2
0
mirror of https://github.com/rehlds/rehlds.git synced 2025-01-07 12:35:33 +03:00
rehlds/rehlds/public/utllinkedlist.h
s1lent 2cf2fc6b63
Reconstruction & cleanup include files
Remove useless include files and part of code too
Move defines Q_* functions from engine/common.h to public/strtools.h
Rename functions:
	strcopy > Q_strlcpy
	strncopy > Q_strnlcpy
2017-07-23 17:05:15 +07:00

693 lines
17 KiB
C++

//======== (C) Copyright 1999, 2000 Valve, L.L.C. All rights reserved. ========
//
// The copyright to the contents herein is the property of Valve, L.L.C.
// The contents may be used and/or copied only with the written permission of
// Valve, L.L.C., or in accordance with the terms and conditions stipulated in
// the agreement/contract under which the contents have been supplied.
//
// Purpose: Linked list container class
//
// $Revision: $
// $NoKeywords: $
//=============================================================================
#ifndef UTLLINKEDLIST_H
#define UTLLINKEDLIST_H
#ifdef _WIN32
#pragma once
#endif
#include "basetypes.h"
#include "utlmemory.h"
#include "tier0/dbg.h"
// This is a useful macro to iterate from head to tail in a linked list.
#define FOR_EACH_LL( listName, iteratorName ) \
for( int iteratorName=listName.Head(); iteratorName != listName.InvalidIndex(); iteratorName = listName.Next( iteratorName ) )
#define INVALID_LLIST_IDX ((I)~0)
//-----------------------------------------------------------------------------
// class CUtlLinkedList:
// description:
// A lovely index-based linked list! T is the class type, I is the index
// type, which usually should be an unsigned short or smaller.
//-----------------------------------------------------------------------------
template <class T, class I = unsigned short>
class CUtlLinkedList
{
public:
typedef T ElemType_t;
typedef I IndexType_t;
// constructor, destructor
CUtlLinkedList(int growSize = 0, int initSize = 0);
CUtlLinkedList(void *pMemory, int memsize);
~CUtlLinkedList();
// gets particular elements
T& Element(I i);
T const& Element(I i) const;
T& operator[](I i);
T const& operator[](I i) const;
// Make sure we have a particular amount of memory
void EnsureCapacity(int num);
// Memory deallocation
void Purge();
// Delete all the elements then call Purge.
void PurgeAndDeleteElements();
// Insertion methods....
I InsertBefore(I before);
I InsertAfter(I after);
I AddToHead();
I AddToTail();
I InsertBefore(I before, T const& src);
I InsertAfter(I after, T const& src);
I AddToHead(T const& src);
I AddToTail(T const& src);
// Find an element and return its index or InvalidIndex() if it couldn't be found.
I Find(const T &src) const;
// Look for the element. If it exists, remove it and return true. Otherwise, return false.
bool FindAndRemove(const T &src);
// Removal methods
void Remove(I elem);
void RemoveAll();
// Allocation/deallocation methods
// If multilist == true, then list list may contain many
// non-connected lists, and IsInList and Head + Tail are meaningless...
I Alloc(bool multilist = false);
void Free(I elem);
// list modification
void LinkBefore(I before, I elem);
void LinkAfter(I after, I elem);
void Unlink(I elem);
void LinkToHead(I elem);
void LinkToTail(I elem);
// invalid index
inline static I InvalidIndex() { return INVALID_LLIST_IDX; }
inline static size_t ElementSize() { return sizeof(ListElem_t); }
// list statistics
int Count() const;
I MaxElementIndex() const;
// Traversing the list
I Head() const;
I Tail() const;
I Previous(I i) const;
I Next(I i) const;
// Are nodes in the list or valid?
bool IsValidIndex(I i) const;
bool IsInList(I i) const;
protected:
// What the linked list element looks like
struct ListElem_t
{
T m_Element;
I m_Previous;
I m_Next;
private:
// No copy constructor for these...
ListElem_t(const ListElem_t&);
};
// constructs the class
I AllocInternal(bool multilist = false);
void ConstructList();
// Gets at the list element....
ListElem_t& InternalElement(I i) { return m_Memory[i]; }
ListElem_t const& InternalElement(I i) const { return m_Memory[i]; }
void ResetDbgInfo()
{
m_pElements = m_Memory.Base();
}
// copy constructors not allowed
CUtlLinkedList(CUtlLinkedList<T, I> const& list) { Assert(0); }
CUtlMemory<ListElem_t> m_Memory;
I m_Head;
I m_Tail;
I m_FirstFree;
I m_ElementCount; // The number actually in the list
I m_TotalElements; // The number allocated
// For debugging purposes;
// it's in release builds so this can be used in libraries correctly
ListElem_t *m_pElements;
};
//-----------------------------------------------------------------------------
// constructor, destructor
//-----------------------------------------------------------------------------
template <class T, class I>
CUtlLinkedList<T, I>::CUtlLinkedList(int growSize, int initSize) :
m_Memory(growSize, initSize)
{
ConstructList();
ResetDbgInfo();
}
template <class T, class I>
CUtlLinkedList<T, I>::CUtlLinkedList(void* pMemory, int memsize) :
m_Memory((ListElem_t *)pMemory, memsize / sizeof(ListElem_t))
{
ConstructList();
ResetDbgInfo();
}
template <class T, class I>
CUtlLinkedList<T, I>::~CUtlLinkedList()
{
RemoveAll();
}
template <class T, class I>
void CUtlLinkedList<T, I>::ConstructList()
{
m_Head = InvalidIndex();
m_Tail = InvalidIndex();
m_FirstFree = InvalidIndex();
m_ElementCount = m_TotalElements = 0;
}
//-----------------------------------------------------------------------------
// gets particular elements
//-----------------------------------------------------------------------------
template <class T, class I>
inline T& CUtlLinkedList<T, I>::Element(I i)
{
return m_Memory[i].m_Element;
}
template <class T, class I>
inline T const& CUtlLinkedList<T, I>::Element(I i) const
{
return m_Memory[i].m_Element;
}
template <class T, class I>
inline T& CUtlLinkedList<T, I>::operator[](I i)
{
return m_Memory[i].m_Element;
}
template <class T, class I>
inline T const& CUtlLinkedList<T, I>::operator[](I i) const
{
return m_Memory[i].m_Element;
}
//-----------------------------------------------------------------------------
// list statistics
//-----------------------------------------------------------------------------
template <class T, class I>
inline int CUtlLinkedList<T, I>::Count() const
{
return m_ElementCount;
}
template <class T, class I>
inline I CUtlLinkedList<T, I>::MaxElementIndex() const
{
return m_Memory.NumAllocated();
}
//-----------------------------------------------------------------------------
// Traversing the list
//-----------------------------------------------------------------------------
template <class T, class I>
inline I CUtlLinkedList<T, I>::Head() const
{
return m_Head;
}
template <class T, class I>
inline I CUtlLinkedList<T, I>::Tail() const
{
return m_Tail;
}
template <class T, class I>
inline I CUtlLinkedList<T, I>::Previous(I i) const
{
Assert(IsValidIndex(i));
return InternalElement(i).m_Previous;
}
template <class T, class I>
inline I CUtlLinkedList<T, I>::Next(I i) const
{
Assert(IsValidIndex(i));
return InternalElement(i).m_Next;
}
//-----------------------------------------------------------------------------
// Are nodes in the list or valid?
//-----------------------------------------------------------------------------
template <class T, class I>
inline bool CUtlLinkedList<T, I>::IsValidIndex(I i) const
{
return (i < m_TotalElements) && (i >= 0) &&
((m_Memory[i].m_Previous != i) || (m_Memory[i].m_Next == i));
}
template <class T, class I>
inline bool CUtlLinkedList<T, I>::IsInList(I i) const
{
return (i < m_TotalElements) && (i >= 0) && (Previous(i) != i);
}
//-----------------------------------------------------------------------------
// Makes sure we have enough memory allocated to store a requested # of elements
//-----------------------------------------------------------------------------
template< class T, class I >
void CUtlLinkedList<T, I>::EnsureCapacity(int num)
{
m_Memory.EnsureCapacity(num);
ResetDbgInfo();
}
//-----------------------------------------------------------------------------
// Deallocate memory
//-----------------------------------------------------------------------------
template <class T, class I>
void CUtlLinkedList<T, I>::Purge()
{
RemoveAll();
m_Memory.Purge();
m_FirstFree = InvalidIndex();
m_TotalElements = 0;
ResetDbgInfo();
}
template<class T, class I>
void CUtlLinkedList<T, I>::PurgeAndDeleteElements()
{
int iNext;
for (int i = Head(); i != InvalidIndex(); i = iNext)
{
iNext = Next(i);
delete Element(i);
}
Purge();
}
//-----------------------------------------------------------------------------
// Node allocation/deallocation
//-----------------------------------------------------------------------------
template <class T, class I>
I CUtlLinkedList<T, I>::AllocInternal(bool multilist)
{
I elem;
if (m_FirstFree == InvalidIndex())
{
// Nothing in the free list; add.
// Since nothing is in the free list, m_TotalElements == total # of elements
// the list knows about.
if (m_TotalElements == m_Memory.NumAllocated())
m_Memory.Grow();
Assert(m_TotalElements != InvalidIndex());
elem = (I)m_TotalElements;
++m_TotalElements;
if (elem == InvalidIndex())
{
Error("CUtlLinkedList overflow!\n");
}
}
else
{
elem = m_FirstFree;
m_FirstFree = InternalElement(m_FirstFree).m_Next;
}
if (!multilist)
InternalElement(elem).m_Next = InternalElement(elem).m_Previous = elem;
else
InternalElement(elem).m_Next = InternalElement(elem).m_Previous = InvalidIndex();
ResetDbgInfo();
return elem;
}
template <class T, class I>
I CUtlLinkedList<T, I>::Alloc(bool multilist)
{
I elem = AllocInternal(multilist);
Construct(&Element(elem));
return elem;
}
template <class T, class I>
void CUtlLinkedList<T, I>::Free(I elem)
{
Assert(IsValidIndex(elem));
Unlink(elem);
ListElem_t &internalElem = InternalElement(elem);
Destruct(&internalElem.m_Element);
internalElem.m_Next = m_FirstFree;
m_FirstFree = elem;
}
//-----------------------------------------------------------------------------
// Insertion methods; allocates and links (uses default constructor)
//-----------------------------------------------------------------------------
template <class T, class I>
I CUtlLinkedList<T, I>::InsertBefore(I before)
{
// Make a new node
I newNode = AllocInternal();
// Link it in
LinkBefore(before, newNode);
// Construct the data
Construct(&Element(newNode));
return newNode;
}
template <class T, class I>
I CUtlLinkedList<T, I>::InsertAfter(I after)
{
// Make a new node
I newNode = AllocInternal();
// Link it in
LinkAfter(after, newNode);
// Construct the data
Construct(&Element(newNode));
return newNode;
}
template <class T, class I>
inline I CUtlLinkedList<T, I>::AddToHead()
{
return InsertAfter(InvalidIndex());
}
template <class T, class I>
inline I CUtlLinkedList<T, I>::AddToTail()
{
return InsertBefore(InvalidIndex());
}
//-----------------------------------------------------------------------------
// Insertion methods; allocates and links (uses copy constructor)
//-----------------------------------------------------------------------------
template <class T, class I>
I CUtlLinkedList<T, I>::InsertBefore(I before, T const& src)
{
// Make a new node
I newNode = AllocInternal();
// Link it in
LinkBefore(before, newNode);
// Construct the data
CopyConstruct(&Element(newNode), src);
return newNode;
}
template <class T, class I>
I CUtlLinkedList<T, I>::InsertAfter(I after, T const& src)
{
// Make a new node
I newNode = AllocInternal();
// Link it in
LinkAfter(after, newNode);
// Construct the data
CopyConstruct(&Element(newNode), src);
return newNode;
}
template <class T, class I>
inline I CUtlLinkedList<T, I>::AddToHead(T const& src)
{
return InsertAfter(InvalidIndex(), src);
}
template <class T, class I>
inline I CUtlLinkedList<T, I>::AddToTail(T const& src)
{
return InsertBefore(InvalidIndex(), src);
}
//-----------------------------------------------------------------------------
// Removal methods
//-----------------------------------------------------------------------------
template<class T, class I>
I CUtlLinkedList<T, I>::Find(const T &src) const
{
for (I i = Head(); i != InvalidIndex(); i = Next(i))
{
if (Element(i) == src)
return i;
}
return InvalidIndex();
}
template<class T, class I>
bool CUtlLinkedList<T, I>::FindAndRemove(const T &src)
{
I i = Find(src);
if (i == InvalidIndex())
{
return false;
}
else
{
Remove(i);
return true;
}
}
template <class T, class I>
void CUtlLinkedList<T, I>::Remove(I elem)
{
Free(elem);
}
template <class T, class I>
void CUtlLinkedList<T, I>::RemoveAll()
{
if (m_TotalElements == 0)
return;
// Put everything into the free list
I prev = InvalidIndex();
for (int i = (int)m_TotalElements; --i >= 0;)
{
// Invoke the destructor
if (IsValidIndex((I)i))
Destruct(&Element((I)i));
// next points to the next free list item
InternalElement((I)i).m_Next = prev;
// Indicates it's in the free list
InternalElement((I)i).m_Previous = (I)i;
prev = (I)i;
}
// First free points to the first element
m_FirstFree = 0;
// Clear everything else out
m_Head = InvalidIndex();
m_Tail = InvalidIndex();
m_ElementCount = 0;
}
//-----------------------------------------------------------------------------
// list modification
//-----------------------------------------------------------------------------
template <class T, class I>
void CUtlLinkedList<T, I>::LinkBefore(I before, I elem)
{
Assert(IsValidIndex(elem));
// Unlink it if it's in the list at the moment
Unlink(elem);
ListElem_t& newElem = InternalElement(elem);
// The element *after* our newly linked one is the one we linked before.
newElem.m_Next = before;
if (before == InvalidIndex())
{
// In this case, we're linking to the end of the list, so reset the tail
newElem.m_Previous = m_Tail;
m_Tail = elem;
}
else
{
// Here, we're not linking to the end. Set the prev pointer to point to
// the element we're linking.
Assert(IsInList(before));
ListElem_t& beforeElem = InternalElement(before);
newElem.m_Previous = beforeElem.m_Previous;
beforeElem.m_Previous = elem;
}
// Reset the head if we linked to the head of the list
if (newElem.m_Previous == InvalidIndex())
m_Head = elem;
else
InternalElement(newElem.m_Previous).m_Next = elem;
// one more element baby
++m_ElementCount;
}
template <class T, class I>
void CUtlLinkedList<T, I>::LinkAfter(I after, I elem)
{
Assert(IsValidIndex(elem));
// Unlink it if it's in the list at the moment
if (IsInList(elem))
Unlink(elem);
ListElem_t& newElem = InternalElement(elem);
// The element *before* our newly linked one is the one we linked after
newElem.m_Previous = after;
if (after == InvalidIndex())
{
// In this case, we're linking to the head of the list, reset the head
newElem.m_Next = m_Head;
m_Head = elem;
}
else
{
// Here, we're not linking to the end. Set the next pointer to point to
// the element we're linking.
Assert(IsInList(after));
ListElem_t& afterElem = InternalElement(after);
newElem.m_Next = afterElem.m_Next;
afterElem.m_Next = elem;
}
// Reset the tail if we linked to the tail of the list
if (newElem.m_Next == InvalidIndex())
m_Tail = elem;
else
InternalElement(newElem.m_Next).m_Previous = elem;
// one more element baby
++m_ElementCount;
}
template <class T, class I>
void CUtlLinkedList<T, I>::Unlink(I elem)
{
Assert(IsValidIndex(elem));
if (IsInList(elem))
{
ListElem_t *pBase = m_Memory.Base();
ListElem_t *pOldElem = &pBase[elem];
// If we're the first guy, reset the head
// otherwise, make our previous node's next pointer = our next
if (pOldElem->m_Previous != INVALID_LLIST_IDX)
{
pBase[pOldElem->m_Previous].m_Next = pOldElem->m_Next;
}
else
{
m_Head = pOldElem->m_Next;
}
// If we're the last guy, reset the tail
// otherwise, make our next node's prev pointer = our prev
if (pOldElem->m_Next != INVALID_LLIST_IDX)
{
pBase[pOldElem->m_Next].m_Previous = pOldElem->m_Previous;
}
else
{
m_Tail = pOldElem->m_Previous;
}
// This marks this node as not in the list,
// but not in the free list either
pOldElem->m_Previous = pOldElem->m_Next = elem;
// One less puppy
--m_ElementCount;
}
}
template <class T, class I>
inline void CUtlLinkedList<T, I>::LinkToHead(I elem)
{
LinkAfter(InvalidIndex(), elem);
}
template <class T, class I>
inline void CUtlLinkedList<T, I>::LinkToTail(I elem)
{
LinkBefore(InvalidIndex(), elem);
}
#endif // UTLLINKEDLIST_H