2
0
mirror of https://github.com/rehlds/rehlds.git synced 2025-01-01 09:35:37 +03:00

Added sse mathfun implementation of sin, cos, sincos

Written parallel sse version of AngleVectors, AngleVectorsTranspose
This commit is contained in:
asmodai 2016-02-05 16:59:11 +03:00
parent ac413a748e
commit f5d536ed4b
6 changed files with 694 additions and 14 deletions

View File

@ -28,6 +28,9 @@
#include "precompiled.h"
// Intrisics guide: https://software.intel.com/sites/landingpage/IntrinsicsGuide/
// Shufps calculator: http://wurstcaptures.untergrund.net/assembler_tricks.html
vec3_t vec3_origin;
//int nanmask;
//short int new_cw;
@ -36,6 +39,7 @@ vec3_t vec3_origin;
// aligned vec4_t
typedef ALIGN16 vec4_t avec4_t;
typedef ALIGN16 int aivec4_t[4];
// conversion multiplier
const avec4_t deg2rad =
@ -46,8 +50,24 @@ const avec4_t deg2rad =
M_PI / 180.f
};
const aivec4_t negmask[4] =
{
0x80000000,
0x80000000,
0x80000000,
0x80000000
};
const aivec4_t negmask_1001 =
{
0x80000000,
0,
0,
0x80000000
};
// save 4d xmm to 3d vector. we can't optimize many simple vector3 functions because saving back to 3d is slow.
void xmm2vec(vec_t *v, const __m128 m)
static inline void xmm2vec(vec_t *v, const __m128 m)
{
_mm_store_ss(v, m);
_mm_storel_pi((__m64*)(v + 1), _mm_shuffle_ps(m, m, _MM_SHUFFLE(3, 2, 2, 1)));
@ -145,6 +165,53 @@ void EXT_FUNC AngleVectors_ext(const vec_t *angles, vec_t *forward, vec_t *right
AngleVectors(angles, forward, right, up);
}
#ifdef REHLDS_FIXES
// parallel SSE version
void AngleVectors(const vec_t *angles, vec_t *forward, vec_t *right, vec_t *up)
{
#ifndef SWDS
g_engdstAddrs.pfnAngleVectors(&angles, &forward, &right, &up);
#endif // SWDS
__m128 s, c;
sincos_ps(_mm_mul_ps(_mm_loadu_ps(angles), _mm_load_ps(deg2rad)), &s, &c);
__m128 m1 = _mm_shuffle_ps(c, s, 0x90); // [cp][cp][sy][sr]
__m128 m2 = _mm_shuffle_ps(c, c, 0x09); // [cy][cr][cp][cp]
__m128 cp_mults = _mm_mul_ps(m1, m2); // [cp * cy][cp * cr][cp * sy][cp * sr];
m1 = _mm_shuffle_ps(c, s, 0x15); // [cy][cy][sy][sp]
m2 = _mm_shuffle_ps(s, c, 0xA0); // [sp][sp][cr][cr]
m1 = _mm_shuffle_ps(m1, m1, 0xC8); // [cy][sy][cy][sp]
__m128 m3 = _mm_shuffle_ps(s, s, 0x4A); // [sr][sr][sp][sy];
m3 = _mm_mul_ps(m3, _mm_mul_ps(m1, m2)); // [sp*cy*sr][sp*sy*sr][cr*cy*sp][cr*sp*sy]
m2 = _mm_shuffle_ps(s, c, 0x65); // [sy][sy][cr][cy]
m1 = _mm_shuffle_ps(c, s, 0xA6); // [cr][cy][sr][sr]
m2 = _mm_shuffle_ps(m2, m2, 0xD8); // [sy][cr][sy][cy]
m1 = _mm_xor_ps(m1, _mm_load_ps((float *)&negmask_1001)); // [-cr][cy][sr][-sr]
m1 = _mm_mul_ps(m1, m2); // [-cr*sy][cy*cr][sr*sy][-sr*cy]
m3 = _mm_add_ps(m3, m1);
if (forward)
{
_mm_storel_pi((__m64 *)forward, _mm_shuffle_ps(cp_mults, cp_mults, 0x08));
forward[2] = -s.m128_f32[PITCH];
}
if (right)
{
__m128 r = _mm_shuffle_ps(m3, cp_mults, 0xF4); // [m3(0)][m3(1)][cp(3)][cp(3)]
xmm2vec(right, _mm_xor_ps(r, _mm_load_ps((float *)&negmask)));
}
if (up)
{
_mm_storel_pi((__m64 *)up, _mm_shuffle_ps(m3, m3, 0x0E));
up[2] = cp_mults.m128_f32[1];
}
}
#else // REHLDS_FIXES
/* <47067> ../engine/mathlib.c:267 */
void AngleVectors(const vec_t *angles, vec_t *forward, vec_t *right, vec_t *up)
{
@ -154,18 +221,6 @@ void AngleVectors(const vec_t *angles, vec_t *forward, vec_t *right, vec_t *up)
g_engdstAddrs.pfnAngleVectors(&angles, &forward, &right, &up);
#endif // SWDS
#ifdef REHLDS_FIXES
// convert to radians
avec4_t rad_angles;
_mm_store_ps(rad_angles, _mm_mul_ps(_mm_loadu_ps(angles), _mm_load_ps(deg2rad)));
sy = sin(rad_angles[YAW]);
cy = cos(rad_angles[YAW]);
sp = sin(rad_angles[PITCH]);
cp = cos(rad_angles[PITCH]);
sr = sin(rad_angles[ROLL]);
cr = cos(rad_angles[ROLL]);
#else
float angle;
angle = (float)(angles[YAW] * (M_PI * 2 / 360));
sy = sin(angle);
@ -176,7 +231,6 @@ void AngleVectors(const vec_t *angles, vec_t *forward, vec_t *right, vec_t *up)
angle = (float)(angles[ROLL] * (M_PI * 2 / 360));
sr = sin(angle);
cr = cos(angle);
#endif
if (forward)
{
@ -197,7 +251,56 @@ void AngleVectors(const vec_t *angles, vec_t *forward, vec_t *right, vec_t *up)
up[2] = cr*cp;
}
}
#endif // REHLDS_FIXES
#ifdef REHLDS_FIXES
// parallel SSE version
void AngleVectorsTranspose(const vec_t *angles, vec_t *forward, vec_t *right, vec_t *up)
{
#ifndef SWDS
g_engdstAddrs.pfnAngleVectors(&angles, &forward, &right, &up);
#endif // SWDS
__m128 s, c;
sincos_ps(_mm_mul_ps(_mm_loadu_ps(angles), _mm_load_ps(deg2rad)), &s, &c);
__m128 m1 = _mm_shuffle_ps(c, s, 0x90); // [cp][cp][sy][sr]
__m128 m2 = _mm_shuffle_ps(c, c, 0x09); // [cy][cr][cp][cp]
__m128 cp_mults = _mm_mul_ps(m1, m2); // [cp * cy][cp * cr][cp * sy][cp * sr];
m1 = _mm_shuffle_ps(s, s, 0x50); // [sp][sp][sy][sy]
m2 = _mm_shuffle_ps(c, s, 0x05); // [cy][cy][sp][sp]
__m128 m3 = _mm_shuffle_ps(s, c, 0xAA); // [sr][sr][cr][cr]
m1 = _mm_mul_ps(m1, m2);
m3 = _mm_shuffle_ps(m3, m3, 0xD8); // [sr][cr][sr][cr]
m3 = _mm_mul_ps(m3, m1); // [sp*cy*sr][sp*cy*cr][sy*sp*sr][sy*sp*cr]
m2 = _mm_shuffle_ps(c, s, 0xA6); // [cr][cy][sr][sr]
m1 = _mm_shuffle_ps(s, c, 0x65); // [sy][sy][cr][cy]
m2 = _mm_shuffle_ps(m2, m2, 0xD8); // [cr][sr][cy][sr]
m1 = _mm_xor_ps(m1, _mm_load_ps((float *)&negmask_1001)); // [-cr][cy][sr][-sr]
m1 = _mm_mul_ps(m1, m2); // [-cr*sy][sr*sy][cy*cr][-sr*cy]
m3 = _mm_add_ps(m3, m1);
if (forward)
{
forward[0] = cp_mults.m128_f32[0];
_mm_storel_pi((__m64*)(forward + 1), m3); // (sr*sp*cy + cr*-sy);
}
if (right)
{
right[0] = cp_mults.m128_f32[2];
_mm_storel_pi((__m64*)(right + 1), _mm_shuffle_ps(m3, m3, 0x0E));
}
if (up)
{
up[0] = -s.m128_f32[PITCH];
_mm_storel_pi((__m64 *)&up[1], _mm_shuffle_ps(cp_mults, cp_mults, 0x07));
}
}
#else // REHLDS_FIXES
/* <4712e> ../engine/mathlib.c:304 */
void AngleVectorsTranspose(const vec_t *angles, vec_t *forward, vec_t *right, vec_t *up)
{
@ -246,6 +349,7 @@ void AngleVectorsTranspose(const vec_t *angles, vec_t *forward, vec_t *right, ve
up[2] = cr*cp;
}
}
#endif
/* <471e9> ../engine/mathlib.c:340 */
void AngleMatrix(const vec_t *angles, float(*matrix)[4])

View File

@ -0,0 +1,447 @@
/* SIMD (SSE1+MMX or SSE2) implementation of sin, cos, exp and log
Inspired by Intel Approximate Math library, and based on the
corresponding algorithms of the cephes math library
The default is to use the SSE1 version. If you define USE_SSE2 the
the SSE2 intrinsics will be used in place of the MMX intrinsics. Do
not expect any significant performance improvement with SSE2.
*/
/* Copyright (C) 2007 Julien Pommier
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
(this is the zlib license)
*/
#include "precompiled.h"
/* natural logarithm computed for 4 simultaneous float
return NaN for x <= 0
*/
v4sf log_ps(v4sf x) {
v4si emm0;
v4sf one = *(v4sf*)_ps_1;
v4sf invalid_mask = _mm_cmple_ps(x, _mm_setzero_ps());
x = _mm_max_ps(x, *(v4sf*)_ps_min_norm_pos); /* cut off denormalized stuff */
emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23);
/* keep only the fractional part */
x = _mm_and_ps(x, *(v4sf*)_ps_inv_mant_mask);
x = _mm_or_ps(x, *(v4sf*)_ps_0p5);
emm0 = _mm_sub_epi32(emm0, *(v4si*)_pi32_0x7f);
v4sf e = _mm_cvtepi32_ps(emm0);
e = _mm_add_ps(e, one);
/* part2:
if( x < SQRTHF ) {
e -= 1;
x = x + x - 1.0;
} else { x = x - 1.0; }
*/
v4sf mask = _mm_cmplt_ps(x, *(v4sf*)_ps_cephes_SQRTHF);
v4sf tmp = _mm_and_ps(x, mask);
x = _mm_sub_ps(x, one);
e = _mm_sub_ps(e, _mm_and_ps(one, mask));
x = _mm_add_ps(x, tmp);
v4sf z = _mm_mul_ps(x, x);
v4sf y = *(v4sf*)_ps_cephes_log_p0;
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p1);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p2);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p3);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p4);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p5);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p6);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p7);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p8);
y = _mm_mul_ps(y, x);
y = _mm_mul_ps(y, z);
tmp = _mm_mul_ps(e, *(v4sf*)_ps_cephes_log_q1);
y = _mm_add_ps(y, tmp);
tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
y = _mm_sub_ps(y, tmp);
tmp = _mm_mul_ps(e, *(v4sf*)_ps_cephes_log_q2);
x = _mm_add_ps(x, y);
x = _mm_add_ps(x, tmp);
x = _mm_or_ps(x, invalid_mask); // negative arg will be NAN
return x;
}
v4sf exp_ps(v4sf x) {
v4sf tmp = _mm_setzero_ps(), fx;
v4si emm0;
v4sf one = *(v4sf*)_ps_1;
x = _mm_min_ps(x, *(v4sf*)_ps_exp_hi);
x = _mm_max_ps(x, *(v4sf*)_ps_exp_lo);
/* express exp(x) as exp(g + n*log(2)) */
fx = _mm_mul_ps(x, *(v4sf*)_ps_cephes_LOG2EF);
fx = _mm_add_ps(fx, *(v4sf*)_ps_0p5);
/* how to perform a floorf with SSE: just below */
emm0 = _mm_cvttps_epi32(fx);
tmp = _mm_cvtepi32_ps(emm0);
/* if greater, substract 1 */
v4sf mask = _mm_cmpgt_ps(tmp, fx);
mask = _mm_and_ps(mask, one);
fx = _mm_sub_ps(tmp, mask);
tmp = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C1);
v4sf z = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C2);
x = _mm_sub_ps(x, tmp);
x = _mm_sub_ps(x, z);
z = _mm_mul_ps(x, x);
v4sf y = *(v4sf*)_ps_cephes_exp_p0;
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p1);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p2);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p3);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p4);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p5);
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, x);
y = _mm_add_ps(y, one);
/* build 2^n */
emm0 = _mm_cvttps_epi32(fx);
emm0 = _mm_add_epi32(emm0, *(v4si*)_pi32_0x7f);
emm0 = _mm_slli_epi32(emm0, 23);
v4sf pow2n = _mm_castsi128_ps(emm0);
y = _mm_mul_ps(y, pow2n);
return y;
}
/* evaluation of 4 sines at onces, using only SSE1+MMX intrinsics so
it runs also on old athlons XPs and the pentium III of your grand
mother.
The code is the exact rewriting of the cephes sinf function.
Precision is excellent as long as x < 8192 (I did not bother to
take into account the special handling they have for greater values
-- it does not return garbage for arguments over 8192, though, but
the extra precision is missing).
Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
surprising but correct result.
Performance is also surprisingly good, 1.33 times faster than the
macos vsinf SSE2 function, and 1.5 times faster than the
__vrs4_sinf of amd's ACML (which is only available in 64 bits). Not
too bad for an SSE1 function (with no special tuning) !
However the latter libraries probably have a much better handling of NaN,
Inf, denormalized and other special arguments..
On my core 1 duo, the execution of this function takes approximately 95 cycles.
From what I have observed on the experiments with Intel AMath lib, switching to an
SSE2 version would improve the perf by only 10%.
Since it is based on SSE intrinsics, it has to be compiled at -O2 to
deliver full speed.
*/
v4sf sin_ps(v4sf x) { // any x
v4sf xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y;
v4si emm0, emm2;
sign_bit = x;
/* take the absolute value */
x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
/* extract the sign bit (upper one) */
sign_bit = _mm_and_ps(sign_bit, *(v4sf*)_ps_sign_mask);
/* scale by 4/Pi */
y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
/* store the integer part of y in mm0 */
emm2 = _mm_cvttps_epi32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
y = _mm_cvtepi32_ps(emm2);
/* get the swap sign flag */
emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4);
emm0 = _mm_slli_epi32(emm0, 29);
/* get the polynom selection mask
there is one polynom for 0 <= x <= Pi/4
and another one for Pi/4<x<=Pi/2
Both branches will be computed.
*/
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
v4sf swap_sign_bit = _mm_castsi128_ps(emm0);
v4sf poly_mask = _mm_castsi128_ps(emm2);
sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
/* The magic pass: "Extended precision modular arithmetic"
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
xmm1 = _mm_mul_ps(y, xmm1);
xmm2 = _mm_mul_ps(y, xmm2);
xmm3 = _mm_mul_ps(y, xmm3);
x = _mm_add_ps(x, xmm1);
x = _mm_add_ps(x, xmm2);
x = _mm_add_ps(x, xmm3);
/* Evaluate the first polynom (0 <= x <= Pi/4) */
y = *(v4sf*)_ps_coscof_p0;
v4sf z = _mm_mul_ps(x, x);
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
y = _mm_mul_ps(y, z);
y = _mm_mul_ps(y, z);
v4sf tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
y = _mm_sub_ps(y, tmp);
y = _mm_add_ps(y, *(v4sf*)_ps_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
v4sf y2 = *(v4sf*)_ps_sincof_p0;
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_mul_ps(y2, x);
y2 = _mm_add_ps(y2, x);
/* select the correct result from the two polynoms */
xmm3 = poly_mask;
y2 = _mm_and_ps(xmm3, y2); //, xmm3);
y = _mm_andnot_ps(xmm3, y);
y = _mm_add_ps(y, y2);
/* update the sign */
y = _mm_xor_ps(y, sign_bit);
return y;
}
/* almost the same as sin_ps */
v4sf cos_ps(v4sf x) { // any x
v4sf xmm1, xmm2 = _mm_setzero_ps(), xmm3, y;
v4si emm0, emm2;
/* take the absolute value */
x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
/* scale by 4/Pi */
y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
/* store the integer part of y in mm0 */
emm2 = _mm_cvttps_epi32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
y = _mm_cvtepi32_ps(emm2);
emm2 = _mm_sub_epi32(emm2, *(v4si*)_pi32_2);
/* get the swap sign flag */
emm0 = _mm_andnot_si128(emm2, *(v4si*)_pi32_4);
emm0 = _mm_slli_epi32(emm0, 29);
/* get the polynom selection mask */
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
v4sf sign_bit = _mm_castsi128_ps(emm0);
v4sf poly_mask = _mm_castsi128_ps(emm2);
/* The magic pass: "Extended precision modular arithmetic"
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
xmm1 = _mm_mul_ps(y, xmm1);
xmm2 = _mm_mul_ps(y, xmm2);
xmm3 = _mm_mul_ps(y, xmm3);
x = _mm_add_ps(x, xmm1);
x = _mm_add_ps(x, xmm2);
x = _mm_add_ps(x, xmm3);
/* Evaluate the first polynom (0 <= x <= Pi/4) */
y = *(v4sf*)_ps_coscof_p0;
v4sf z = _mm_mul_ps(x, x);
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
y = _mm_mul_ps(y, z);
y = _mm_mul_ps(y, z);
v4sf tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
y = _mm_sub_ps(y, tmp);
y = _mm_add_ps(y, *(v4sf*)_ps_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
v4sf y2 = *(v4sf*)_ps_sincof_p0;
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_mul_ps(y2, x);
y2 = _mm_add_ps(y2, x);
/* select the correct result from the two polynoms */
xmm3 = poly_mask;
y2 = _mm_and_ps(xmm3, y2); //, xmm3);
y = _mm_andnot_ps(xmm3, y);
y = _mm_add_ps(y, y2);
/* update the sign */
y = _mm_xor_ps(y, sign_bit);
return y;
}
/* since sin_ps and cos_ps are almost identical, sincos_ps could replace both of them..
it is almost as fast, and gives you a free cosine with your sine */
void sincos_ps(v4sf x, v4sf *s, v4sf *c) {
v4sf xmm1, xmm2, xmm3 = _mm_setzero_ps(), sign_bit_sin, y;
v4si emm0, emm2, emm4;
sign_bit_sin = x;
/* take the absolute value */
x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
/* extract the sign bit (upper one) */
sign_bit_sin = _mm_and_ps(sign_bit_sin, *(v4sf*)_ps_sign_mask);
/* scale by 4/Pi */
y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
/* store the integer part of y in emm2 */
emm2 = _mm_cvttps_epi32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
y = _mm_cvtepi32_ps(emm2);
emm4 = emm2;
/* get the swap sign flag for the sine */
emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4);
emm0 = _mm_slli_epi32(emm0, 29);
v4sf swap_sign_bit_sin = _mm_castsi128_ps(emm0);
/* get the polynom selection mask for the sine*/
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
v4sf poly_mask = _mm_castsi128_ps(emm2);
/* The magic pass: "Extended precision modular arithmetic"
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
xmm1 = _mm_mul_ps(y, xmm1);
xmm2 = _mm_mul_ps(y, xmm2);
xmm3 = _mm_mul_ps(y, xmm3);
x = _mm_add_ps(x, xmm1);
x = _mm_add_ps(x, xmm2);
x = _mm_add_ps(x, xmm3);
emm4 = _mm_sub_epi32(emm4, *(v4si*)_pi32_2);
emm4 = _mm_andnot_si128(emm4, *(v4si*)_pi32_4);
emm4 = _mm_slli_epi32(emm4, 29);
v4sf sign_bit_cos = _mm_castsi128_ps(emm4);
sign_bit_sin = _mm_xor_ps(sign_bit_sin, swap_sign_bit_sin);
/* Evaluate the first polynom (0 <= x <= Pi/4) */
v4sf z = _mm_mul_ps(x, x);
y = *(v4sf*)_ps_coscof_p0;
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
y = _mm_mul_ps(y, z);
y = _mm_mul_ps(y, z);
v4sf tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
y = _mm_sub_ps(y, tmp);
y = _mm_add_ps(y, *(v4sf*)_ps_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */
v4sf y2 = *(v4sf*)_ps_sincof_p0;
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_mul_ps(y2, x);
y2 = _mm_add_ps(y2, x);
/* select the correct result from the two polynoms */
xmm3 = poly_mask;
v4sf ysin2 = _mm_and_ps(xmm3, y2);
v4sf ysin1 = _mm_andnot_ps(xmm3, y);
y2 = _mm_sub_ps(y2, ysin2);
y = _mm_sub_ps(y, ysin1);
xmm1 = _mm_add_ps(ysin1, ysin2);
xmm2 = _mm_add_ps(y, y2);
/* update the sign */
*s = _mm_xor_ps(xmm1, sign_bit_sin);
*c = _mm_xor_ps(xmm2, sign_bit_cos);
}

120
rehlds/engine/sse_mathfun.h Normal file
View File

@ -0,0 +1,120 @@
/* SIMD (SSE1+MMX or SSE2) implementation of sin, cos, exp and log
Inspired by Intel Approximate Math library, and based on the
corresponding algorithms of the cephes math library
The default is to use the SSE1 version. If you define USE_SSE2 the
the SSE2 intrinsics will be used in place of the MMX intrinsics. Do
not expect any significant performance improvement with SSE2.
*/
/* Copyright (C) 2007 Julien Pommier
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
(this is the zlib license)
*/
#pragma once
#include <xmmintrin.h>
/* yes I know, the top of this file is quite ugly */
#ifdef _MSC_VER /* visual c++ */
# define ALIGN16_BEG __declspec(align(16))
# define ALIGN16_END
#else /* gcc or icc */
# define ALIGN16_BEG
# define ALIGN16_END __attribute__((aligned(16)))
#endif
/* __m128 is ugly to write */
typedef __m128 v4sf; // vector of 4 float (sse1)
#include <emmintrin.h>
typedef __m128i v4si; // vector of 4 int (sse2)
/* declare some SSE constants -- why can't I figure a better way to do that? */
#define _PS_CONST(Name, Val) \
static const ALIGN16_BEG float _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
#define _PI32_CONST(Name, Val) \
static const ALIGN16_BEG int _pi32_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
#define _PS_CONST_TYPE(Name, Type, Val) \
static const ALIGN16_BEG Type _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
_PS_CONST(1, 1.0f);
_PS_CONST(0p5, 0.5f);
/* the smallest non denormalized float number */
_PS_CONST_TYPE(min_norm_pos, int, 0x00800000);
_PS_CONST_TYPE(mant_mask, int, 0x7f800000);
_PS_CONST_TYPE(inv_mant_mask, int, ~0x7f800000);
_PS_CONST_TYPE(sign_mask, int, (int)0x80000000);
_PS_CONST_TYPE(inv_sign_mask, int, ~0x80000000);
_PI32_CONST(1, 1);
_PI32_CONST(inv1, ~1);
_PI32_CONST(2, 2);
_PI32_CONST(4, 4);
_PI32_CONST(0x7f, 0x7f);
_PS_CONST(cephes_SQRTHF, 0.707106781186547524f);
_PS_CONST(cephes_log_p0, 7.0376836292E-2f);
_PS_CONST(cephes_log_p1, -1.1514610310E-1f);
_PS_CONST(cephes_log_p2, 1.1676998740E-1f);
_PS_CONST(cephes_log_p3, -1.2420140846E-1f);
_PS_CONST(cephes_log_p4, +1.4249322787E-1f);
_PS_CONST(cephes_log_p5, -1.6668057665E-1f);
_PS_CONST(cephes_log_p6, +2.0000714765E-1f);
_PS_CONST(cephes_log_p7, -2.4999993993E-1f);
_PS_CONST(cephes_log_p8, +3.3333331174E-1f);
_PS_CONST(cephes_log_q1, -2.12194440e-4f);
_PS_CONST(cephes_log_q2, 0.693359375f);
_PS_CONST(exp_hi, 88.3762626647949f);
_PS_CONST(exp_lo, -88.3762626647949f);
_PS_CONST(cephes_LOG2EF, 1.44269504088896341f);
_PS_CONST(cephes_exp_C1, 0.693359375f);
_PS_CONST(cephes_exp_C2, -2.12194440e-4f);
_PS_CONST(cephes_exp_p0, 1.9875691500E-4f);
_PS_CONST(cephes_exp_p1, 1.3981999507E-3f);
_PS_CONST(cephes_exp_p2, 8.3334519073E-3f);
_PS_CONST(cephes_exp_p3, 4.1665795894E-2f);
_PS_CONST(cephes_exp_p4, 1.6666665459E-1f);
_PS_CONST(cephes_exp_p5, 5.0000001201E-1f);
_PS_CONST(minus_cephes_DP1, -0.78515625f);
_PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4f);
_PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8f);
_PS_CONST(sincof_p0, -1.9515295891E-4f);
_PS_CONST(sincof_p1, 8.3321608736E-3f);
_PS_CONST(sincof_p2, -1.6666654611E-1f);
_PS_CONST(coscof_p0, 2.443315711809948E-005f);
_PS_CONST(coscof_p1, -1.388731625493765E-003f);
_PS_CONST(coscof_p2, 4.166664568298827E-002f);
_PS_CONST(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
extern v4sf log_ps(v4sf x);
extern v4sf exp_ps(v4sf x);
extern v4sf sin_ps(v4sf x);
extern v4sf cos_ps(v4sf x);
extern void sincos_ps(v4sf x, v4sf *s, v4sf *c);

View File

@ -77,6 +77,7 @@
<ClCompile Include="..\engine\public_amalgamation.cpp" />
<ClCompile Include="..\engine\r_studio.cpp" />
<ClCompile Include="..\engine\snd_null.cpp" />
<ClCompile Include="..\engine\sse_mathfun.cpp" />
<ClCompile Include="..\engine\sv_log.cpp" />
<ClCompile Include="..\engine\sv_main.cpp" />
<ClCompile Include="..\engine\sv_move.cpp" />
@ -440,6 +441,7 @@
<ClInclude Include="..\engine\server.h" />
<ClInclude Include="..\engine\server_static.h" />
<ClInclude Include="..\engine\sound.h" />
<ClInclude Include="..\engine\sse_mathfun.h" />
<ClInclude Include="..\engine\studio_rehlds.h" />
<ClInclude Include="..\engine\sv_log.h" />
<ClInclude Include="..\engine\sv_move.h" />

View File

@ -346,6 +346,9 @@
<ClCompile Include="..\rehlds\rehlds_security.cpp">
<Filter>rehlds</Filter>
</ClCompile>
<ClCompile Include="..\engine\sse_mathfun.cpp">
<Filter>engine</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ClInclude Include="..\hookers\memory.h">
@ -1068,6 +1071,9 @@
<ClInclude Include="..\common\qlimits.h">
<Filter>common</Filter>
</ClInclude>
<ClInclude Include="..\engine\sse_mathfun.h">
<Filter>engine</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<None Include="..\linux\appversion.sh">

View File

@ -6,6 +6,7 @@
#include "archtypes.h"
#include "asmlib.h"
#include "sse_mathfun.h"
#include "mathlib.h"
#include "sys_shared.h"