ReGameDLL_CS/regamedll/dlls/h_ai.cpp

182 lines
5.1 KiB
C++
Raw Normal View History

2015-06-30 12:46:07 +03:00
#include "precompiled.h"
2015-09-16 23:19:21 +03:00
#define NUM_LATERAL_CHECKS 13 // how many checks are made on each side of a monster looking for lateral cover
#define NUM_LATERAL_LOS_CHECKS 6 // how many checks are made on each side of a monster looking for lateral cover
2015-06-30 12:46:07 +03:00
/*
* Globals initialization
*/
#ifndef HOOK_GAMEDLL
BOOL g_fDrawLines = FALSE;
#else
BOOL g_fDrawLines;
#endif // HOOK_GAMEDLL
/* <c08f4> ../cstrike/dlls/h_ai.cpp:47 */
2015-09-16 23:19:21 +03:00
NOXREF BOOL FBoxVisible(entvars_t *pevLooker, entvars_t *pevTarget, Vector &vecTargetOrigin, float flSize)
2015-06-30 12:46:07 +03:00
{
2015-09-16 23:19:21 +03:00
// don't look through water
if ((pevLooker->waterlevel != 3 && pevTarget->waterlevel == 3) || (pevLooker->waterlevel == 3 && pevTarget->waterlevel == 0))
{
return FALSE;
}
TraceResult tr;
//look through the monster's 'eyes'
Vector vecLookerOrigin = pevLooker->origin + pevLooker->view_ofs;
for (int i = 0; i < 5; i++)
{
Vector vecTarget = pevTarget->origin;
vecTarget.x += RANDOM_FLOAT(pevTarget->mins.x + flSize, pevTarget->maxs.x - flSize);
vecTarget.y += RANDOM_FLOAT(pevTarget->mins.y + flSize, pevTarget->maxs.y - flSize);
vecTarget.z += RANDOM_FLOAT(pevTarget->mins.z + flSize, pevTarget->maxs.z - flSize);
UTIL_TraceLine(vecLookerOrigin, vecTarget, ignore_monsters, ignore_glass, ENT(pevLooker), &tr);
if (tr.flFraction == 1.0f)
{
vecTargetOrigin = vecTarget;
// line of sight is valid.
return TRUE;
}
}
// Line of sight is not established
return FALSE;
2015-06-30 12:46:07 +03:00
}
2015-09-16 23:19:21 +03:00
// VecCheckToss - returns the velocity at which an object should be lobbed from vecspot1 to land near vecspot2.
// returns g_vecZero if toss is not feasible.
2015-06-30 12:46:07 +03:00
/* <c0a19> ../cstrike/dlls/h_ai.cpp:78 */
2015-09-16 23:19:21 +03:00
NOXREF Vector VecCheckToss(entvars_t *pev, const Vector &vecSpot1, Vector vecSpot2, float flGravityAdj)
2015-06-30 12:46:07 +03:00
{
2015-09-16 23:19:21 +03:00
TraceResult tr;
Vector vecMidPoint; // halfway point between Spot1 and Spot2
Vector vecApex; // highest point
Vector vecScale;
Vector vecGrenadeVel;
Vector vecTemp;
float flGravity = g_psv_gravity->value * flGravityAdj;
if (vecSpot2.z - vecSpot1.z > 500)
{
// to high, fail
return g_vecZero;
}
UTIL_MakeVectors(pev->angles);
// toss a little bit to the left or right, not right down on the enemy's bean (head).
vecSpot2 = vecSpot2 + gpGlobals->v_right * (RANDOM_FLOAT(-8, 8) + RANDOM_FLOAT(-16, 16));
vecSpot2 = vecSpot2 + gpGlobals->v_forward * (RANDOM_FLOAT(-8, 8) + RANDOM_FLOAT(-16, 16));
// calculate the midpoint and apex of the 'triangle'
// UNDONE: normalize any Z position differences between spot1 and spot2 so that triangle is always RIGHT
// How much time does it take to get there?
// get a rough idea of how high it can be thrown
vecMidPoint = vecSpot1 + (vecSpot2 - vecSpot1) * 0.5;
UTIL_TraceLine(vecMidPoint, vecMidPoint + Vector(0,0,500), ignore_monsters, ENT(pev), &tr);
vecMidPoint = tr.vecEndPos;
// (subtract 15 so the grenade doesn't hit the ceiling)
vecMidPoint.z -= 15;
if (vecMidPoint.z < vecSpot1.z || vecMidPoint.z < vecSpot2.z)
{
// to not enough space, fail
return g_vecZero;
}
// How high should the grenade travel to reach the apex
float distance1 = (vecMidPoint.z - vecSpot1.z);
float distance2 = (vecMidPoint.z - vecSpot2.z);
// How long will it take for the grenade to travel this distance
float time1 = sqrt(distance1 / (0.5 * flGravity));
float time2 = sqrt(distance2 / (0.5 * flGravity));
if (time1 < 0.1)
{
// too close
return g_vecZero;
}
// how hard to throw sideways to get there in time.
vecGrenadeVel = (vecSpot2 - vecSpot1) / (time1 + time2);
// how hard upwards to reach the apex at the right time.
vecGrenadeVel.z = flGravity * time1;
// find the apex
vecApex = vecSpot1 + vecGrenadeVel * time1;
vecApex.z = vecMidPoint.z;
UTIL_TraceLine(vecSpot1, vecApex, dont_ignore_monsters, ENT(pev), &tr);
if (tr.flFraction != 1.0f)
{
// fail!
return g_vecZero;
}
// UNDONE: either ignore monsters or change it to not care if we hit our enemy
UTIL_TraceLine(vecSpot2, vecApex, ignore_monsters, ENT(pev), &tr);
if (tr.flFraction != 1.0)
{
// fail!
return g_vecZero;
}
return vecGrenadeVel;
2015-06-30 12:46:07 +03:00
}
2015-09-16 23:19:21 +03:00
// VecCheckThrow - returns the velocity vector at which an object should be thrown from vecspot1 to hit vecspot2.
// returns g_vecZero if throw is not feasible.
2015-06-30 12:46:07 +03:00
/* <c0d21> ../cstrike/dlls/h_ai.cpp:164 */
2015-09-16 23:19:21 +03:00
NOXREF Vector VecCheckThrow(entvars_t *pev, const Vector &vecSpot1, Vector vecSpot2, float flSpeed, float flGravityAdj)
2015-06-30 12:46:07 +03:00
{
2015-09-16 23:19:21 +03:00
float flGravity = g_psv_gravity->value * flGravityAdj;
Vector vecGrenadeVel = (vecSpot2 - vecSpot1);
// throw at a constant time
float time = vecGrenadeVel.Length() / flSpeed;
vecGrenadeVel = vecGrenadeVel * (1.0 / time);
// adjust upward toss to compensate for gravity loss
vecGrenadeVel.z += flGravity * time * 0.5;
Vector vecApex = vecSpot1 + (vecSpot2 - vecSpot1) * 0.5;
vecApex.z += 0.5 * flGravity * (time * 0.5) * (time * 0.5);
TraceResult tr;
UTIL_TraceLine(vecSpot1, vecApex, dont_ignore_monsters, ENT(pev), &tr);
if (tr.flFraction != 1.0f)
{
// fail!
return g_vecZero;
}
UTIL_TraceLine(vecSpot2, vecApex, ignore_monsters, ENT(pev), &tr);
if (tr.flFraction != 1.0f)
{
// fail!
return g_vecZero;
}
return vecGrenadeVel;
2015-06-30 12:46:07 +03:00
}