424 lines
9.1 KiB
C
Raw Normal View History

2015-06-30 15:46:07 +06:00
//========= Copyright <20> 1996-2001, Valve LLC, All rights reserved. ============
//
// Purpose:
//
// $NoKeywords: $
//=============================================================================
#ifndef FASTTIMER_H
#define FASTTIMER_H
#ifdef _WIN32
#pragma once
#endif
#include "osconfig.h"
#include "tier0/platform.h"
PLATFORM_INTERFACE __int64 g_ClockSpeed;
PLATFORM_INTERFACE unsigned long g_dwClockSpeed;
PLATFORM_INTERFACE double g_ClockSpeedMicrosecondsMultiplier;
PLATFORM_INTERFACE double g_ClockSpeedMillisecondsMultiplier;
PLATFORM_INTERFACE double g_ClockSpeedSecondsMultiplier;
class CCycleCount
{
friend class CFastTimer;
public:
CCycleCount();
void Sample(); // Sample the clock. This takes about 34 clocks to execute (or 26,000 calls per millisecond on a P900).
void Init(); // Set to zero.
void Init(float initTimeMsec);
bool IsLessThan(CCycleCount const &other) const; // Compare two counts.
// Convert to other time representations. These functions are slow, so it's preferable to call them
// during display rather than inside a timing block.
unsigned long GetCycles() const;
unsigned long GetMicroseconds() const;
double GetMicrosecondsF() const;
unsigned long GetMilliseconds() const;
double GetMillisecondsF() const;
double GetSeconds() const;
CCycleCount& operator+=(CCycleCount const &other);
// dest = rSrc1 + rSrc2
static void Add(CCycleCount const &rSrc1, CCycleCount const &rSrc2, CCycleCount &dest); // Add two samples together.
// dest = rSrc1 - rSrc2
static void Sub(CCycleCount const &rSrc1, CCycleCount const &rSrc2, CCycleCount &dest); // Add two samples together.
__int64 m_Int64;
};
class CClockSpeedInit
{
public:
CClockSpeedInit()
{
Init();
}
static void Init()
{
const CPUInformation& pi = GetCPUInformation();
g_ClockSpeed = pi.m_Speed;
g_dwClockSpeed = (unsigned long)g_ClockSpeed;
g_ClockSpeedMicrosecondsMultiplier = 1000000.0 / (double)g_ClockSpeed;
g_ClockSpeedMillisecondsMultiplier = 1000.0 / (double)g_ClockSpeed;
g_ClockSpeedSecondsMultiplier = 1.0f / (double)g_ClockSpeed;
}
};
class CFastTimer
{
public:
// These functions are fast to call and should be called from your sampling code.
void Start();
void End();
const CCycleCount & GetDuration() const; // Get the elapsed time between Start and End calls.
CCycleCount GetDurationInProgress() const; // Call without ending. Not that cheap.
// Return number of cycles per second on this processor.
static inline unsigned long GetClockSpeed();
private:
CCycleCount m_Duration;
};
// This is a helper class that times whatever block of code it's in
class CTimeScope
{
public:
CTimeScope(CFastTimer *pTimer);
~CTimeScope();
private:
CFastTimer *m_pTimer;
};
inline CTimeScope::CTimeScope(CFastTimer *pTotal)
{
m_pTimer = pTotal;
m_pTimer->Start();
}
inline CTimeScope::~CTimeScope()
{
m_pTimer->End();
}
// This is a helper class that times whatever block of code it's in and
// adds the total (int microseconds) to a global counter.
class CTimeAdder
{
public:
CTimeAdder(CCycleCount *pTotal);
~CTimeAdder();
void End();
private:
CCycleCount *m_pTotal;
CFastTimer m_Timer;
};
inline CTimeAdder::CTimeAdder(CCycleCount *pTotal)
{
m_pTotal = pTotal;
m_Timer.Start();
}
inline CTimeAdder::~CTimeAdder()
{
End();
}
inline void CTimeAdder::End()
{
if (m_pTotal)
{
m_Timer.End();
*m_pTotal += m_Timer.GetDuration();
m_pTotal = 0;
}
}
// -------------------------------------------------------------------------- //
// Simple tool to support timing a block of code, and reporting the results on
// program exit
// -------------------------------------------------------------------------- //
#define PROFILE_SCOPE(name) \
class C##name##ACC : public CAverageCycleCounter \
{ \
public: \
~C##name##ACC() \
{ \
Msg("%-48s: %6.3f avg (%8.1f total, %7.3f peak, %5d iters)\n", \
#name, \
GetAverageMilliseconds(), \
GetTotalMilliseconds(), \
GetPeakMilliseconds(), \
GetIters() ); \
} \
}; \
static C##name##ACC name##_ACC; \
CAverageTimeMarker name##_ATM( &name##_ACC )
// -------------------------------------------------------------------------- //
class CAverageCycleCounter
{
public:
CAverageCycleCounter();
void Init();
void MarkIter(const CCycleCount &duration);
unsigned GetIters() const;
double GetAverageMilliseconds() const;
double GetTotalMilliseconds() const;
double GetPeakMilliseconds() const;
private:
unsigned m_nIters;
CCycleCount m_Total;
CCycleCount m_Peak;
bool m_fReport;
const char *m_pszName;
};
// -------------------------------------------------------------------------- //
class CAverageTimeMarker
{
public:
CAverageTimeMarker(CAverageCycleCounter *pCounter);
~CAverageTimeMarker();
private:
CAverageCycleCounter *m_pCounter;
CFastTimer m_Timer;
};
// -------------------------------------------------------------------------- //
// CCycleCount inlines.
// -------------------------------------------------------------------------- //
inline CCycleCount::CCycleCount()
{
m_Int64 = 0;
}
inline void CCycleCount::Init()
{
m_Int64 = 0;
}
inline void CCycleCount::Init(float initTimeMsec)
{
if (g_ClockSpeedMillisecondsMultiplier > 0)
m_Int64 = initTimeMsec / g_ClockSpeedMillisecondsMultiplier;
else
m_Int64 = 0;
}
inline void CCycleCount::Sample()
{
unsigned long* pSample = (unsigned long *)&m_Int64;
__asm
{
// force the cpu to synchronize the instruction queue
// NJS: CPUID can really impact performance in tight loops.
//cpuid
//cpuid
//cpuid
mov ecx, pSample
rdtsc
mov[ecx], eax
mov[ecx + 4], edx
}
}
inline CCycleCount& CCycleCount::operator+=(CCycleCount const &other)
{
m_Int64 += other.m_Int64;
return *this;
}
inline void CCycleCount::Add(CCycleCount const &rSrc1, CCycleCount const &rSrc2, CCycleCount &dest)
{
dest.m_Int64 = rSrc1.m_Int64 + rSrc2.m_Int64;
}
inline void CCycleCount::Sub(CCycleCount const &rSrc1, CCycleCount const &rSrc2, CCycleCount &dest)
{
dest.m_Int64 = rSrc1.m_Int64 - rSrc2.m_Int64;
}
inline bool CCycleCount::IsLessThan(CCycleCount const &other) const
{
return m_Int64 < other.m_Int64;
}
inline unsigned long CCycleCount::GetCycles() const
{
return (unsigned long)m_Int64;
}
inline unsigned long CCycleCount::GetMicroseconds() const
{
return (unsigned long)((m_Int64 * 1000000) / g_ClockSpeed);
}
inline double CCycleCount::GetMicrosecondsF() const
{
return (double)(m_Int64 * g_ClockSpeedMicrosecondsMultiplier);
}
inline unsigned long CCycleCount::GetMilliseconds() const
{
return (unsigned long)((m_Int64 * 1000) / g_ClockSpeed);
}
inline double CCycleCount::GetMillisecondsF() const
{
return (double)(m_Int64 * g_ClockSpeedMillisecondsMultiplier);
}
inline double CCycleCount::GetSeconds() const
{
return (double)(m_Int64 * g_ClockSpeedSecondsMultiplier);
}
// -------------------------------------------------------------------------- //
// CFastTimer inlines.
// -------------------------------------------------------------------------- //
inline void CFastTimer::Start()
{
m_Duration.Sample();
}
inline void CFastTimer::End()
{
CCycleCount cnt;
cnt.Sample();
m_Duration.m_Int64 = cnt.m_Int64 - m_Duration.m_Int64;
}
inline CCycleCount CFastTimer::GetDurationInProgress() const
{
CCycleCount cnt;
cnt.Sample();
CCycleCount result;
result.m_Int64 = cnt.m_Int64 - m_Duration.m_Int64;
return result;
}
inline unsigned long CFastTimer::GetClockSpeed()
{
return g_dwClockSpeed;
}
inline CCycleCount const& CFastTimer::GetDuration() const
{
return m_Duration;
}
// -------------------------------------------------------------------------- //
// CAverageCycleCounter inlines
inline CAverageCycleCounter::CAverageCycleCounter()
: m_nIters(0)
{
}
inline void CAverageCycleCounter::Init()
{
m_Total.Init();
m_Peak.Init();
m_nIters = 0;
}
inline void CAverageCycleCounter::MarkIter(const CCycleCount &duration)
{
++m_nIters;
m_Total += duration;
if (m_Peak.IsLessThan(duration))
m_Peak = duration;
}
inline unsigned CAverageCycleCounter::GetIters() const
{
return m_nIters;
}
inline double CAverageCycleCounter::GetAverageMilliseconds() const
{
if (m_nIters)
return (m_Total.GetMillisecondsF() / (double)m_nIters);
else
return 0;
}
inline double CAverageCycleCounter::GetTotalMilliseconds() const
{
return m_Total.GetMillisecondsF();
}
inline double CAverageCycleCounter::GetPeakMilliseconds() const
{
return m_Peak.GetMillisecondsF();
}
// -------------------------------------------------------------------------- //
inline CAverageTimeMarker::CAverageTimeMarker(CAverageCycleCounter *pCounter)
{
m_pCounter = pCounter;
m_Timer.Start();
}
inline CAverageTimeMarker::~CAverageTimeMarker()
{
m_Timer.End();
m_pCounter->MarkIter(m_Timer.GetDuration());
}
#endif // FASTTIMER_H