
}
|
||||
}
|
||||
|
||||
TEST(AngleVectorsTransposeTest, MathLib, 1000) {
|
||||
Sys_CheckCpuInstructionsSupport();
|
||||
CHECK_WARNING_OUT("SSE4.1 Support", cpuinfo.sse4_1);
|
||||
|
||||
struct testdata_t {
|
||||
vec3_t angles;
|
||||
vec3_t forward, right, up;
|
||||
@ -54,7 +44,6 @@ TEST(AngleVectorsTransposeTest, MathLib, 1000) {
|
||||
{ { 106.0f, 142.0f, 62.0f }, { 0.21721f, -0.95785f, 0.18798f }, { -0.16970f, 0.15259f, 0.97361f }, { -0.96126f, -0.24337f, -0.12940f } }
|
||||
};
|
||||
|
||||
for (int sse = 0; sse <= 1; sse++) {
|
||||
vec3_t forward, right, up;
|
||||
|
||||
for (int i = 0; i < ARRAYSIZE(testdata); i++) {
|
||||
@ -72,15 +61,9 @@ TEST(AngleVectorsTransposeTest, MathLib, 1000) {
|
||||
DOUBLES_EQUAL("up[1] mismatch", testdata[i].up[1], up[1], 0.00001);
|
||||
DOUBLES_EQUAL("up[2] mismatch", testdata[i].up[2], up[2], 0.00001);
|
||||
}
|
||||
|
||||
cpuinfo.sse4_1 = 0;
|
||||
}
|
||||
}
|
||||
|
||||
TEST(AngleMatrixTest, MathLib, 1000) {
|
||||
Sys_CheckCpuInstructionsSupport();
|
||||
CHECK_WARNING_OUT("SSE4.1 Support", cpuinfo.sse4_1);
|
||||
|
||||
struct testdata_t {
|
||||
vec3_t angles;
|
||||
vec_t matrix0[4];
|
||||
@ -93,7 +76,6 @@ TEST(AngleMatrixTest, MathLib, 1000) {
|
||||
{ { 106.0f, 142.0f, 62.0f }, { 0.21721f, -0.95785f, 0.18798f, 0.0f }, { -0.16970f, 0.15259f, 0.97361f, 0.0f }, { -0.96126f, -0.24337f, -0.12940f, 0.0f } }
|
||||
};
|
||||
|
||||
for (int sse = 0; sse <= 1; sse++) {
|
||||
float rotation_matrix[3][4];
|
||||
|
||||
for (int i = 0; i < ARRAYSIZE(testdata); i++) {
|
||||
@ -114,9 +96,6 @@ TEST(AngleMatrixTest, MathLib, 1000) {
|
||||
DOUBLES_EQUAL("rotationmatrix[2][2] mismatch", testdata[i].matrix2[2], rotation_matrix[2][2], 0.00001);
|
||||
DOUBLES_EQUAL("rotationmatrix[2][3] mismatch", testdata[i].matrix2[3], rotation_matrix[2][3], 0.00001);
|
||||
}
|
||||
|
||||
cpuinfo.sse4_1 = 0;
|
||||
}
|
||||
}
|
||||
|
||||
TEST(DotProductTest, MathLib, 1000) {
|
||||
@ -146,9 +125,6 @@ TEST(DotProductTest, MathLib, 1000) {
|
||||
}
|
||||
|
||||
TEST(CrossProductTest, MathLib, 1000) {
|
||||
Sys_CheckCpuInstructionsSupport();
|
||||
CHECK_WARNING_OUT("SSE4.1 Support", cpuinfo.sse4_1);
|
||||
|
||||
struct testdata_t {
|
||||
vec3_t v1;
|
||||
vec3_t v2;
|
||||
@ -160,7 +136,6 @@ TEST(CrossProductTest, MathLib, 1000) {
|
||||
{ { -16.1f, -0.09f, 1.2f }, { 8.2f, 1.2f, -6.66f }, { -0.84060f, -97.38600f, -18.58200f } },
|
||||
};
|
||||
|
||||
for (int sse = 0; sse <= 1; sse++) {
|
||||
vec3_t res;
|
||||
|
||||
for (int i = 0; i < ARRAYSIZE(testdata); i++) {
|
||||
@ -170,9 +145,6 @@ TEST(CrossProductTest, MathLib, 1000) {
|
||||
DOUBLES_EQUAL("CrossProduct[1] mismatch", testdata[i].res[1], res[1], 0.00001);
|
||||
DOUBLES_EQUAL("CrossProduct[2] mismatch", testdata[i].res[2], res[2], 0.00001);
|
||||
}
|
||||
|
||||
cpuinfo.sse4_1 = 0;
|
||||
}
|
||||
}
|
||||
|
||||
TEST(LengthTest, MathLib, 1000) {
|
||||
@ -283,3 +255,80 @@ TEST(VectorAnglesTest, MathLib, 1000) {
|
||||
cpuinfo.sse4_1 = 0;
|
||||
}
|
||||
}
|
||||
|
||||
TEST(VectorCompareTest, MathLib, 1000)
|
||||
{
|
||||
struct testdata_t {
|
||||
vec4_t v1;
|
||||
vec4_t v2;
|
||||
int res;
|
||||
};
|
||||
|
||||
testdata_t testdata[4] = {
|
||||
{{41.5f, 7.32f, -9.22f, -16.1f}, {41.5f, 7.32f, -9.22f, -16.1009f}, 1},
|
||||
{{41.5f, 7.32f, -9.22f, -16.1f}, {41.5f, 7.32f, -9.220002f, -16.1f}, 0},
|
||||
{{41.5f, 7.32f, -9.22f, -16.1f}, {41.49f, 7.32f, -9.22f, -16.1f}, 0},
|
||||
{{41.5f, 7.32001f, -9.22f, -16.1f}, {41.5f, 7.32f, -9.22f, -16.1f}, 0}
|
||||
};
|
||||
|
||||
for (int i = 0; i < ARRAYSIZE(testdata); i++) {
|
||||
int res = VectorCompare(testdata[i].v1, testdata[i].v2);
|
||||
|
||||
LONGS_EQUAL("VectorCompare mismatch", testdata[i].res, res);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(VectorMATest, MathLib, 1000) {
|
||||
struct testdata_t {
|
||||
vec3_t a;
|
||||
vec3_t m;
|
||||
float s;
|
||||
vec3_t res;
|
||||
};
|
||||
|
||||
testdata_t testdata[2] = {
|
||||
{{41.5f, 7.32f, -9.22f}, {-16.1f, -0.09f, 1.2f}, 42.14063f, {-636.964111f, 3.527344f, 41.348755f}},
|
||||
{{0.96204f, 0.16969f, -0.21374f}, {347.65839f, 10.00326f, 0.0f}, 16.10025f, {5598.349121f, 161.224670f, -0.213740f}}
|
||||
};
|
||||
|
||||
for (int i = 0; i < ARRAYSIZE(testdata); i++) {
|
||||
vec3_t out;
|
||||
VectorMA(testdata[i].a, testdata[i].s, testdata[i].m, out);
|
||||
|
||||
DOUBLES_EQUAL("VectorMA[0] mismatch", testdata[i].res[0], out[0], 0.00001);
|
||||
DOUBLES_EQUAL("VectorMA[1] mismatch", testdata[i].res[1], out[1], 0.00001);
|
||||
DOUBLES_EQUAL("VectorMA[2] mismatch", testdata[i].res[2], out[2], 0.00001);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(R_ConcatTransformsTest, MathLib, 1000) {
|
||||
struct testdata_t {
|
||||
vec4_t in1[3];
|
||||
vec4_t in2[3];
|
||||
vec4_t res[3];
|
||||
};
|
||||
|
||||
testdata_t testdata = {
|
||||
{{0.41f, 13.34f, 41.69f, 14.78f}, {34.67f, 15.00f, 7.24f, 43.58f}, {19.62f, 7.05f, 32.81f, 49.61f}},
|
||||
{{44.64f, 31.45f, 18.27f, 4.91f}, {29.95f, 48.27f, 23.91f, 39.02f}, {19.42f, 4.36f, 46.04f, 1.53f}},
|
||||
{{1227.455200f, 838.584717f, 2245.857666f, 601.105591f}, {2137.519531f, 1845.987793f, 1325.400513f, 810.186890f}, {1724.154541f, 1100.404175f, 2037.595459f, 471.234528f}}
|
||||
};
|
||||
|
||||
vec4_t out[3];
|
||||
R_ConcatTransforms(testdata.in1, testdata.in2, out);
|
||||
|
||||
DOUBLES_EQUAL("R_ConcatTransformsTest[0][0] mismatch", testdata.res[0][0], out[0][0], 0.001);
|
||||
DOUBLES_EQUAL("R_ConcatTransformsTest[0][1] mismatch", testdata.res[0][1], out[0][1], 0.001);
|
||||
DOUBLES_EQUAL("R_ConcatTransformsTest[0][2] mismatch", testdata.res[0][2], out[0][2], 0.001);
|
||||
DOUBLES_EQUAL("R_ConcatTransformsTest[0][3] mismatch", testdata.res[0][3], out[0][3], 0.001);
|
||||
|
||||
DOUBLES_EQUAL("R_ConcatTransformsTest[1][0] mismatch", testdata.res[1][0], out[1][0], 0.001);
|
||||
DOUBLES_EQUAL("R_ConcatTransformsTest[1][1] mismatch", testdata.res[1][1], out[1][1], 0.001);
|
||||
DOUBLES_EQUAL("R_ConcatTransformsTest[1][2] mismatch", testdata.res[1][2], out[1][2], 0.001);
|
||||
DOUBLES_EQUAL("R_ConcatTransformsTest[1][3] mismatch", testdata.res[1][3], out[1][3], 0.001);
|
||||
|
||||
DOUBLES_EQUAL("R_ConcatTransformsTest[2][0] mismatch", testdata.res[2][0], out[2][0], 0.001);
|
||||
DOUBLES_EQUAL("R_ConcatTransformsTest[2][1] mismatch", testdata.res[2][1], out[2][1], 0.001);
|
||||
DOUBLES_EQUAL("R_ConcatTransformsTest[2][2] mismatch", testdata.res[2][2], out[2][2], 0.001);
|
||||
DOUBLES_EQUAL("R_ConcatTransformsTest[2][3] mismatch", testdata.res[2][3], out[2][3], 0.001);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user