mirror of
https://github.com/s1lentq/ReGameDLL_CS.git
synced 2024-12-28 15:45:41 +03:00
1296 lines
32 KiB
C++
1296 lines
32 KiB
C++
//=========== (C) Copyright 1999 Valve, L.L.C. All rights reserved. ===========
|
|
//
|
|
// The copyright to the contents herein is the property of Valve, L.L.C.
|
|
// The contents may be used and/or copied only with the written permission of
|
|
// Valve, L.L.C., or in accordance with the terms and conditions stipulated in
|
|
// the agreement/contract under which the contents have been supplied.
|
|
//
|
|
// Purpose:
|
|
//
|
|
// $Header: $
|
|
// $NoKeywords: $
|
|
//=============================================================================
|
|
|
|
#ifndef UTLRBTREE_H
|
|
#define UTLRBTREE_H
|
|
|
|
//#include <assert.h>
|
|
#include "utlmemory.h"
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Tool to generate a default compare function for any type that implements
|
|
// operator<, including all simple types
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <typename T >
|
|
class CDefOps
|
|
{
|
|
public:
|
|
static bool LessFunc( const T &lhs, const T &rhs ) { return ( lhs < rhs ); }
|
|
};
|
|
|
|
#define DefLessFunc( type ) CDefOps<type>::LessFunc
|
|
|
|
//-------------------------------------
|
|
|
|
inline bool StringLessThan( const char * const &lhs, const char * const &rhs) { return ( strcmp( lhs, rhs) < 0 ); }
|
|
inline bool CaselessStringLessThan( const char * const &lhs, const char * const &rhs ) { return ( _stricmp( lhs, rhs) < 0 ); }
|
|
|
|
//-------------------------------------
|
|
// inline these two templates to stop multiple definitions of the same code
|
|
template <> inline bool CDefOps<const char *>::LessFunc( const char * const &lhs, const char * const &rhs ) { return StringLessThan( lhs, rhs ); }
|
|
template <> inline bool CDefOps<char *>::LessFunc( char * const &lhs, char * const &rhs ) { return StringLessThan( lhs, rhs ); }
|
|
|
|
//-------------------------------------
|
|
|
|
template <typename RBTREE_T>
|
|
void SetDefLessFunc( RBTREE_T &RBTree )
|
|
{
|
|
#ifdef _WIN32
|
|
RBTree.SetLessFunc( DefLessFunc( RBTREE_T::KeyType_t ) );
|
|
#elif _LINUX
|
|
RBTree.SetLessFunc( DefLessFunc( typename RBTREE_T::KeyType_t ) );
|
|
#endif
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// A red-black binary search tree
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I = unsigned short>
|
|
class CUtlRBTree
|
|
{
|
|
public:
|
|
// Less func typedef
|
|
// Returns true if the first parameter is "less" than the second
|
|
typedef bool (*LessFunc_t)( T const &, T const & );
|
|
|
|
typedef T KeyType_t;
|
|
typedef T ElemType_t;
|
|
typedef I IndexType_t;
|
|
|
|
// constructor, destructor
|
|
// Left at growSize = 0, the memory will first allocate 1 element and double in size
|
|
// at each increment.
|
|
// LessFunc_t is required, but may be set after the constructor using SetLessFunc() below
|
|
CUtlRBTree( int growSize = 0, int initSize = 0, LessFunc_t lessfunc = 0 );
|
|
~CUtlRBTree( );
|
|
|
|
// gets particular elements
|
|
T& Element( I i );
|
|
T const &Element( I i ) const;
|
|
T& operator[]( I i );
|
|
T const &operator[]( I i ) const;
|
|
|
|
// Gets the root
|
|
I Root() const;
|
|
|
|
// Num elements
|
|
unsigned int Count() const;
|
|
|
|
// Max "size" of the vector
|
|
I MaxElement() const;
|
|
|
|
// Gets the children
|
|
I Parent( I i ) const;
|
|
I LeftChild( I i ) const;
|
|
I RightChild( I i ) const;
|
|
|
|
// Tests if a node is a left or right child
|
|
bool IsLeftChild( I i ) const;
|
|
bool IsRightChild( I i ) const;
|
|
|
|
// Tests if root or leaf
|
|
bool IsRoot( I i ) const;
|
|
bool IsLeaf( I i ) const;
|
|
|
|
// Checks if a node is valid and in the tree
|
|
bool IsValidIndex( I i ) const;
|
|
|
|
// Checks if the tree as a whole is valid
|
|
bool IsValid() const;
|
|
|
|
// Invalid index
|
|
static I InvalidIndex();
|
|
|
|
// returns the tree depth (not a very fast operation)
|
|
int Depth( I node ) const;
|
|
int Depth() const;
|
|
|
|
// Sets the less func
|
|
void SetLessFunc( LessFunc_t func );
|
|
|
|
// Allocation method
|
|
I NewNode();
|
|
|
|
// Insert method (inserts in order)
|
|
I Insert( T const &insert );
|
|
void Insert( const T *pArray, int nItems );
|
|
|
|
// Find method
|
|
I Find( T const &search ) const;
|
|
|
|
// Remove methods
|
|
void RemoveAt( I i );
|
|
bool Remove( T const &remove );
|
|
void RemoveAll( );
|
|
|
|
// Allocation, deletion
|
|
void FreeNode( I i );
|
|
|
|
// Iteration
|
|
I FirstInorder() const;
|
|
I NextInorder( I i ) const;
|
|
I PrevInorder( I i ) const;
|
|
I LastInorder() const;
|
|
|
|
I FirstPreorder() const;
|
|
I NextPreorder( I i ) const;
|
|
I PrevPreorder( I i ) const;
|
|
I LastPreorder( ) const;
|
|
|
|
I FirstPostorder() const;
|
|
I NextPostorder( I i ) const;
|
|
|
|
// If you change the search key, this can be used to reinsert the
|
|
// element into the tree.
|
|
void Reinsert( I elem );
|
|
|
|
|
|
protected:
|
|
enum NodeColor_t
|
|
{
|
|
RED = 0,
|
|
BLACK
|
|
};
|
|
|
|
struct Links_t
|
|
{
|
|
I m_Left;
|
|
I m_Right;
|
|
I m_Parent;
|
|
I m_Tag;
|
|
};
|
|
|
|
struct Node_t : public Links_t
|
|
{
|
|
T m_Data;
|
|
};
|
|
|
|
// Sets the children
|
|
void SetParent( I i, I parent );
|
|
void SetLeftChild( I i, I child );
|
|
void SetRightChild( I i, I child );
|
|
void LinkToParent( I i, I parent, bool isLeft );
|
|
|
|
// Gets at the links
|
|
Links_t const &Links( I i ) const;
|
|
Links_t &Links( I i );
|
|
|
|
// Checks if a link is red or black
|
|
bool IsRed( I i ) const;
|
|
bool IsBlack( I i ) const;
|
|
|
|
// Sets/gets node color
|
|
NodeColor_t Color( I i ) const;
|
|
void SetColor( I i, NodeColor_t c );
|
|
|
|
// operations required to preserve tree balance
|
|
void RotateLeft(I i);
|
|
void RotateRight(I i);
|
|
void InsertRebalance(I i);
|
|
void RemoveRebalance(I i);
|
|
|
|
// Insertion, removal
|
|
I InsertAt( I parent, bool leftchild );
|
|
|
|
// copy constructors not allowed
|
|
CUtlRBTree( CUtlRBTree<T, I> const &tree );
|
|
|
|
// Inserts a node into the tree, doesn't copy the data in.
|
|
void FindInsertionPosition( T const &insert, I &parent, bool &leftchild );
|
|
|
|
// Remove and add back an element in the tree.
|
|
void Unlink( I elem );
|
|
void Link( I elem );
|
|
|
|
// Used for sorting.
|
|
LessFunc_t m_LessFunc;
|
|
|
|
CUtlMemory<Node_t> m_Elements;
|
|
I m_Root;
|
|
I m_NumElements;
|
|
I m_FirstFree;
|
|
I m_TotalElements;
|
|
|
|
Node_t* m_pElements;
|
|
|
|
void ResetDbgInfo()
|
|
{
|
|
m_pElements = (Node_t*)m_Elements.Base();
|
|
}
|
|
};
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// constructor, destructor
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
CUtlRBTree<T, I>::CUtlRBTree( int growSize, int initSize, LessFunc_t lessfunc ) :
|
|
m_Elements( growSize, initSize ),
|
|
m_LessFunc( lessfunc ),
|
|
m_Root( InvalidIndex() ),
|
|
m_NumElements( 0 ), m_TotalElements( 0 ),
|
|
m_FirstFree( InvalidIndex() )
|
|
{
|
|
ResetDbgInfo();
|
|
}
|
|
|
|
template <class T, class I>
|
|
CUtlRBTree<T, I>::~CUtlRBTree()
|
|
{
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// gets particular elements
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
inline T &CUtlRBTree<T, I>::Element( I i )
|
|
{
|
|
return m_Elements[i].m_Data;
|
|
}
|
|
|
|
template <class T, class I>
|
|
inline T const &CUtlRBTree<T, I>::Element( I i ) const
|
|
{
|
|
return m_Elements[i].m_Data;
|
|
}
|
|
|
|
template <class T, class I>
|
|
inline T &CUtlRBTree<T, I>::operator[]( I i )
|
|
{
|
|
return Element(i);
|
|
}
|
|
|
|
template <class T, class I>
|
|
inline T const &CUtlRBTree<T, I>::operator[]( I i ) const
|
|
{
|
|
return Element(i);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// various accessors
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Gets the root
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
inline I CUtlRBTree<T, I>::Root() const
|
|
{
|
|
return m_Root;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Num elements
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
inline unsigned int CUtlRBTree<T, I>::Count() const
|
|
{
|
|
return (unsigned int)m_NumElements;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Max "size" of the vector
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
inline I CUtlRBTree<T, I>::MaxElement() const
|
|
{
|
|
return (I)m_TotalElements;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Gets the children
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
inline I CUtlRBTree<T, I>::Parent( I i ) const
|
|
{
|
|
return Links(i).m_Parent;
|
|
}
|
|
|
|
template <class T, class I>
|
|
inline I CUtlRBTree<T, I>::LeftChild( I i ) const
|
|
{
|
|
return Links(i).m_Left;
|
|
}
|
|
|
|
template <class T, class I>
|
|
inline I CUtlRBTree<T, I>::RightChild( I i ) const
|
|
{
|
|
return Links(i).m_Right;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Tests if a node is a left or right child
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
inline bool CUtlRBTree<T, I>::IsLeftChild( I i ) const
|
|
{
|
|
return LeftChild(Parent(i)) == i;
|
|
}
|
|
|
|
template <class T, class I>
|
|
inline bool CUtlRBTree<T, I>::IsRightChild( I i ) const
|
|
{
|
|
return RightChild(Parent(i)) == i;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Tests if root or leaf
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
inline bool CUtlRBTree<T, I>::IsRoot( I i ) const
|
|
{
|
|
return i == m_Root;
|
|
}
|
|
|
|
template <class T, class I>
|
|
inline bool CUtlRBTree<T, I>::IsLeaf( I i ) const
|
|
{
|
|
return (LeftChild(i) == InvalidIndex()) && (RightChild(i) == InvalidIndex());
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Checks if a node is valid and in the tree
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
inline bool CUtlRBTree<T, I>::IsValidIndex( I i ) const
|
|
{
|
|
return LeftChild(i) != i;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Invalid index
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
I CUtlRBTree<T, I>::InvalidIndex()
|
|
{
|
|
return (I)~0;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// returns the tree depth (not a very fast operation)
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
inline int CUtlRBTree<T, I>::Depth() const
|
|
{
|
|
return Depth(Root());
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Sets the children
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
inline void CUtlRBTree<T, I>::SetParent( I i, I parent )
|
|
{
|
|
Links(i).m_Parent = parent;
|
|
}
|
|
|
|
template <class T, class I>
|
|
inline void CUtlRBTree<T, I>::SetLeftChild( I i, I child )
|
|
{
|
|
Links(i).m_Left = child;
|
|
}
|
|
|
|
template <class T, class I>
|
|
inline void CUtlRBTree<T, I>::SetRightChild( I i, I child )
|
|
{
|
|
Links(i).m_Right = child;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Gets at the links
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
inline typename CUtlRBTree<T, I>::Links_t const &CUtlRBTree<T, I>::Links( I i ) const
|
|
{
|
|
// Sentinel node, makes life easier
|
|
static Links_t s_Sentinel =
|
|
{
|
|
InvalidIndex(), InvalidIndex(), InvalidIndex(), CUtlRBTree<T, I>::BLACK
|
|
};
|
|
|
|
return (i != InvalidIndex()) ? *(Links_t*)&m_Elements[i] :
|
|
*(Links_t*)&s_Sentinel;
|
|
}
|
|
|
|
template <class T, class I>
|
|
inline typename CUtlRBTree<T, I>::Links_t &CUtlRBTree<T, I>::Links( I i )
|
|
{
|
|
Assert(i != InvalidIndex());
|
|
return *(Links_t *)&m_Elements[i];
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Checks if a link is red or black
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
inline bool CUtlRBTree<T, I>::IsRed( I i ) const
|
|
{
|
|
return (Links(i).m_Tag == RED);
|
|
}
|
|
|
|
template <class T, class I>
|
|
inline bool CUtlRBTree<T, I>::IsBlack( I i ) const
|
|
{
|
|
return (Links(i).m_Tag == BLACK);
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Sets/gets node color
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
inline typename CUtlRBTree<T, I>::NodeColor_t CUtlRBTree<T, I>::Color( I i ) const
|
|
{
|
|
return (NodeColor_t)Links(i).m_Tag;
|
|
}
|
|
|
|
template <class T, class I>
|
|
inline void CUtlRBTree<T, I>::SetColor( I i, typename CUtlRBTree<T, I>::NodeColor_t c )
|
|
{
|
|
Links(i).m_Tag = (I)c;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Allocates/ deallocates nodes
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
I CUtlRBTree<T, I>::NewNode()
|
|
{
|
|
I newElem;
|
|
|
|
// Nothing in the free list; add.
|
|
if (m_FirstFree == InvalidIndex())
|
|
{
|
|
if (m_Elements.NumAllocated() == m_TotalElements)
|
|
m_Elements.Grow();
|
|
newElem = m_TotalElements++;
|
|
}
|
|
else
|
|
{
|
|
newElem = m_FirstFree;
|
|
m_FirstFree = RightChild(m_FirstFree);
|
|
}
|
|
|
|
#ifdef _DEBUG
|
|
// reset links to invalid....
|
|
Links_t &node = Links(newElem);
|
|
node.m_Left = node.m_Right = node.m_Parent = InvalidIndex();
|
|
#endif
|
|
|
|
Construct( &Element(newElem) );
|
|
ResetDbgInfo();
|
|
|
|
return newElem;
|
|
}
|
|
|
|
template <class T, class I>
|
|
void CUtlRBTree<T, I>::FreeNode( I i )
|
|
{
|
|
Assert( IsValidIndex(i) && (i != InvalidIndex()) );
|
|
Destruct( &Element(i) );
|
|
SetLeftChild( i, i ); // indicates it's in not in the tree
|
|
SetRightChild( i, m_FirstFree );
|
|
m_FirstFree = i;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Rotates node i to the left
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
void CUtlRBTree<T, I>::RotateLeft(I elem)
|
|
{
|
|
I rightchild = RightChild(elem);
|
|
SetRightChild( elem, LeftChild(rightchild) );
|
|
if (LeftChild(rightchild) != InvalidIndex())
|
|
SetParent( LeftChild(rightchild), elem );
|
|
|
|
if (rightchild != InvalidIndex())
|
|
SetParent( rightchild, Parent(elem) );
|
|
if (!IsRoot(elem))
|
|
{
|
|
if (IsLeftChild(elem))
|
|
SetLeftChild( Parent(elem), rightchild );
|
|
else
|
|
SetRightChild( Parent(elem), rightchild );
|
|
}
|
|
else
|
|
m_Root = rightchild;
|
|
|
|
SetLeftChild( rightchild, elem );
|
|
if (elem != InvalidIndex())
|
|
SetParent( elem, rightchild );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Rotates node i to the right
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
void CUtlRBTree<T, I>::RotateRight(I elem)
|
|
{
|
|
I leftchild = LeftChild(elem);
|
|
SetLeftChild( elem, RightChild(leftchild) );
|
|
if (RightChild(leftchild) != InvalidIndex())
|
|
SetParent( RightChild(leftchild), elem );
|
|
|
|
if (leftchild != InvalidIndex())
|
|
SetParent( leftchild, Parent(elem) );
|
|
if (!IsRoot(elem))
|
|
{
|
|
if (IsRightChild(elem))
|
|
SetRightChild( Parent(elem), leftchild );
|
|
else
|
|
SetLeftChild( Parent(elem), leftchild );
|
|
}
|
|
else
|
|
m_Root = leftchild;
|
|
|
|
SetRightChild( leftchild, elem );
|
|
if (elem != InvalidIndex())
|
|
SetParent( elem, leftchild );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Rebalances the tree after an insertion
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
void CUtlRBTree<T, I>::InsertRebalance(I elem)
|
|
{
|
|
while ( !IsRoot(elem) && (Color(Parent(elem)) == RED) )
|
|
{
|
|
I parent = Parent(elem);
|
|
I grandparent = Parent(parent);
|
|
|
|
/* we have a violation */
|
|
if (IsLeftChild(parent))
|
|
{
|
|
I uncle = RightChild(grandparent);
|
|
if (IsRed(uncle))
|
|
{
|
|
/* uncle is RED */
|
|
SetColor(parent, BLACK);
|
|
SetColor(uncle, BLACK);
|
|
SetColor(grandparent, RED);
|
|
elem = grandparent;
|
|
}
|
|
else
|
|
{
|
|
/* uncle is BLACK */
|
|
if (IsRightChild(elem))
|
|
{
|
|
/* make x a left child, will change parent and grandparent */
|
|
elem = parent;
|
|
RotateLeft(elem);
|
|
parent = Parent(elem);
|
|
grandparent = Parent(parent);
|
|
}
|
|
/* recolor and rotate */
|
|
SetColor(parent, BLACK);
|
|
SetColor(grandparent, RED);
|
|
RotateRight(grandparent);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* mirror image of above code */
|
|
I uncle = LeftChild(grandparent);
|
|
if (IsRed(uncle))
|
|
{
|
|
/* uncle is RED */
|
|
SetColor(parent, BLACK);
|
|
SetColor(uncle, BLACK);
|
|
SetColor(grandparent, RED);
|
|
elem = grandparent;
|
|
}
|
|
else
|
|
{
|
|
/* uncle is BLACK */
|
|
if (IsLeftChild(elem))
|
|
{
|
|
/* make x a right child, will change parent and grandparent */
|
|
elem = parent;
|
|
RotateRight(parent);
|
|
parent = Parent(elem);
|
|
grandparent = Parent(parent);
|
|
}
|
|
/* recolor and rotate */
|
|
SetColor(parent, BLACK);
|
|
SetColor(grandparent, RED);
|
|
RotateLeft(grandparent);
|
|
}
|
|
}
|
|
}
|
|
SetColor( m_Root, BLACK );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Insert a node into the tree
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
I CUtlRBTree<T, I>::InsertAt( I parent, bool leftchild )
|
|
{
|
|
I i = NewNode();
|
|
LinkToParent( i, parent, leftchild );
|
|
++m_NumElements;
|
|
return i;
|
|
}
|
|
|
|
template <class T, class I>
|
|
void CUtlRBTree<T, I>::LinkToParent( I i, I parent, bool isLeft )
|
|
{
|
|
Links_t &elem = Links(i);
|
|
elem.m_Parent = parent;
|
|
elem.m_Left = elem.m_Right = InvalidIndex();
|
|
elem.m_Tag = RED;
|
|
|
|
/* insert node in tree */
|
|
if (parent != InvalidIndex())
|
|
{
|
|
if (isLeft)
|
|
Links(parent).m_Left = i;
|
|
else
|
|
Links(parent).m_Right = i;
|
|
}
|
|
else
|
|
{
|
|
m_Root = i;
|
|
}
|
|
|
|
InsertRebalance(i);
|
|
|
|
Assert(IsValid());
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Rebalance the tree after a deletion
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
void CUtlRBTree<T, I>::RemoveRebalance(I elem)
|
|
{
|
|
while (elem != m_Root && IsBlack(elem))
|
|
{
|
|
I parent = Parent(elem);
|
|
|
|
// If elem is the left child of the parent
|
|
if (elem == LeftChild(parent))
|
|
{
|
|
// Get our sibling
|
|
I sibling = RightChild(parent);
|
|
if (IsRed(sibling))
|
|
{
|
|
SetColor(sibling, BLACK);
|
|
SetColor(parent, RED);
|
|
RotateLeft(parent);
|
|
|
|
// We may have a new parent now
|
|
parent = Parent(elem);
|
|
sibling = RightChild(parent);
|
|
}
|
|
if ( (IsBlack(LeftChild(sibling))) && (IsBlack(RightChild(sibling))) )
|
|
{
|
|
if (sibling != InvalidIndex())
|
|
SetColor(sibling, RED);
|
|
elem = parent;
|
|
}
|
|
else
|
|
{
|
|
if (IsBlack(RightChild(sibling)))
|
|
{
|
|
SetColor(LeftChild(sibling), BLACK);
|
|
SetColor(sibling, RED);
|
|
RotateRight(sibling);
|
|
|
|
// rotation may have changed this
|
|
parent = Parent(elem);
|
|
sibling = RightChild(parent);
|
|
}
|
|
SetColor( sibling, Color(parent) );
|
|
SetColor( parent, BLACK );
|
|
SetColor( RightChild(sibling), BLACK );
|
|
RotateLeft( parent );
|
|
elem = m_Root;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Elem is the right child of the parent
|
|
I sibling = LeftChild(parent);
|
|
if (IsRed(sibling))
|
|
{
|
|
SetColor(sibling, BLACK);
|
|
SetColor(parent, RED);
|
|
RotateRight(parent);
|
|
|
|
// We may have a new parent now
|
|
parent = Parent(elem);
|
|
sibling = LeftChild(parent);
|
|
}
|
|
if ( (IsBlack(RightChild(sibling))) && (IsBlack(LeftChild(sibling))) )
|
|
{
|
|
if (sibling != InvalidIndex())
|
|
SetColor( sibling, RED );
|
|
elem = parent;
|
|
}
|
|
else
|
|
{
|
|
if (IsBlack(LeftChild(sibling)))
|
|
{
|
|
SetColor( RightChild(sibling), BLACK );
|
|
SetColor( sibling, RED );
|
|
RotateLeft( sibling );
|
|
|
|
// rotation may have changed this
|
|
parent = Parent(elem);
|
|
sibling = LeftChild(parent);
|
|
}
|
|
SetColor( sibling, Color(parent) );
|
|
SetColor( parent, BLACK );
|
|
SetColor( LeftChild(sibling), BLACK );
|
|
RotateRight( parent );
|
|
elem = m_Root;
|
|
}
|
|
}
|
|
}
|
|
SetColor( elem, BLACK );
|
|
}
|
|
|
|
template <class T, class I>
|
|
void CUtlRBTree<T, I>::Unlink( I elem )
|
|
{
|
|
if ( elem != InvalidIndex() )
|
|
{
|
|
I x, y;
|
|
|
|
if ((LeftChild(elem) == InvalidIndex()) ||
|
|
(RightChild(elem) == InvalidIndex()))
|
|
{
|
|
/* y has a NIL node as a child */
|
|
y = elem;
|
|
}
|
|
else
|
|
{
|
|
/* find tree successor with a NIL node as a child */
|
|
y = RightChild(elem);
|
|
while (LeftChild(y) != InvalidIndex())
|
|
y = LeftChild(y);
|
|
}
|
|
|
|
/* x is y's only child */
|
|
if (LeftChild(y) != InvalidIndex())
|
|
x = LeftChild(y);
|
|
else
|
|
x = RightChild(y);
|
|
|
|
/* remove y from the parent chain */
|
|
if (x != InvalidIndex())
|
|
SetParent( x, Parent(y) );
|
|
if (!IsRoot(y))
|
|
{
|
|
if (IsLeftChild(y))
|
|
SetLeftChild( Parent(y), x );
|
|
else
|
|
SetRightChild( Parent(y), x );
|
|
}
|
|
else
|
|
m_Root = x;
|
|
|
|
// need to store this off now, we'll be resetting y's color
|
|
NodeColor_t ycolor = Color(y);
|
|
if (y != elem)
|
|
{
|
|
// Standard implementations copy the data around, we cannot here.
|
|
// Hook in y to link to the same stuff elem used to.
|
|
SetParent( y, Parent(elem) );
|
|
SetRightChild( y, RightChild(elem) );
|
|
SetLeftChild( y, LeftChild(elem) );
|
|
|
|
if (!IsRoot(elem))
|
|
if (IsLeftChild(elem))
|
|
SetLeftChild( Parent(elem), y );
|
|
else
|
|
SetRightChild( Parent(elem), y );
|
|
else
|
|
m_Root = y;
|
|
|
|
if (LeftChild(y) != InvalidIndex())
|
|
SetParent( LeftChild(y), y );
|
|
if (RightChild(y) != InvalidIndex())
|
|
SetParent( RightChild(y), y );
|
|
|
|
SetColor( y, Color(elem) );
|
|
}
|
|
|
|
if ((x != InvalidIndex()) && (ycolor == BLACK))
|
|
RemoveRebalance(x);
|
|
}
|
|
}
|
|
|
|
template <class T, class I>
|
|
void CUtlRBTree<T, I>::Link( I elem )
|
|
{
|
|
if ( elem != InvalidIndex() )
|
|
{
|
|
I parent;
|
|
bool leftchild;
|
|
|
|
FindInsertionPosition( Element( elem ), parent, leftchild );
|
|
|
|
LinkToParent( elem, parent, leftchild );
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Delete a node from the tree
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
void CUtlRBTree<T, I>::RemoveAt(I elem)
|
|
{
|
|
if ( elem != InvalidIndex() )
|
|
{
|
|
Unlink( elem );
|
|
|
|
FreeNode(elem);
|
|
--m_NumElements;
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// remove a node in the tree
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I> bool CUtlRBTree<T, I>::Remove( T const &search )
|
|
{
|
|
I node = Find( search );
|
|
if (node != InvalidIndex())
|
|
{
|
|
RemoveAt(node);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Removes all nodes from the tree
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
void CUtlRBTree<T, I>::RemoveAll()
|
|
{
|
|
// Just iterate through the whole list and add to free list
|
|
// much faster than doing all of the rebalancing
|
|
// also, do it so the free list is pointing to stuff in order
|
|
// to get better cache coherence when re-adding stuff to this tree.
|
|
I prev = InvalidIndex();
|
|
for (int i = (int)m_TotalElements; --i >= 0; )
|
|
{
|
|
I idx = (I)i;
|
|
if (IsValidIndex(idx))
|
|
Destruct( &Element(idx) );
|
|
SetRightChild( idx, prev );
|
|
SetLeftChild( idx, idx );
|
|
prev = idx;
|
|
}
|
|
m_FirstFree = m_TotalElements ? (I)0 : InvalidIndex();
|
|
m_Root = InvalidIndex();
|
|
m_NumElements = 0;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// iteration
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
I CUtlRBTree<T, I>::FirstInorder() const
|
|
{
|
|
I i = m_Root;
|
|
while (LeftChild(i) != InvalidIndex())
|
|
i = LeftChild(i);
|
|
return i;
|
|
}
|
|
|
|
template <class T, class I>
|
|
I CUtlRBTree<T, I>::NextInorder( I i ) const
|
|
{
|
|
Assert(IsValidIndex(i));
|
|
|
|
if (RightChild(i) != InvalidIndex())
|
|
{
|
|
i = RightChild(i);
|
|
while (LeftChild(i) != InvalidIndex())
|
|
i = LeftChild(i);
|
|
return i;
|
|
}
|
|
|
|
I parent = Parent(i);
|
|
while (IsRightChild(i))
|
|
{
|
|
i = parent;
|
|
if (i == InvalidIndex()) break;
|
|
parent = Parent(i);
|
|
}
|
|
return parent;
|
|
}
|
|
|
|
template <class T, class I>
|
|
I CUtlRBTree<T, I>::PrevInorder( I i ) const
|
|
{
|
|
Assert(IsValidIndex(i));
|
|
|
|
if (LeftChild(i) != InvalidIndex())
|
|
{
|
|
i = LeftChild(i);
|
|
while (RightChild(i) != InvalidIndex())
|
|
i = RightChild(i);
|
|
return i;
|
|
}
|
|
|
|
I parent = Parent(i);
|
|
while (IsLeftChild(i))
|
|
{
|
|
i = parent;
|
|
if (i == InvalidIndex()) break;
|
|
parent = Parent(i);
|
|
}
|
|
return parent;
|
|
}
|
|
|
|
template <class T, class I>
|
|
I CUtlRBTree<T, I>::LastInorder() const
|
|
{
|
|
I i = m_Root;
|
|
while (RightChild(i) != InvalidIndex())
|
|
i = RightChild(i);
|
|
return i;
|
|
}
|
|
|
|
template <class T, class I>
|
|
I CUtlRBTree<T, I>::FirstPreorder() const
|
|
{
|
|
return m_Root;
|
|
}
|
|
|
|
template <class T, class I>
|
|
I CUtlRBTree<T, I>::NextPreorder( I i ) const
|
|
{
|
|
if (LeftChild(i) != InvalidIndex())
|
|
return LeftChild(i);
|
|
|
|
if (RightChild(i) != InvalidIndex())
|
|
return RightChild(i);
|
|
|
|
I parent = Parent(i);
|
|
while( parent != InvalidIndex())
|
|
{
|
|
if (IsLeftChild(i) && (RightChild(parent) != InvalidIndex()))
|
|
return RightChild(parent);
|
|
i = parent;
|
|
parent = Parent(parent);
|
|
}
|
|
return InvalidIndex();
|
|
}
|
|
|
|
template <class T, class I>
|
|
I CUtlRBTree<T, I>::PrevPreorder( I i ) const
|
|
{
|
|
Assert(0); // not implemented yet
|
|
return InvalidIndex();
|
|
}
|
|
|
|
template <class T, class I>
|
|
I CUtlRBTree<T, I>::LastPreorder() const
|
|
{
|
|
I i = m_Root;
|
|
while (1)
|
|
{
|
|
while (RightChild(i) != InvalidIndex())
|
|
i = RightChild(i);
|
|
|
|
if (LeftChild(i) != InvalidIndex())
|
|
i = LeftChild(i);
|
|
else
|
|
break;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
template <class T, class I>
|
|
I CUtlRBTree<T, I>::FirstPostorder() const
|
|
{
|
|
I i = m_Root;
|
|
while (!IsLeaf(i))
|
|
{
|
|
if (LeftChild(i))
|
|
i = LeftChild(i);
|
|
else
|
|
i = RightChild(i);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
template <class T, class I>
|
|
I CUtlRBTree<T, I>::NextPostorder( I i ) const
|
|
{
|
|
I parent = Parent(i);
|
|
if (parent == InvalidIndex())
|
|
return InvalidIndex();
|
|
|
|
if (IsRightChild(i))
|
|
return parent;
|
|
|
|
if (RightChild(parent) == InvalidIndex())
|
|
return parent;
|
|
|
|
i = RightChild(parent);
|
|
while (!IsLeaf(i))
|
|
{
|
|
if (LeftChild(i))
|
|
i = LeftChild(i);
|
|
else
|
|
i = RightChild(i);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
|
|
template <class T, class I>
|
|
void CUtlRBTree<T, I>::Reinsert( I elem )
|
|
{
|
|
Unlink( elem );
|
|
Link( elem );
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// returns the tree depth (not a very fast operation)
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
int CUtlRBTree<T, I>::Depth( I node ) const
|
|
{
|
|
if (node == InvalidIndex())
|
|
return 0;
|
|
|
|
int depthright = Depth( RightChild(node) );
|
|
int depthleft = Depth( LeftChild(node) );
|
|
return max(depthright, depthleft) + 1;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Makes sure the tree is valid after every operation
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
bool CUtlRBTree<T, I>::IsValid() const
|
|
{
|
|
if ( !Count() )
|
|
return true;
|
|
|
|
if (( Root() >= MaxElement()) || ( Parent( Root() ) != InvalidIndex() ))
|
|
goto InvalidTree;
|
|
|
|
#ifdef UTLTREE_PARANOID
|
|
|
|
// First check to see that mNumEntries matches reality.
|
|
// count items on the free list
|
|
int numFree = 0;
|
|
int curr = m_FirstFree;
|
|
while (curr != InvalidIndex())
|
|
{
|
|
++numFree;
|
|
curr = RightChild(curr);
|
|
if ( (curr > MaxElement()) && (curr != InvalidIndex()) )
|
|
goto InvalidTree;
|
|
}
|
|
if (MaxElement() - numFree != Count())
|
|
goto InvalidTree;
|
|
|
|
// iterate over all elements, looking for validity
|
|
// based on the self pointers
|
|
int numFree2 = 0;
|
|
for (curr = 0; curr < MaxElement(); ++curr)
|
|
{
|
|
if (!IsValidIndex(curr))
|
|
++numFree2;
|
|
else
|
|
{
|
|
int right = RightChild(curr);
|
|
int left = LeftChild(curr);
|
|
if ((right == left) && (right != InvalidIndex()) )
|
|
goto InvalidTree;
|
|
|
|
if (right != InvalidIndex())
|
|
{
|
|
if (!IsValidIndex(right))
|
|
goto InvalidTree;
|
|
if (Parent(right) != curr)
|
|
goto InvalidTree;
|
|
if (IsRed(curr) && IsRed(right))
|
|
goto InvalidTree;
|
|
}
|
|
|
|
if (left != InvalidIndex())
|
|
{
|
|
if (!IsValidIndex(left))
|
|
goto InvalidTree;
|
|
if (Parent(left) != curr)
|
|
goto InvalidTree;
|
|
if (IsRed(curr) && IsRed(left))
|
|
goto InvalidTree;
|
|
}
|
|
}
|
|
}
|
|
if (numFree2 != numFree)
|
|
goto InvalidTree;
|
|
|
|
#endif // UTLTREE_PARANOID
|
|
|
|
return true;
|
|
|
|
InvalidTree:
|
|
return false;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Sets the less func
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
void CUtlRBTree<T, I>::SetLessFunc( typename CUtlRBTree<T, I>::LessFunc_t func )
|
|
{
|
|
if (!m_LessFunc)
|
|
m_LessFunc = func;
|
|
else
|
|
{
|
|
// need to re-sort the tree here....
|
|
Assert(0);
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// inserts a node into the tree
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// Inserts a node into the tree, doesn't copy the data in.
|
|
template <class T, class I>
|
|
void CUtlRBTree<T, I>::FindInsertionPosition( T const &insert, I &parent, bool &leftchild )
|
|
{
|
|
Assert( m_LessFunc );
|
|
|
|
/* find where node belongs */
|
|
I current = m_Root;
|
|
parent = InvalidIndex();
|
|
leftchild = false;
|
|
while (current != InvalidIndex())
|
|
{
|
|
parent = current;
|
|
if (m_LessFunc( insert, Element(current) ))
|
|
{
|
|
leftchild = true; current = LeftChild(current);
|
|
}
|
|
else
|
|
{
|
|
leftchild = false; current = RightChild(current);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T, class I>
|
|
I CUtlRBTree<T, I>::Insert( T const &insert )
|
|
{
|
|
// use copy constructor to copy it in
|
|
I parent;
|
|
bool leftchild;
|
|
FindInsertionPosition( insert, parent, leftchild );
|
|
I newNode = InsertAt( parent, leftchild );
|
|
CopyConstruct( &Element( newNode ), insert );
|
|
return newNode;
|
|
}
|
|
|
|
|
|
template <class T, class I>
|
|
void CUtlRBTree<T, I>::Insert( const T *pArray, int nItems )
|
|
{
|
|
while ( nItems-- )
|
|
{
|
|
Insert( *pArray++ );
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// finds a node in the tree
|
|
//-----------------------------------------------------------------------------
|
|
|
|
template <class T, class I>
|
|
I CUtlRBTree<T, I>::Find( T const &search ) const
|
|
{
|
|
Assert( m_LessFunc );
|
|
|
|
I current = m_Root;
|
|
while (current != InvalidIndex())
|
|
{
|
|
if (m_LessFunc( search, Element(current) ))
|
|
current = LeftChild(current);
|
|
else if (m_LessFunc( Element(current), search ))
|
|
current = RightChild(current);
|
|
else
|
|
break;
|
|
}
|
|
return current;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#endif // UTLRBTREE_H
|